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stochastic differential equations
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November 10, 2006

Abstract

In this paper we consider a n-dimensional stochastic differential equation driven
by a fractional Brownian motion with Hurst parameter H > 1/3. After solving this
equation in a rather elementary way, following the approach of [10], we show how to
obtain an expansion for E[f(Xt)] in terms of t, where X denotes the solution to the
SDE and f : R

n → R is a regular function. With respect to [2], where the same kind
of problem is considered, we try an improvement in three different directions: we are
able to take a drift into account in the equation, we parametrize our expansion with
trees (which makes it easier to use), and we obtain a sharp control of the remainder.

Keywords: fractional Brownian motion, stochastic differential equations, trees expan-
sions.

MSC: 60H05, 60H07, 60G15

1 Introduction

In this article, we study the stochastic differential equation (SDE in short)

Xa
t = a +

∫ t

0

σ(Xa
s )dBs +

∫ t

0

b(Xa
s )ds, t ∈ [0, T ], (1)
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where B is a d-dimensional fractional Brownian motion (fBm in short) of Hurst index
H > 1/3, a ∈ R

n is a non-random initial value and σ : R
n → Ld,n and b : R

n → R
n are

smooth functions.

There are essentially two ways to give a sense to equation (1):

1. Pathwise (Stratonovich) setting. When H > 1/2 it is now well-known that we can
use the Young integral for integration with respect to fBm and, with this choice,
we have existence and uniqueness of the solution for equation (1) in the class of
processes having α-Hölder continuous paths with 1 − H < α < H, see e.g. [24].
When 1/4 < H < 1/2, it is still possible to give a sense to (1), using the rough
path theory, which was initiated by Lyons [8, 9] and applied to the fBm case by
Coutin and Qian [6]. In this setting, we also have existence and uniqueness in an
appropriate class of processes. Remark moreover that, by using a generalization of
the symmetric Russo-Vallois integral (namely the Newton-Côtes integral corrected
by a Lévy area) we can obtain existence and uniqueness for (1) for any H ∈ (0, 1),
but only in dimension n = d = 1, see [15].

2. Skorohod setting. Skorohod stochastic equations, i.e., the integral with respect to
fBm in (1) is understood in the Skorohod sense, are much more difficult to be
solved. Indeed, until now, essentially only equations in which the noise enters lin-
early have been considered, see e.g., [16]. The difficulty with equations which are
driven non-linearly by fBm is notorious: the Picard iteration technique involves
Malliavin derivatives in such a way that the equations for estimating these deriva-
tives cannot be closed.

In the current paper, we will solve (1) by means of a variant of the rough path theory
introduced by Gubinelli in [10]. It is based on an algebraic structure, which turns out to
be useful for computational purposes, but has also its own interest, and is in fact a nice
alternative to the now classical theory of rough paths initiated by Lyons [8, 9]. Although
SDEs of the type (1) have already been studied in [10], we include in this present paper
a detailed review of the algebraic integration tools for several reasons. First of all, we
want to show that this theory can simplify some aspects of the analysis of fractional
equations, and we wish to give a self-contained study of these objects to illustrate this
point. Moreover, the analysis of stochastic partial differential equations in [12] has lead
to some clarifications with respect to [10], which may be worth presenting in the simpler
finite-dimensional context. In particular, our computations will heavily rely on an Itô-
type formula for the so-called weakly controlled processes, which is not included in [10],
and which will be proved here in detail.

As an application of this theory of integration we study the asymptotic development
with respect to t of the quantity Ptf(a) defined by

Ptf(a) = E(f(Xa
t )), t ∈ [0, T ], a ∈ R

n, f ∈ C∞(Rn; R), (2)

where Xa is the solution of (1). In the case H = 1/2, the Taylor expansion of the semi-
group Pt is well studied, see, e.g. [23, 22]. Recently, Baudoin and Coutin [2] studied
the asymptotic behaviour in the case H 6= 1/2. In this article, we extend their result in
several ways:

2



1. In [2], the authors considered the particular case b ≡ 0. Consequently, their formula
contains only powers of t of the form tnH with n ∈ N. Due to the drift part, we
obtain a more complicated expression containing powers of the type tnH+m with
n,m ∈ N.

2. In the current article, we use rooted trees in order to obtain a nice representation
of our formula. See also [23] for the case H = 1/2, and [11] for an application of the
tree expansion to the resolution of stochastic equations.

3. In the case where H > 1/2, we obtain a series expansion (15) of the operator Pt,
which is not only valid for small times as in [2], but for any fixed time t ≥ 0.

Moreover, let us note that in [2], the authors used the rough paths theory of Lyons
[6, 8, 9] in order to give a sense to (1). Here, as already mentioned, we use the integration
theory initiated by Gubinelli [10], which allows a self-contained and hopefully a little
simpler version of the essential results contained in the usual theory of integration of
rough signals.

There are several reasons which motivate the study of the family of operators (Pt, t ≥
0). For instance, the knowledge of Ptf(a) for a sufficiently large class of functions f
characterizes the law of the random variableXa

t . Moreover, the knowledge of Ptf(a) helps,
e.g., also in finding good sample designs for the reconstruction of fractional diffusions, see
[14].

The paper is organized as follows. In Section 2, we state the two main results of
this paper. In section 3, the basic setup of [10] with the aim of having a self-contained
introduction to the topic is recalled. In section 4, we recall some facts on the Malliavin
calculus for fractional Brownian motion and some properties of stochastic differential
equations driven by a fractional Brownian motion with Hurst parameterH > 1/2. Finally,
we give the missing proofs in section 5.

2 Main results

Before getting into a detailed description of the results contained in this article, let us
first recall the main properties of a fractional Brownian motion (fBm in short). A d-
dimensional fBm with Hurst parameter H is a centered Gaussian process, which can be
written as

B =
{
Bt = (B1

t , . . . , B
d
t ); t ≥ 0

}
, (3)

where B1, . . . , Bd are d independent one-dimensional fBm, i.e., each Bi is a centered
Gaussian process with continuous sample paths and covariance function

RH(t, s) =
1

2

(
s2H + t2H − |t− s|2H

)
(4)

for i = 1, . . . , d. Recall also that Bi can be represented in the following way: there exists
a standard Brownian motion W i such that we have

Bi
t =

∫ t

0

K(t, s) dW i
s ,
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for any t ≥ 0, where K is the kernel given by

K(t, s) = cH

[
(t− s)H−1/2 +

(
1

2
−H

)∫ t

s

(u− s)H−3/2

(
1 −

( s
u

)1/2−H
)
du

]
1[0,t)(s),

for a constant cH which can be expressed in terms of the Gamma function. Moreover, the
fBm verifies the following two important properties:

(scaling) For any c > 0, B(c) = cHB·/c is a fBm, (5)

(stationarity) For any h > 0, B·+h − Bh is a fBm. (6)

2.1 Existence and uniqueness of the solution of fractional SDEs

As mentioned in the introduction, we will use for the integration with respect to fBm the
integration theory developed by Gubinelli [10], on which we try to give here a simplified
overview. To this purpose, will denote by Ld,n the space of linear operators from R

d to
R

n, i.e., the space of matrices of R
n×d.

