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Physical mechanisms involved in the light confinement in photonic crystal slab microcavities are investi-
gated. We first present a full three-dimensional numerical study of these microcavities. Then, to gain physical
insight into the confinement mechanisms, we develop a Fabry-Perot model. This model provides accurate
predictions and sheds new light on the physics of light confinement. We clearly identify two mechanisms to
enhance theQ factor of these microcavities. The first one consists of improving the mode-profile matching at
the cavity terminations and the second one of using a slow wave in the cavity.
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Electromagnetic resonant cavities, which trap light within
a finite volume, are essential components of many important
optical devices and effects. Besides standard applications of
these structures as lasers or frequency filters, they can poten-
tially be used in solid-state quantum electrodynamics experi-
ments to enhance or reduce the spontaneous emission rate1

and in related applications to quantum information studies.2

An ideal cavity would show infinitely narrow resonances at
discrete frequencies and would confine light indefinitely. De-
viation from this ideal condition is described by the cavity
quality factor, a quantity related to the amount of light leak-
ing out of the cavity. Quality factorQ and modal volumeV,
a quantity related to the degree of the cavity-mode confine-
ment, are the prominent parameters in applications of these
devices.1 At optical frequencies, due to the lack of good met-
als, impetus for ultrahighQ research has concentrated during
the last decade on small volume resonant dielectric cavities
like microposts, microdisks, photonic crystalsPCd micro-
cavities, microspheres, and ring resonators.3

Recently, several numerical and experimental studies4–9

have shown that microcavities in two-dimensional PC slabs
are highly valuable candidates for achieving high quality fac-
tors with wavelength-sized modal volumes. All these works
evidence the importance of finely tuning the holes position at
the cavity termination. For instance, in Ref. 5, a remarkable
control over fabricated geometries has been demonstrated,
and Q factors of 45,000 have been measured in a silicon-
based two-dimensional PC microcavity. The very highQ
value, 10 times larger than in previous studies with compa-
rable ultrasmall volumes close tosl /nd3, has been achieved
through a surprising 10-timesQ enhancement induced by a
fine shift s60 nmd of the holes surrounding the defect region.
In order to estimate the ultimate potential of these microcavi-
ties for future applications, it appears essential to understand
in depth the role of the hole tuning in the experiment. A good
understanding is also important for new designs of micro-
cavities in general.

In this work, we study PC slab microcavities which con-
sist of a small line-defect composed ofN missing holes, see
Fig. 1 for a schematic view of the structure along with a
definition of the different parameters. We first perform a full
electromagnetic study of these microcavities with a three-
dimensional s3Dd frequency-domain modal method10 and

emphasize the impact of hole tuning on theQ factors of
cavities with severalN values. Currently, the theoretical
analysis5,11,12 of PC slab microcavities relies on a complete
resolution of the electromagnetic problem with 3D finite-
difference-time-domain methods, followed by an analysis of
the cavity-mode pattern through a Fouriersor momentum-
spaced decomposition method. The approach we develop
here is radically different. In comparison with the analysis
performed in Ref. 5 which is presently being debated,13 it
also leads to a different interpretation of the physics of light
confinement. Instead of looking at a global property of the
cavity, we emphasize mirror properties through a Fabry-
PerotsFPd model. While interpreting light confinement with
a FP model is the prime natural approach one has in mind to
analyze in-line PC microcavities,14,15 this work validates
such an approach for 2D PC microcavities. New physical
effects are highlighted, namely an improved mode-profile
matching at the cavity terminations and a slow wave effect in
the cavity. Similar conclusions have been derived in Ref. 13
but, due to space limitations, they have neither been vali-
dated nor been argued in depth.

We first analyze the electromagnetic properties of micro-
cavities for several values of the numberN of missing holes.
For the calculation, we assume that the refractive indexsn
=3.42d of the silicon slab is independent of the frequency, an
assumption highly legitimate in the narrow spectral range of
interest, and we use a three-dimensional frequency-domain

FIG. 1. Schematic top view of the investigated microcavities
formed by fillingN holes in theGK direction of a two-dimensional
PC structure composed of a triangular lattice of air holesslattice
constanta=0.42mmd etched into a silicon slab. The picture holds
for a cavity with three missing holessN=3d. The slab thickness is
0.6a and the air holes radii 0.29a. The hole displacement at the
cavity edges is denoted byd. PlanesP and P8 are used as phase
references for the modal reflectivity used in the Fabry-Perot model.
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modal method.10 The cavity Q factors are computed asQ