The results for fBm we will obtain in section 4 can be summarized as follows:

Theorem 2.1. Let B be a d-dimensional fractional Brownian motion with Hurst param-
eter H > 1/3 and a ∈ R

n. Let b : R
n → R

n and σ : R
n → Ld,n be twice continuously

differentiable and assume moreover that σ and b are bounded together with their deriva-
tives. Then the stochastic differential equation

Xa
t = a +

∫ t

0

σ(Xa
s ) dBs +

∫ t

0

b(Xa
s ) ds, for t ∈ [0, T ], (7)

admits a unique solution in Qκ,a(R
n) (see Definition 3.8 below) for any κ < H such that

2κ + H > 1, where the integral
∫ t

0
σ(Xa

s ) dBs has to be understood in the pathwise sense
of Proposition 3.10. Moreover, if f ∈ C2(Rn; R) is bounded together with its derivatives,
then f(Xa

t ) can be decomposed as

f(Xa
t ) = f(a) +

∫ t

0

∇f(Xa
s ) b(Xa

s ) ds+

∫ t

0

∇f(Xa
s ) σ(Xa

s ) dBs, (8)

for t ∈ [0, T ].

It is important to note that one of the main differences between our approach and the
one developed in [6, 8] is that the latter heavily relies on the almost sure approximation
of B by a sequence {Bn; n ≥ 1} of piecewise linear C1-processes, while in our setting this
discretization procedure is only present for the construction of the so-called fundamental
map Λ (see Proposition 3.2 below).
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2.2 Rooted trees and their application to the expansion of Pt

To state the next main results we need to recall some properties of stochastic rooted trees,
which have been introduced in [23] in the case of standard Brownian motion.

2.2.1 Recalls on rooted trees

Definition 2.2. A monotonically labelled S-tree (stochastic tree) t with l = l(t) ∈ N

nodes is a pair of maps t = (t′, t′′)

t
′ : {2, . . . , l} −→ {1, . . . , l − 1}

t
′′ : {1, . . . , l} −→ A

with A = {γ, τ0, τjk
, k ∈ N} where jk is a variable index with jk ∈ {1, . . . , d}, such that

t
′(i) < i, t

′′(1) = γ and t
′′(i) ∈ A \ {γ} for i = 2, . . . , l. Let LTS denote the set of all

monotonically labelled S-trees.

We use the following notation:

d(t) = |{i : t′′(i) = τ0}|
s(t) = |{i : t′′(i) = τjk

, jk 6= 0}| = l(t) − d(t) − 1

ρ(t) = H s(t) + d(t)

with ρ(γ) = 0.
In the following we denote by LTS(S) ⊂ LTS, where (S) stands for Stratonovich, the

subset
LTS(S) = {t ∈ LTS : s(t) = 2k, k ∈ N0} (9)

with N0 = N ∪ {0} containing all trees having an even number of stochastic nodes.
Every monotonically labelled S-tree t can be represented as a graph, whose nodes are

elements of {1, . . . , l(t)} and whose arcs are the pairs (t′(i), i) for i = 2, . . . , l(t). Here,
t′ defines a father son relation between the nodes, i.e., t′(i) is the father of the son
i. Further, γ = ⊗ denotes the root, τ0 = is a deterministic node and τjk

= jk
a

stochastic node. Here, we have to point out that each tree t ∈ LTS depends on the
variable indices j1, . . . , js(t) ∈ {1, . . . , d}s(t), although this is not mentioned explicitly if
we shortly write t for the tree.

tI =

1 ⊗

2

4 j2

3 j1 tII =

1 ⊗

2 j1

4 3 j2

tIII =

1 ⊗

3 j1

5
2

4 j2

Figure 1: Some monotonically labelled trees in LTS.
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Definition 2.3. If t1, . . . , tk are coloured trees then we denote by

(t1, . . . , tk), [t1, . . . , tk] and {t1, . . . , tk}j

the tree in which t1, . . . , tk are each joined by a single branch to ⊗ , and j, respectively
(see also Figure 2).

⊗

t1 t2 · · · tk t1 t2 · · · tk

j

t1 t2 · · · tk

(t1, . . . , tk) [t1, . . . , tk] {t1, . . . , tk}j

Figure 2: Writing a coloured S-tree with brackets.

Therefore proceeding recursively, for the two examples tI and tII in Figure 1 we obtain
tI = ([ 4

j2
]2, 3

j1
)1 = ([τ 4

j2 ]
2, τ 3

j1)
1 and tII = ({ 4, 3

j2
}2

j1)
1 = ({τ 4

0 , τ
3
j2}2

j1)
1.

For every rooted tree t ∈ LTS, there exists a corresponding elementary differential
which is a direct generalization of the differential in the deterministic case, see also [23].
The elementary differential is defined recursively for some x ∈ R

n by

F (γ)(x) = f(x), F (τ0)(x) = b(x), F (τj)(x) = σj(x),

for single nodes and by

F (t)(x) =





f (k)(x) · (F (t1)(x), . . . , F (tk)(x)) for t = (t1, . . . , tk)

b(k)(x) · (F (t1)(x), . . . , F (tk)(x)) for t = [t1, . . . , tk]

σj (k)
(x) · (F (t1)(x), . . . , F (tk)(x)) for t = {t1, . . . , tk}j

(10)

for a tree t with more than one node and with σj = (σi,j)1≤i≤n denoting the jth column

of the diffusion matrix σ. Here f (k), b(k) and σj (k)
define a symmetric k-linear differential

operator, and one can choose the sequence of labelled S-trees t1, . . . , tk in an arbitrary
order. For example, the Ith component of b(k) · (F (t1), . . . , F (tk)) can be written as

(b(k) · (F (t1), . . . , F (tk)))
I =

n∑

J1,...,Jk=1

∂kbI

∂xJ1 . . . ∂xJk
(F J1(t1), . . . , F

Jk(tk)),

where the components of vectors are denoted by superscript indices, which are chosen as
capitals. As a result of this we get for tI and tII the elementary differentials

F (tI) = f ′′(b′(σj2), σj1) =

n∑

J1,J2=1

∂2f

∂xJ1∂xJ2

(
n∑

K1=1

∂bJ1

∂xK1
σK1,j2 · σJ2,j1

)
,

F (tII) = f ′(σj1 ′′(b, σj2)) =

n∑

J1=1

∂f

∂xJ1

(
n∑

K1,K2=1

∂2σJ1,j1

∂xK1∂xK2
bK1 · σK2,j2

)
.
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Next, we assign recursively to every t ∈ LTS a multiple stochastic integral by

It(g(X
a
s ))t0,t =






g(Xa
t ) if t′′(l(t)) = γ∫ t

t0

It−(g(Xa
u))t0,s dB

j
s if t′′(l(t)) = τj

(11)

for 0 ≤ j ≤ d with dB0
s = ds. Here, t− denotes the tree which is obtained from t by

removing the last node with label l(t).

2.2.2 Expansion of Pt with respect to time t

We will denote by C∞
b (Rn; R) the space of all infinitely differentiable functions g ∈

C∞(Rn; R), which are bounded together with their derivatives. Moreover set Am =
{0, 1, . . . , d}m for m ∈ N, and define the differential operators D0 and Dj as

D0 =
n∑

k=1

bk
∂

∂xk
and Dj =

n∑

k=1

σk,j ∂

∂xk
(12)

for j = 1, . . . , d. Finally, set Dα = Dα1 . . .Dαm for a multi-index α ∈ Am.
Recall that the family of operators (Pt, t ∈ [0, T ]) has been defined by (2). To give

the expansion of Pt we will use the following assumptions on the function f : R
n → R,

the drift vector b = (bi)i=1,...,n and the diffusion matrix σ = (σi,j)i=1,...,n, j=1,...d:

(A) We have f, bi, σi,j ∈ C∞
b (Rn; R) for i = 1, . . . , n, j = 1, . . . , d.

The following theorem gives the expression of the expansion of Pt with respect to t:

Theorem 2.4. 1. If H > 1/3 and assumption (A) is satisfied, we have that

Ptf(a) =
∑

t∈LTS(S)
l(t)≤m+1

d∑

j1,...,js(t)=1

F (t)(a) E(It(1)0,1) t
ρ(t) +O(t(m+1)H), as t→ 0 (13)

for any m ∈ N0.

2. Let H > 1/2 and assumption (A) be satisfied. Moreover, assume that there exist
M ∈ N and constants K > 0, κ ∈ [0, 1/2) such that

sup
α∈Am

sup
x∈Rn

|Dαf(x)| + max
i=1,...,n

sup
α∈Am

sup
x∈Rn

∣∣∣∣
∂

∂xi
Dαf(x)

∣∣∣∣ ≤ Km(m!)κ (14)

for all m ≥M . Then we have

Ptf(a) =
∑

t∈LTS(S)

d∑

j1,...,js(t)=1

F (t)(a) E(It(1)0,1) t
ρ(t), t ∈ [0, T ]. (15)
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Remark 2.5. (1) Here, note that each tree t ∈ LTS(S) comprehends the variable indices
j1, . . . , js(t) which can take the values 1, . . . , d although these variables are not mentioned
explicitly by writing shortly t for the whole tree. The variables j1, . . . , js(t) correspond to
the components of the driving fractional Brownian motion and appear in the second sum
in the formulas (13) and (15) as well as in each tree t of the summands.

(2) In the case where H > 1/2, the boundedness of the coefficients is not needed for
existence and uniqueness of the solution, see [18].

(3) Although the additional assumption (14) seems to be quite restrictive, it is however
natural in a certain sense. Indeed, consider the trivial one-dimensional equation

dXa
t = dBt, t ∈ [0, T ], X0 = a

for H > 1/2. Then we have clearly

Xa
t = a+Bt, t ∈ [0, T ].

By the first part of Theorem 2.4 and Proposition 5.4 we have for this equation the expan-
sion

Ef(Xa
t ) = f(a) +

m∑

k=1

ckf
(k)(a)tHk +O(tH(m+1))

with

ck =
E(B1)

k

k!
=

{
0, if k is odd,
1

2k/2(k/2)!
else.

Hence the series
∞∑

k=1

ckf
(k)(a)tHk

converges absolutely for any t ∈ [0, T ], for instance if there exists constants K > 0 and
κ ∈ [0, 1/2) such that

|f (m)(a)| ≤ Km(m!)κ

for all m ∈ N. But if, e.g., we have that

lim inf
m→∞

|f (m)(a)|
(m!)1/2+ε

> 0

with ε > 0, then we have
∞∑

k=1

ck|f (k)(a)|tHk = +∞

for any t ∈ (0, T ]. Thus the condition (14) we require for the control of the remainder is
quite natural, since the coefficients of the expansion have to satisfy a similar condition,
as illustrated in this example. Furthermore similar growth conditions on the remainder
or the coefficients are also usual in the case H = 1/2, i.e., for the asymptotic expansion of
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Itô stochastic differential equations respectively their functionals. Compare, e.g., [3] and
chapter 5 in [7].

(4) In order to solve equation (7) and to bound the Malliavin derivative of the solution
in the case H > 1/2, we need only a boundedness condition on the first two derivatives
of b and σ. To avoid too many technicalities, we have assumed in (14) that all derivatives
Dαf are uniformly bounded in x ∈ R

n. However, thanks to Proposition 4.1 part (b), this
condition could be relaxed, and we could allow a bound of the form

sup
α∈Am

|Dαf(x)| + max
i=1,...,n

sup
α∈Am

∣∣∣∣
∂

∂xi

Dαf(x)

∣∣∣∣ ≤ Km(m!)κ (1 + ‖x‖q) ,

for a given q ≥ 0.

For a better understanding of the previous results and as an example we consider
SDE (1) in the case of n ≥ 1, d ≥ 1 and give an expansion of Ptf(a) for m = 2. Here, we
have to consider the trees with l(t) ≤ 3 which are t1 = γ1, t2 = (σ2

j1
)1, t3 = (τ 2)1, t4 =

(σ2
j1
, σ3

j2
)1, t5 = ({σ3

j2
}2

j1
)1, t6 = ([σ3

j1
]2)1, t7 = ({τ 3}2

j1
)1, t8 = (τ 2, σ3

j1
)1, t9 = (τ 3, σ2

j1
)1,

t10 = (τ 2, τ 3)1 and t11 = ([τ 3]2)1. However, only trees in LTS(S) with an even number of
stochastic nodes have to be included since we have E(It(1)0,1) = 0 for t ∈ LTS \LTS(S).
Then, we obtain

Ptf(a) = F (t1)(a) + F (t3)(a) E(It3(1)0,1) t+

d∑

j1,j2=1

F (t4)(a) E(It4(1)0,1) t
2H

+

d∑

j1,j2=1

F (t5)(a) E(It5(1)0,1) t
2H + F (t10)(a) E(It10(1)0,1) t

2

+ F (t11)(a) E(It11
(1)0,1) t

2 +O(t3H) .

Applying now (10) and (11) yields

Ptf(a) = f(a) + f ′(b)(a) E(

∫ 1

0

ds) t+

d∑

j1,j2=1

f ′′(σj1, σj2)(a) E(

∫ 1

0

∫ s

0

dBj1
s1
dBj2

s ) t2H

+

d∑

j1,j2=1

f ′(σj1 ′(σj2))(a) E(

∫ 1

0

∫ s

0

dBj1
s1
dBj2

s ) t2H + f ′′(b, b)(a) E(

∫ 1

0

∫ s

0

ds1 ds) t
2

+ f ′(b′(b))(a) E(

∫ 1

0

∫ s

0

ds1 ds) t
2 +O(t3H) ,

9



which finally results in

Ptf(a) = f(a) +
n∑

J1=1

∂f

∂xJ1
(a) bJ1(a) t+

1

2

d∑

j=1

n∑

J1,J2=1

∂2f

∂xJ1∂xJ2
(a) σJ1,j(a) σJ2,j(a) t2H

+
1

2

d∑

j=1

n∑

J1,J2=1

∂f

∂xJ1
(a)

∂σJ1,j

∂xJ2
(a) σJ2,j(a) t2H

+
1

2

n∑

J1,J2=1

∂2f

∂xJ1∂xJ2
(a) bJ1(a) bJ2(a) t2

+
1

2

n∑

J1,J2=1

∂f

∂xJ1
(a)

∂bJ1

∂xJ2
(a) bJ2(a) t2 +O(t3H) .