=Resl̃d /2 Imsl̃d, where l̃ is the complex pole associated
with a scattering matrix relating the electromagnetic fields
between two outer planes which are parallel to planesP and
P8 ssee Fig. 1d and which are located 15 rows of holes away
from them. By varying this number from 12 to 18, we have
checked that the calculatedQ’s remain unchanged, indicating
that in-plane losses are kept at a negligible level in the cal-
culation. Therefore the calculatedQ’s are intrinsic quality
factors solely limited by out-of-plane radiation. The method
relies on an analytical integration of Maxwell’s equations
along theGK direction and on a supercell approach in the
two others. Periodic boundary conditions are used in theGM
direction and perfectly-matched layers16 are used in thez
direction to carefully handle the far-field radiation in the air
clads. Since these layers absorb nonevanescent radiations,
the electromagnetic fields are null on thez boundaries of the
supercell and are thus periodic functions of thez coordinates.
This allows the calculation of the radiated and guided modes
in a Fouriersplane-waved basis in each layersthe hole shapes
are discretized in a series of thin uniform layersd and the
integration in theGK direction by relating recursively the
mode amplitudes in the different layers using a scattering
matrix approach.

The calculated Q’s scirclesd are displayed in Figs.
2sad–2scd as a function of the hole displacementd. For the
sake of comparison, we also include experimental data
ssquaresd. These data were determined in Ref. 5 from cavity-
radiation-spectrum measurements by removing the coupling
effect between the cavity and the probe waveguide. As
shown in Fig. 2scd, the calculations quantitatively agree with
the experimental data, indicating that inevitable additional
losses related to fabrication errors are kept at a rather small
level in the experiment. The calculation also predicts an in-
crease ofQ by a factor of 20 ford<0.18a, a value slightly
larger than the value ofd=0.15a, for which an<8 timesQ
enhancement has been observed experimentally. Comparison
of Figs. 2sad–2scd shows similar trends for the three geom-

etries: an asymmetric peak with a peak quality factorQmax
achieved ford/a<0.18. We additionally note thatQmax in-
creases rapidly asN increases, starting from 4000 forN=1
and reaching a value of 92,000 forN=3. These important
characteristics will be explained in the following.

To gain physical insight into the mechanisms of theQ
enhancement, we now develop a FP model and consider the
PC microcavity as a FP resonator composed of a single-line-
defect PC waveguide closed at both extremities by two PC
mirrors. Within this approach, the cavity mode results from
the bouncing of the fundamental Bloch mode of the PC
waveguide between two PC mirrors along theGK direction.
In the spectral range of interest, this Bloch mode is a truly
lossless guided mode operating below the light line of the
air-clad.17,18 Therefore the finite lifetime of the cavity mode
is solely due to the imperfect Bloch mode reflectivityursldu2
of the PC mirrors, which is strictly smaller than unity. Since
in-plane losses are null, the quantityL=1−ursldu2 represents
inevitable out-of-plane radiation losses occurring when the
mode of the PC waveguide is impinging on the mirror. Here-
after, the effective indexneffsld of the fundamental Bloch
mode of the single-line-defect PC waveguide and its modal
reflectivity coefficienturslduexpfiwrsldg on the PC mirror de-
fined at planeP will play a central role. The Bloch mode is
calculated as the eigenstate of the PC waveguide in the Fou-
rier basis,19 and its modal reflectivityrsld is obtained with
the method of Ref. 10.

Within the FP model, a resonance at a wavelengthl0 is
due to a phase-matching condition for the Bloch mode. More
precisely, the total phase delayFTsl0d experienced by the
mode along one-half cavity cycle has to be equal to a mul-
tiple of p,20

FTsl0d = s2p/l0dneffsl0dL + wrsl0d = pp, s1d

whereL is the cavity length equal toNa ssee Fig. 1d andp is
an integer. Figure 3 shows the total phase delay for different
hole displacements,d/a=0, 0.05, 0.1, 0.15, and 0.25, and for
the cavity withN=3. Asd increases, the total phase delay, or
equivalently the effective cavity length, increases. Since the

FIG. 2. Comparison between experimental datassquaresd, cal-
culation datascirclesd, and FP model predictionsssolid curvesd. sad,
sbd, andscd Q-enhancement forN=1, 2, and 3, respectively. Insad,
the FP model predictions do not show up fordø0.1a. For small
d’s, the resonance wavelength is beneath 1.5mm and the Bloch
mode of the single-line-defect PC waveguide leaks in the air clads.
sdd Resonance wavelength redshift forN=3.