3 Some elements of algebraic integration

As already mentioned in the introduction, we include in this present section a detailed
review of the algebraic integration tools contained mostly in [10, 12]. Moreover, we will
give an Itô’s type formula for so-called weakly controlled processes.

3.1 Increments

The extended pathwise integration we will deal with is based on the notion of ’increments’,
together with an elementary operator δ acting on them. The algebraic structure they
generate is described in [10, 12], but here we present directly the definitions of interest
for us, for sake of conciseness. First of all, for an arbitrary real number T > 0, a vector
space V and an integer k ≥ 1 we denote by Ck(V ) the set of functions g : [0, T ]k → V such
that gt1···tk = 0 whenever ti = ti+1 for some i ≤ k − 1. Such a function will be called a
(k−1)-increment, and we will set C∗(V ) = ∪k≥1Ck(V ). We can now define the announced
elementary operator δ on Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1
=

k+1∑

i=1

(−1)k−igt1···t̂i···tk+1
, (16)

where t̂i means that this particular argument is omitted. A fundamental property of δ,
which is easily verified, is that δδ = 0, where δδ is considered as an operator from Ck(V )
to Ck+2(V ). We will denote ZCk(V ) = Ck(V ) ∩ Kerδ and BCk(V ) = Ck(V ) ∩ Imδ.

Some simple examples of actions of δ, which will be the ones we will really use through-
out the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any s, u, t ∈ [0, T ],
we have

(δg)st = gt − gs, and (δh)sut = hst − hsu − hut. (17)

Furthermore, it is easily checked that ZCk+1(V ) = BCk(V ) for any k ≥ 1. In particular,
the following basic property holds:

10



Lemma 3.1. Let k ≥ 1 and h ∈ ZCk+1(V ). Then there exists a (non unique) f ∈ Ck(V )
such that h = δf .

Proof. This elementary proof is included in [10], and will be omitted here. Let us just
mention that ft1...tk = h0t1...tk is a possible choice.

�

Observe that Lemma 3.1 implies that all the elements h ∈ C2(V ) such that δh = 0
can be written as h = δf for some (non unique) f ∈ C1(V ). Thus we get a heuristic
interpretation of δ|C2(V ): it measures how much a given 1-increment is far from being an
exact increment of a function, i.e., a finite difference.

Notice that our future discussions will mainly rely on k-increments with k ≤ 2, for
which we will use some analytical assumptions. Namely, we measure the size of these
increments by Hölder norms defined in the following way: for f ∈ C2(V ) let

‖f‖µ = sup
s,t∈[0,T ]

|fst|
|t− s|µ , and Cµ

2 (V ) = {f ∈ C2(V ); ‖f‖µ <∞} .

Obviously, the usual Hölder spaces Cµ
1 (V ) will be determined in the following way: for a

continuous function g ∈ C1(V ), we simply set

‖g‖µ = |δg|µ, (18)

and we will say that g ∈ Cµ
1 (V ) iff ‖g‖µ is finite. Notice that ‖ · ‖µ is only a semi-norm on

C1(V ), but we will generally work on spaces of the type

Cµ
1,a(V ) = {g : [0, T ] → V ; g0 = a, ‖g‖µ <∞} , (19)

for a given a ∈ V , on which ‖g‖µ thus becomes a norm. For h ∈ C3(V ) set in the same
way

‖h‖γ,ρ = sup
s,u,t∈[0,T ]

|hsut|
|u− s|γ|t− u|ρ (20)

‖h‖µ = inf

{
∑

i

‖hi‖ρi,µ−ρi
; h =

∑

i

hi, 0 < ρi < µ

}
,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi and
for all choices of the numbers ρi ∈ (0, z). Then ‖ · ‖µ is easily seen to be a norm on C3(V ),
and we set

Cµ
3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞} .

Eventually, let C1+
3 (V ) = ∪µ>1Cµ

3 (V ), and remark that the same kind of norms can be
considered on the spaces ZC3(V ), leading to the definition of some spaces ZCµ

3 (V ) and
ZC1+

3 (V ).

With these notations in mind the following proposition is a basic result, which belongs
to the core of our approach to pathwise integration. Its proof may be found in a simple
form in [12].

11



Proposition 3.2 (The Λ-map). There exists a unique linear map Λ : ZC1+
3 (V ) →

C1+
2 (V ) such that

δΛ = IdZC1+
3 (V ) and Λδ = IdC1+

2 (V ).

In other words, for any h ∈ C1+
3 (V ) such that δh = 0 there exists a unique g = Λ(h) ∈

C1+
2 (V ) such that δg = h. Furthermore, for any µ > 1, the map Λ is continuous from

ZCµ
3 (V ) to Cµ

2 (V ) and we have

‖Λh‖µ ≤ 1

2µ − 2
‖h‖µ, h ∈ ZCµ

3 (V ). (21)

We can now give an algorithm for a canonical decomposition of a function g ∈ C2(V ),
whose increment δg is smooth enough:

Corollary 3.3. Let g ∈ C2(V ) such that δg ∈ Cµ
3 (V ) for µ > 1. Then, for an arbitrary

a ∈ V , g can be decomposed in a unique way as

g = δf + Λδg, (22)

where f ∈ C1,a(V ).

Proof. This proof is elementary. We include it here in order to see some simple manipu-
lations of the objects we have introduced so far.

The existence of the decomposition is due to the following fact: if δg ∈ Cµ
3 (V ), then

it belongs to Dom(Λ). Thus, let us set h = Λδg. Then δ(g − h) = 0, which means that
g − h ∈ ZC2, and since ZC2 = BC1, there exists an element f ∈ C1 such that g − h = δf .
Hence we have obtained a decomposition of the form (22).

As far as the uniqueness of the decomposition is concerned, if f 1, f 2 satisfy (22), then
δf 1 = δf 2 and hence they differ only by a constant. Since f 1, f 2 are both supposed to be
elements of C1,a(V ), where a is a fixed initial condition, we obtain f 1 = f 2, which proves
our claim.

�

Let us mention at this point a first link between the structures we have introduced so
far and the problem of integration of irregular functions.

Corollary 3.4. For any 1-increment g ∈ C2(V ) such that δg ∈ C1+
3 , set δf = (Id−Λδ)g.

Then

(δf)st = lim
|Πts|→0

n∑

i=0

gti ti+1
,

where the limit is over any partition Πts = {t0 = t, . . . , tn = s} of [t, s], whose mesh tends
to zero. Thus, the 1-increment δf is the indefinite integral of the 1-increment g.

12



Proof. Just consider the equation g = δf + Λδg and write

SΠ =

n∑

i=0

gti ti+1
=

n∑

i=0

(δf)ti ti+1
+

n∑

i=0

(Λδg)ti ti+1

= (δf)st +
n∑

i=0

(Λδg)ti ti+1
.

Then observe that, due to the fact that Λδg ∈ C1+
3 (V ), the last sum converges to zero.

�

3.2 Computations in C∗
Let us specialize now to the case V = R

d for d ≥ 1. We will also denote by Ld,l the space of
linear operators from R

d to R
l, i.e., the space of matrices of R

l×d and set CkLd,l = Ck(Ld,l).
Then (C∗, δ) can be endowed with the following product: for g ∈ CnLd,l and h ∈ Cm(Rd)
let gh be the element of Cn+m−1(R

l) defined by

(gh)t1,...,tm+n+1 = gt1,...,tnhtn,...,tm+n−1 , t1, . . . , tm+n−1 ∈ [0, T ]. (23)

In this context, we have the following useful properties.

Proposition 3.5. The following differentiation rules hold true:

1. Let g ∈ C1Ld,l and h ∈ C1(R
d). Then gh ∈ C1(R

l) and

δ(gh) = δg h+ g δh. (24)

2. Let g ∈ C1Ld,l and h ∈ C2(R
d). Then gh ∈ C2(R

l) and

δ(gh) = δg h− g δh. (25)

3. Let g ∈ C2Ld,l and h ∈ C1(R
d). Then gh ∈ C2(R

l) and

δ(gh) = δg h+ g δh. (26)

Proof. We will just prove (24), the other relations being just as simple. If g, h ∈ C1, then

[δ(gh)]st = gtht − gshs = gs (ht − hs) + (gt − gs) ht = gs (δh)st + (δg)st ht,

which proves our claim.
�

The iterated integrals of smooth functions on [0, T ] are obviously particular cases of
elements of C, which will be of interest for us. Let us recall some basic rules for these
objects: consider f ∈ C∞

1 Ld,l and g ∈ C∞
1 (Rd), where C∞

1 denotes the set of smooth

13



functions on [0, T ]. Then the integral
∫
f dg, which will be denoted by J (f dg), can be

considered as an element of C∞
2 (Rl). Namely, for s, t ∈ [0, T ] we set

Jst(f dg) =

(∫
fdg

)

st

=

∫ t

s

fudgu.

The multiple integrals can also be defined in the following way: given a smooth element
h ∈ C∞

2 Ld,l and s, t ∈ [0, T ], we set

Jst(h dg) ≡
(∫

hdg

)

st

=

∫ t

s

hsudgu.

In particular, for f 1 ∈ C∞
1 (Rd1), f 2 ∈ C∞

1 Ld1,d2 and f 3 ∈ C∞
1 Ld2,d3 the double integral

Jst(f
3 df 2df 1) is defined as

Jst(f
3 df 2df 1) =

(∫
f 3 df 2df 1

)

st

=

∫ t

s

Jsu

(
f 3 df 2

)
df 1

u .

Now suppose that the nth order iterated integral of fn+1dfn · · · df 2, which is denoted by
J (fn+1dfn · · · df 2), has been defined for f j ∈ C∞

1 Ldj−1,dj . Then, if f 1 ∈ C∞
1 (Rd1), we set

Jst(f
n+1dfn · · ·df 2df 1) =

∫ t

s

Jsu

(
fn+1dfn · · · df 2

)
df 1

u , (27)

which recursively defines the iterated integrals of smooth functions. Observe that a nth
order integral J (dfn · · · df 2df 1) could be defined along the same lines.

The following relations between multiple integrals and the operator δ will also be
useful:

Proposition 3.6. Let f ∈ C∞
1 Ld,l and g ∈ C∞

1 (Rd). Then it holds that

δg = J (dg), δ (J (fdg)) = 0, δ (J (dfdg)) = −(δf)(δg) = −J (df)J (dg),

and

δ
(
J (dfn · · · df 1)

)
= −

n−1∑

i=1

J
(
dfn · · · df i+1

)
J
(
df i · · · df 1

)
.

Proof. Here the proof is elementary again. We will just show the third of the relations.
For s, t ∈ [0, T ] we have

Jst(dgdf) =

∫ t

s

(fu − fs)dgu =

∫ t

s

fudgu −Kst,

with Kst = fs(gt − gs). The first term of the right hand side is easily seen to be in ZC2.
Thus

δ (J (dgdf))sut = − (δK)sut = −[fu − fs][gt − gu],

which gives the announced result.
�
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3.3 Weakly controlled processes

Recall that we have in mind to solve equations of the form

dyt = σ(yt)dxt, y0 = a, (28)

where t ∈ [0, T ], y is a R
l-valued continuous process, σ : R

l → Ld,l is a C2
b function,

i.e. twice continuously differentiable and bounded together with its derivatives, x is a
R

d-valued path and a ∈ R
l is a fixed initial condition. As usual in rough path type

considerations, we will have to assume a priori the following hypothesis in order to handle
equations like (28):

Hypothesis 3.7. The path x is R
d-valued γ-Hölder with γ > 1/3 and admits a Lévy area,

that is a process x2 = J (dxdx) ∈ C2γ
2 Ld,d satisfying

δx2 = δx⊗ δx, i. e.
[
(δx2)sut

]
(i, j) = [δxi]su[δx

j ]ut, s, u, t ∈ [0, T ], i, j ∈ {1, . . . , d}.

The solution to (28) will then be expressed as a continuous function of the input a, σ, x
and x2.

Let us now be more specific about the global strategy, we will use to solve equation
(28). First of all, simple heuristic considerations show that, if the equation admits a
solution, it should be a weakly controlled path, i.e., a process of the following form:

Definition 3.8. Let z be a process in Cκ
1 (Rk) with κ ≤ γ and 2κ+ γ > 1. We say that z

is a weakly controlled path based on x, if z0 = a, which is a given initial condition in R
k,

and δz ∈ Cκ
2 (Rk) can be decomposed into

δz = ζδx+ r, i. e. (δz)st = ζs(δx)st + rst, s, t ∈ [0, T ], (29)

with ζ ∈ Cκ
1Ld,k and r is a regular part such that r ∈ C2κ

2 (Rk). The space of weakly
controlled paths will be denoted by Qκ,a(R

k), and a process z ∈ Qκ,a(R
k) can be considered

in fact as a couple (z, ζ). The natural semi-norm on Qκ,a(R
k) is given by

N [z;Qκ,a(R
k)] = N [z; Cκ

1 (Rk)] + N [ζ ; C∞
1 Ld,k] + N [ζ ; Cκ

1Ld,k] + N [r; C2κ
2 (Rk)]

with N [g; Cκ
1 ] defined by (18) and N [ζ ; C∞

1 (V )] = sup0≤s≤T |ζs|V .

Note that it is always possible to find κ ≤ γ with 2κ + γ > 1, since γ > 1/3. With
this definition at hand, we will try to solve equation (28) in the following way:

1. Study the stability of Qκ,a(R
k) under a smooth map ϕ : R

k → R
n.

2. Define rigorously the integral
∫
zudxu = J (zdx) for a weakly controlled path z and

compute its decomposition (29).

3. Solve equation (28) in the space Qκ,a(R
k) by a fixed point argument.

In this section, we will concentrate on the first two points of this program.

Let us first see, how smooth functions act on weakly controlled paths:
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Proposition 3.9. Let z ∈ Qκ,a(R
k) with decomposition (29), ϕ ∈ C2

b (Rk; Rn) and set
ẑ = ϕ(z), â = ϕ(a). Then ẑ ∈ Qκ,â(R

n), and it can be decomposed into

δẑ = ζ̂δx+ r̂,

with
ζ̂ = ∇ϕ(z)ζ and r̂ = ∇ϕ(z)r + [δ(ϕ(z)) −∇ϕ(z)δz] .