FIG. 3. The total-phase delayFTsld has been represented for
d/a=0, 0.05, 0.1, 0.15, and 0.25 and forN=3. The phase matching
occurs forFTsl0d=4p sdashed horizontal lined. Inset: dispersion
diagram of the fundamental Bloch modessolid curved. The dashed
lines correspond to the resonance wavelengths for the above-
mentioned values ofd. From top to bottom,d increases.
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cavity-mode ordersp=4d is the same for alld’s, the hole
displacement results in a redshift of the resonant wavelength
l0. Figure 2sdd compares the FP predictions for the resonant
wavelengthl0 with experimental valuesssquaresd. Good
agreement is obtained. In addition, we also note that the FP

predictions nicely agree with numerical data for Resl̃d
scirclesd. Similar agreementssnot shown for the sake of con-
cisenessd have also been obtained for the cavities withN
=1 and 2, forp=2 and 3, respectively.

The mode lifetime is related to the cavity quality factor
defined byQ=l0/Dl, whereDl is the resonance width at
half maximum. For a FP resonator and under the legitimate
assumption of a narrow resonance,Dl can be straightfor-
wardly expressed as the derivative ofFTsld. One obtains the
following expression forQ:

Q =
p

1 − ursl0du2F2
L

l0
ngsl0d −

l0

p
S ]wr

]l
D

l0

G . s2d

In Eq. s2d, ng represents the group indexsng=c/vgd of the
Bloch mode cycling in the resonator. Although theng factor
is often omitted and replaced byneff in classical
textbooks20—probably becauseng cannot exceed a few unity
for classical waveguides even with large refractive-index
contrasts—it must not be omitted in the present study since
PC waveguides potentially offer extremely large group-
velocity reduction.18 Whether one understands theng factor
in Eq. s2d as an increase of the effective cavity length or as
an increase of the photon density inside the resonator, it is
worthy to mention thatng mainly affects the cavity-mode
lifetime. Thusng represents a highly valuable parameter for
cavity designs in quantum electrodynamics experiments.
Equation s2d highlights also two other physical quantities
which impact the mode lifetime: the derivative of the phase
of the modal reflectivity coefficientsusually a negative quan-
tityd, and the modal reflectivityursldu2 of the Bloch mode, a
quantity directly related to the out-of-plane radiation losses
L=1−ursldu2 incurred at the cavity terminations. The effects
of the hole shift on these three quantities are shown in Figs.
4sad–4scd for N=3. From these calculations and by use of
Eq. s2d, the FP predictions for theQ factor are derived. As
shown in Fig. 2scd, these predictions agree well with experi-
mental datassquaresd and with numerical datascirclesd ob-
tained by the pole calculation. We have also performed simi-
lar comparisons for the cavities withN=1 and 2 missing
holes and, as shown in Figs. 2sad and 2sbd, a quantitative
agreement is again achieved.

In general, one does not expect perfect agreement be-
tween the FP model predictions and calculation data obtained
with the pole approach. The reason is that, in the FP ap-
proach, energy transport in between planesP andP8 is solely
ensured by the fundamental propagating Bloch mode of the
PC waveguide, all other energy-transport routes being ne-
glected. These other routesswhich are indeed taken into ac-
count with the pole calculationd are all the other Bloch
modes of the PC waveguide. These modes are all leaky in the
spectral range of interest and their leakage guarantees that
their impact on the cavity mode lifetime vanishes asN in-
creases. However, a leakage does not preclude an impact by

evanescent coupling in ultrasmall cavities. Indeed, it has
been demonstrated that energy transportation through leaky
waves is not negligible under specific conditions and can
even drastically impact the performance of ultrasmall air-
bridge microcavities.15 However, the good agreement shown
in Figs. 2sad–2scd suggests that this impact can be neglected
in the 2D geometry considered here. Therefore the single
Bloch-mode FP model can be used with confidence to ana-
lyze the electromagnetic properties of ultrasmall PC micro-
cavities even with only one missing hole. This result opens
interesting perspectives for future designs.