Furthermore,
N [ẑ;Qκ,â(R

n)] ≤ cϕ,T

(
1 + N 2[z;Qκ,a(R

n)]
)
. (30)

Proof. The algebraic part of the assertion is quite straightforward. Just write

(δẑ)st = ϕ(zt) − ϕ(zs) = ∇ϕ(zs)(δz)st + ϕ(zt) − ϕ(zs) −∇ϕ(zs)(δz)st

= ∇ϕ(zs)ζs(δx)st + ∇ϕ(zs)rst + ϕ(zt) − ϕ(zs) −∇ϕ(zs)(δz)st

= ζ̂s(δx)st + r̂st,

which is the desired decomposition.

In order to give an estimate for N [ẑ;Qκ,â(R
n)], one has of course to establish bounds

for N [ẑ; Cκ
1 (Rn)], N [ζ̂; Cκ

1Ld,n], N [ζ̂; C∞
1 Ld,n] and N [r̂; C2κ

2 (Rn)]. Let us focus on the last
of these estimates, the other ones are quite similar. First notice that r̂ = r̂1 + r̂2 with

r̂1
st = ∇ϕ(zs)rst and r̂2

st = ϕ(zt) − ϕ(zs) −∇ϕ(zs)(δz)st. (31)

Now, since ∇ϕ is a bounded Lk,n-valued function, we have

N [r̂1; C2κ
2 (Rn)] ≤ ‖∇ϕ‖∞N [r; C2κ

2 (Rk)]. (32)

Moreover,

|r̂2
st| ≤

1

2
‖∇2ϕ‖∞|(δz)st|2 ≤ cϕN 2[z; Cκ

1 (Rk)]|t− s|2κ,

which yields
N [r̂2; C2κ

2 (Rn)] ≤ cϕN 2[r; C2κ
2 (Rk)], (33)

and thus we obtain
N [r̂; C2κ

2 (Rn)] ≤ cϕ
(
1 + N 2[r; C2κ

2 (Rk)]
)
,

which ends the proof.
�

Let us now turn to the integration of weakly controlled paths, which is summarized
in the following proposition. Notice that below we will use two additional notations. We
will set M∗ for the transposition of a matrix M and denote by M ·N the inner product
of two vectors or two matrices.

Proposition 3.10. For a given γ > 1/3 and κ < γ, let x be a process satisfying Hypothesis
3.7. Furthermore, let m ∈ Qκ,b(Ld,1) with decomposition m0 = b ∈ Ld,1 and

(δm)st = [µs(δx)st]
∗ + rst, where µ ∈ Cκ

1Ld,d, r ∈ C2κ
2 Ld,1. (34)
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Define z by z0 = a ∈ R and

δz = mδx+ µ · x2−Λ(r δx+ δµ · x2). (35)

Finally, set
J (mdx) = δz. (36)

Then:

1. z is well-defined as an element of Qκ,a(R).

2. The semi-norm of z in Qκ,a(R) can be estimated as

N [z;Qκ,a(R)] ≤ cx
(
1 + T γ−κN [m;Qκ,b(Ld,1)]

)
, (37)

for a positive constant cx depending only on x and x2. The constant cx can be
bounded as follows:

cx ≤ c
[
|x|γ + |x2|2γ

]
, for a universal constant c.

Moreover, we have
‖δz‖κ ≤ cxT

γ−κN [m;Qκ,b(Ld,1)]. (38)

3. It holds

Jst(mdx) = lim
|Πst|→0

n∑

i=0

[
mti(δx)ti,ti+1

+ µti · x2

ti,ti+1

]
(39)

for any 0 ≤ s < t ≤ T , where the limit is taken over all partitions Πst = {s =
t0, . . . , tn = t} of [s, t], as the mesh of the partition goes to zero.

Before going into the technical details of the proof, let us see how to recover (35) in
the smooth case, in order to justify our definition of the integral. (Notice however that
(39) corresponds to the usual definition in the rough paths theory [8], which gives another
kind of justification.)
Let us assume for the moment that x is a smooth function and that m ∈ C∞

1 (Ld,1) admits
the decomposition (34) with µ ∈ C∞

1 Ld,d and r ∈ C∞
2 Ld,1. Then J (mdx) is well-defined,

and we have ∫ t

s

mudxu = ms[xt − xs] +

∫ t

s

[mu −ms]dxu

for s ≤ t, respectively
J (mdx) = mδx+ J (δmdx).

Let us now plug the decomposition (34) into this expression, which yields

J (mdx) = mδx+ J ((µδx)∗ dx) + J (r dx)

= mδx+ µ · x2 + J (r dx). (40)
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For the sake of clarity, let us give some details about the identity J ((µδx)∗ dx) = µ · x2.
Indeed, according to our definitions in Section 3.2 we have

Jst((µδx)
∗ dx) =

∫ t

s

([δx]∗suµs) dxu =

∫ t

s

µs · [(δx)su ⊗ dxu] = µs ·
∫ t

s

[δx]su ⊗dxu = µs ·x2

st

for s ≤ t, which proves the announced identity. Notice also that the terms mδx and µx2

in (40) are well-defined as soon as x and x2 are defined themselves. In order to push
forward our analysis to the rough case, it remains to handle the term J (r dx). Thanks
to (40) we can write

J (r dx) = J (mdx) −mδx− µ · x2,

and let us analyze this relation by applying δ to both sides. Using the second part of
Proposition 3.5 and the whole Proposition 3.6 yields

δ [J (r dx)] = −δ [mδx] − δ
[
µ · x2

]

= −δm δx− δµ · x2 + µ · (δx⊗ δx)

= − [(µ δx)∗ + r] δx− δµ · x2 + µ · (δx⊗ δx)

= −δµ · x2 − r δx. (41)

Assuming now that δµ · x2 and r δx are both elements of Cµ
2 with µ > 1, δµ · x2 + r δx

becomes an element of Dom(Λ), and inserting (41) into (40) we obtain

δz = J (mdx) ≡ mδx+ µ · x2 − Λ(r δx+ δµ · x2),

which is the expression (35) of our Proposition 3.10. Thus (35) is a natural expression for
J (mdx).

Proof of Proposition 3.10. We will decompose this proof in two steps.

Step 1: Recalling the assumption 2κ + γ > 1, let us analyze the three terms in the right
hand side of (35) and show that they define an element of Qκ,a such that δz = ζδx + r
with

ζ = m and r̂ = µ · x2 − Λ
(
r δx+ δµ · x2

)
.

Indeed, on the one handm ∈ Cκ
1Ld,1 and thus ζ = m is of the desired form for an element of

Qκ,a. On the other hand, if m ∈ Qκ,b, µ is assumed to be bounded and since x2 ∈ C2κ
2 Ld,d

we get that µ · x2 ∈ C2γ
2 (R). Along the same lines we can prove that r δx ∈ C2κ+γ

3 (R) and
δµ · x2 ∈ Cκ+2γ

3 (R). Since κ + 2γ ≥ 2κ + γ > 1, we obtain that r δx + δµ · x2 ∈ Dom(Λ)
and

Λ
(
r δx+ δµx2

)
∈ C2κ+γ

2 (R).

Thus we have proved that

r = µ · x2 − Λ
(
r δx+ δµ · x2

)
∈ C2κ

2 (R)

and hence that z ∈ Qκ,a(R). The estimates (37) and (38) are now obtained using to the
same kind of considerations and are left to the reader for the sake of conciseness.
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Step 2: The same kind of computations as those leading to (41) also show that

δ
(
mδx+ µ · x2

)
= −

[
r δx+ δµ · x2

]
.

Hence equation (35) can also be read as

J (mdx) = [Id − Λδ] (mδx+ µ · x2),

and a direct application of Corollary 3.4 yields (39), which ends our proof.
�

Notice that the previous proposition has a straightforward multidimensional extension,
which we state for further use:

Corollary 3.11. Let x be a process satisfying Hypothesis 3.7 and let m ∈ Qκ,b(Ld,k) with
decomposition m0 = b ∈ Ld,k and

(δmi)st =
[
µi

s(δx)st

]∗
+ ri

st with µi ∈ Cκ
1Ld,d, ri ∈ C2κ

2 Ld,k, i = 1, . . . , k, (42)

where we have considered m as a R
k×d-valued path and have set mi = m(i, ·). Define z

by z0 = a ∈ R
k and

δzi = J (mi dx) ≡ mi δx+ µi · x2 + Λ(ri δx+ δµi · x2). (43)

Then the conclusions of Proposition 3.10 still hold in this context.

Notice also that our extended pathwise integral has a nice continuity property with
respect to the driving path x. See also [10, p. 14].

Proposition 3.12. Let x be a function satisfying Hypothesis 3.7 and assume that there
exists a sequence {xn; n ≥ 1} of piecewise C1-functions from [0, T ] to R

d such that

lim
n→∞

N [xn − x; Cγ
1 (Rd)] = 0, and lim

n→∞
N [x2,n − x2; C2γ

2 Ld,d] = 0. (44)

For n ≥ 1, define zn ∈ Cκ
1 (Rk) in the following way: set z0 = b ∈ R

k and

δzn = ζnδxn + rn,

where ζn ∈ Cκ
1Ld,k and rn ∈ C2κ

2 (Rk). Moreover, let z be a weakly controlled process with
decomposition (29) and assume that

lim
n→∞

N [zn − z; Cκ
1 (Rk)] +N [ζn − ζ ; C∞

1 Ld,k] +N [ζn − ζ ; Cκ
1Ld,k] +N [rn − r; C2κ

2 (Rk)] = 0.

Eventually, let ϕ : R
k → Ld,m be a C2

b -function. Then

lim
n→∞

N [J (ϕ(zn)dxn) −J (ϕ(z)dx); Cκ
2 (Rm)] = 0.
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3.4 Stochastic calculus with respect to a rough path

In this section, we will apply the previous considerations to two of the usual main aims in
the theory of stochastic calculus: to study differential equations driven by a rough signal
and to establish a change of variable formula.

3.4.1 Rough differential equations

Recall that we wish to solve equations of the form (28). In our algebraic setting, we will
rephrase this as follows: we will say that y is a solution to (28), if y0 = a, y ∈ Qκ,a(R

l)
and for any 0 ≤ s ≤ t ≤ T we have

(δy)st = Jst(σ(y) dx), (45)

where the integral J (σ(y) dx) has to be understood in the sense of Proposition 3.10. Our
existence and uniqueness result reads as follows:

Theorem 3.13. Let x be a process satisfying Hypothesis 3.7 and σ : R
l → Ld,l be a C2

function, which is bounded together with its derivatives. Then

1. Equation (45) admits a unique solution y in Qκ,a(R
l) for any κ < γ such that

2κ+ γ > 1.

2. The mapping (a, x,x2) 7→ y is continuous from R
l×Cγ

1 (Rd)×C2γ
2 (Rd×d) to Qκ,a(R

l).

Proof. We will identify the solution on a small interval [0, τ ] as the fixed point of the map
Γ : Qκ,a(R

l) → Qκ,a(R
l) defined by Γ(z) = ẑ with ẑ = a and δẑ = J (σ(z) dx). The first

step in this direction is to show that the ball

BM =
{
z; z0 = a, N [z;Qκ,a(R

l)] ≤ M
}

(46)

is invariant under Γ if τ is small enough and M is large enough. However, due to Propo-
sitions 3.9 and 3.10 and assuming τ ≤ 1 we have

N [Γ(z);Qκ,a] ≤ cσ,x

(
1 + τγ−κN 2[z;Qκ,a]

)
. (47)

Since the set A = {u ∈ R
∗
+ : cσ,x(1 + τγ−κu2) ≤ u} is not empty as soon as τ is small

enough (see also the third point of the proof of Lemma 5.3 below), it is easily shown that
the ball BM defined at (46) is left invariant by Γ for τ small enough and M in A.

Now, since we are working in BM , the fixed point argument for Γ is a standard argu-
ment and is left to the reader. This leads to a unique solution to equation (45) on a small
interval [0, τ ]. One is then able to obtain the unique solution on an arbitrary interval
[0, kτ ] with k ≥ 1 by patching solutions on [jτ, (j + 1)τ ]. Notice here that an important
point, which allows us to use a constant step τ , is the fact that the estimate (47) does
not depend on the initial condition a, due to the fact that σ is bounded together with its
derivatives.

�
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Remark 3.14. The case of an equation of the form

dyt = b(yt) dt+ σ(yt) dxt, y0 = a,

which can be written equivalently

δy = J (b(y) dh) + J (σ(y) dx), y0 = a, (48)

where b : R
k → R

k is a C1
b -function and h : [0, T ] → R is defined by ht = t, can be solved

easily thanks to the previous results by taking one of the following two observations into
account:

1. One can define the integral J (b(y) dh) in the usual Riemann sense for a weakly
controlled path y. Then the fixed point argument of Theorem 3.13 can be extended
trivially to the case of an equation with drift.

2. One can also define a path x̃ = (x, h(k)), where h(k) represents k copies of the
function h, and write equation (48) as δy = J (σ̃(y) dx̃), for a new matrix-valued
function σ̃. The existence and uniqueness result follows then directly from Theorem
3.13 if b is a C2

b -function.

Remark 3.15. We have stressed here the fact that one could deal in a rather elementary
way with processes having a regularity γ > 1/3. However, if γ > 1/2, our algebraic setting
also applies and the results we have obtained so far can be expressed in a simpler way:

Let x be a R
d-valued γ-Hölder function with γ > 1/2, and m a function in Ck

1Ld,k,
with γ + κ > 1. Define z by z0 = a ∈ R

d and

δz = mδx− Λ(δm δx), (49)

and set
J (mdx) = δz. (50)

Then:

1. z is well-defined as an element of Cγ
2 (Rk), and it holds:

|Jst(mdx)| ≤ ‖m‖∞‖x‖γ|t− s|γ + cγ,κ‖m‖κ‖x‖γ|t− s|γ+κ. (51)

2. The integral J (mdx) coincides with the usual Young integral, and in particular, it
holds

Jst(mdx) = lim
|Πst|→0

n∑

i=0

mti(δx)ti,ti+1
(52)

for any 0 ≤ s < t ≤ T , where the limit is taken over all partitions Πst = {s =
t0, . . . , tn = t} of [s, t], as the mesh of the partition goes to zero.