With the FP model, we are now able to interpret the ex-
perimental observation of aQ enhancement by holes tuning
in Ref. 5. The first mechanism is a progressive increase of
the reflectivity ur u2 fsee Fig. 4scdg. This increase is followed
by a quick drop ford/a.0.18, which is responsible for the
observation of an asymmetric peak forQ. In Fig. 4sdd, we
compareursldu2 for two mirrors withd=0 andd=0.18a. The
spectrum covers the whole domain of resonance frequencies
of the three cavities. General trends are an increase of the
reflectivity with the wavelength and an additional increase
by shifting the holes,L being roughly reduced by a constant
factor of <5 over the entire spectrum. The reflectivity in-
crease induced by hole tuning has been previously inter-
preted for one-dimensional Bragg reflectors14,15and more re-
cently for two-dimensional PC mirrors.21 This effect is
understood as a mode conversion in the nonperiodic region
of the mirror: the hole tuning decreases the mode-profile
mismatch between the propagative Bloch mode of the PC
waveguide and the evanescent Bloch mode of the PC mirror.
The accuracy of the FP model predictions in Figs. 2sad–2scd
evidences the strong relationship between the mode lifetime
of a two-dimensional PC microcavity and mode-profile
matching problems at the cavity terminations.

The second mechanism involved in theQ enhancement is
an increase of the group indexng and of ]wr /]l fsee Figs.
4sad and 4sbdg. This increase results from the highly disper-
sive nature of the Bloch mode, as shown by the dispersion
diagram in the inset of Fig. 3, and from the slightly longer
penetration depth into the PC mirrors due to the broken pe-
riodicity and to the propagation of a slower wave on a longer

FIG. 4. sad, sbd, and scd Effect of the holes shift on the main
physical parameters involved in Eq.s2d for N=3. sdd ursldu2 for two
mirrors withd=0 sdashed-dotted curved andd=0.18a ssolid curved.
The arrows indicate the reflectivity change for the three cavities.
From left to right,N=1, 2, and 3.
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effective cavity lengthsL+2dd. Whereas the reflectivity in-
crease is roughly the same for the three cavitiessN=1, N
=2, andN=3d, the slow-wave effect strongly depends on the
cavity length. ForN=3 missing holes, the group velocity of
the Bloch mode is roughly decreased by a factor of 2 by
shifting the holes while it is roughly unchanged for the cav-
ity with N=1. To our knowledge, the work in Ref. 5 repre-
sents the first demonstration of the reinforcement of light-
matter interaction by use of slow-waves in microcavities, a
component whose essence is this reinforcement.

In conclusion, we have provided a thorough electromag-
netic analysis of light confinement in two-dimensional PC
slab microcavities. A classical FP model has been proposed
and validated through comparison with rigorous numerical
results and experimental data. This suggests that light con-
finement in PC slab microcavities can be largely understood
as one classically does for more traditional in-line cavities.
The model provides an analytical expression for theQ factor
and its domain of validity surprisingly extends to ultrasmall
cavities even with a single missing hole. As general design
rules, the model suggests that the cavity terminations have to
be carefully handled for lowering radiation losses into the
cladding and that the resonance frequency of the cavity
should match that of a truly propagative Bloch mode below
the light line. In addition, the FP model has been used to

interpret the observations5 of very high Q factors in these
cavities by finely tuning the hole geometry at the cavity ter-
minations. Two physical effects which have not been men-
tioned in the original interpretation and which are important
for microcavity designs in general have been highlighted.
First, the fine-tuning of the holes at the cavity terminations
impacts the intrinsic properties of the PC mirrors. A small
hole shift results in a better mirror performance, i.e., in a
reduction of the radiation in the claddings. Second, the tun-
ing results in a redshift of the resonance wavelength and in a
decrease of the group velocity of the Bloch mode cycling
inside the cavity. Although kept at a moderate level in the
experiment, the group-velocity issue has to be considered for
further designs. Confining slow light in small volumes is an
important outcome of the present analysis, and PC geom-
etries which offer highly dispersive Bloch modes are cer-
tainly promising candidates. For instance, and for the geom-
etry considered in this work, the FP model predicts a peakQ
factor in excess of 250,000 with group velocities ofc/25 for
a cavity with four missing holes.
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