3. Equation (45) can be solved in the Young sense whenever σ is a C2
b -function, and

the solution y satisfies
‖y‖λ ≤ ca,σ,T‖x‖γ , (53)

for all λ < γ.
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3.4.2 Itô’s type formula

In the sequel of this paper, it will also be essential to have a change of variable formula for
weakly controlled process. This will be achieved under the following additional assumption
on x2, which will be shown to be valid in the fractional Brownian motion case:

Hypothesis 3.16. Let x2 be the area process defined in Hypothesis 3.7 and denote by
x2,s the symmetric part of x2, i.e. x2,s = 1

2
(x2 + (x2)∗). Then we assume that for

0 ≤ s < t ≤ T we have

x2,s
st =

1

2
[δx]st ⊗ [δx]st.

Remark 3.17. It is worth noticing at this point that this assumption does not involve
any limit type property of the form (44) for x2. This will simplify the verification of the
different hypothesis for the fractional Brownian motion with respect to [6, 8].

With these assumptions in mind, our change of variable formula reads as follows:

Proposition 3.18. Assume that x satisfies Hypothesis 3.7 and 3.16. Let m ∈ Qκ,b(Ld,k)
be a process of the form (34) and let z ∈ Qκ,a(R

k) be defined by z0 = a and δz = J (mdx),
which is given by (43). Let also f ∈ C2

b (R
k; R). Then f(z0) = f(a) and

[δ(f(z))]st = Jst ((∇∗f(z)m) dx) . (54)

Proof. The strategy of our proof is quite straightforward. By using the composition and
integration rules for weakly controlled processes we will compute the decompositions of
δ(f(z)) and J ((∇∗f(z)m) dx) respectively, and then show that they coincide. Let us
begin with the decomposition of δ(f(z)). Recall that the decomposition (42) of δm can
be written as

δmi =
[
µi δx

]∗
+ ri, i = 1, . . . , k,

and that we have δzi = J (mi dx). Thus, for i ≤ k the decomposition of zi is given by

δzi = mi δx+ µi · x2 − Λ
(
ri δx+ δµi · x2

)
.

In the sequel of the proof, we will use the following notation: we write r̂ for any increment
in Cµ

2 with µ ≥ 2κ + γ > 1, whose exact expression can change from line to line. In the
same spirit, we will denote by r̂2κ any increment in C2κ

2 with regularity at least 2κ. With
these conventions in mind, some elementary algebraic manipulations yield

[δf(z)]st

=
k∑

i=1

∂if(zs)
[
δzi
]
st

+
1

2

k∑

i,j=1

∂2
ijf(zs)

[
δzi
]
st

[
δzj
]
st

+ r̂st

=
k∑

i=1

∂if(zs)
(
mi

s (δx)st + µi
s · x2

st

)
+

1

2

k∑

i,j=1

∂2
ijf(zs)

[
mi

s(δx)stm
j
s(δx)st

]
+ r̂st (55)

=
k∑

i=1

∂if(zs)
(
mi

s (δx)st + µi
s · x2

st

)
+

1

2

k∑

i,j=1

∂2
ijf(zs)

[
(mi

s)
∗mj

s

]
· [(δx)st ⊗ (δx)st] + r̂st.
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which is the decomposition we were looking for δf(z).

Let us compute now the decomposition of δ[∇∗f(z)m]. We have due to Proposition
3.5 that

δ[∇∗f(z)m]st =

k∑

i=1

δ [∂if(zs)]stm
i
t + ∂if(zs)

[
δmi

]
st
. (56)

Recall also that, setting m = [m1, . . . , mk]∗, δz can be decomposed into δz = mδx+ r̂2κ.
Thus, according to Proposition 3.9, one gets

δg(z) =

k∑

j=1

∂jg(z)m
j δx+ r̂2κ,

for any smooth function g : R
k → R. Plugging this equality into (56), we obtain that

δ[∇∗f(z)m]st = Ast +Bst + r̂2κ
st ,

where

Ast =

k∑

i,j=1

∂k
ijf(zs)m

j
s(δx)stm

i
s, and Bst =

k∑

i=1

∂if(zs)
[
µi

s(δx)st

]∗
.

Notice that in the definition of Ast, m
i
t has been replaced by mi

s, since the difference
between the two expressions is again a remainder r̂2κ. Now, a little elementary linear
algebra shows that

Ast = (δx)∗st

k∑

i,j=1

∂k
ijf(zs)(m

j
s)

∗mi
s,

and hence the decomposition of ∇∗f(z)m as a weakly controlled process can be written
as

δ[∇∗f(z)m] = [νδx]∗ + r̂2κ, (57)

with

νs =
k∑

i,j=1

∂k
ijf(zs)(m

i
s)

∗mj
s +

k∑

i=1

∂if(zs)µ
i
s.

With the expression (57) at hand, we are now ready to compute J (∇∗f(z)mdx).
Indeed, using Proposition 3.10 we get

Jst(∇∗f(z)mdx) = ∇∗f(zs)ms (δx)st + νs · x2

st + r̂st

=

k∑

i=1

∂if(zs)
(
mi

s (δx)st + µi
s · x2

st

)
+

k∑

i,j=1

∂2
ijf(zs)

[
(mi

s)
∗mj

s

]
· x2

st + r̂st. (58)
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If we now put the expressions (55) and (58) together, we end up with

[δf(z)]st − Jst(∇∗f(z)mdx)

=
k∑

i,j=1

∂2
ijf(zs)

[
(mi

s)
∗mj

s

]
·
[
x2

st −
1

2
[(δx)st ⊗ (δx)st]

]
+ r̂st. (59)

Let us show that this last expression depends only on the symmetric part x2,s of x2.
Indeed, it is easily checked that, if H is a symmetric matrix of R

d,d, {M i; i ≤ k} a family
of elements of R

1,d and X ∈ R
d,d, then

k∑

i,j=1

H(i, j)
[
(M i)∗M j

]
·X

=
k∑

i,j=1

d∑

α,β=1

H(i, j)M i(α)M j(β)X(α, β) =
k∑

i,j=1

H(i, j)
[
(M i)∗M j

]
·Xs,

where Xs denotes the symmetric part of X. Applying this identity to H = Hess(f(xs)),
M i = mi

s and X = x2

st, equation (59) becomes

[δf(z)]st − Jst(∇∗f(z)mdx)

=

k∑

i,j=1

∂2
ijf(zs)

[
(mi

s)
∗mj

s

]
·
[
x2,s

st − 1

2
[(δx)st ⊗ (δx)st]

]
+ r̂st = r̂st,

thanks to Hypothesis 3.16. We thus have shown that

δf(z) − J (∇∗f(z)mdx) = r̂, (60)

for an increment r̂ ∈ Cµ
2 with µ > 1. Now we are in the position to prove easily that

r̂ = 0. If we apply δ to the expression above, we find that r̂ ∈ ker δ. Thanks to Lemma
3.1, there exists a function g ∈ C1 such that r̂ = δg. Moreover, g inherits the regularity
of r̂, and hence g ∈ Cµ

1 with µ > 1, which means that g is a constant function and that
r̂ = δg = 0. Putting these considerations and equation (60) together, we finally get

δf(z) − J (∇∗f(z)mdx) = 0,

which finishes our proof.
�

3.5 Application to the fractional Brownian motion

All the previous constructions rely on the specific assumptions we have made on the
process x. In this section, we will show that the results given at Sections 3.3 and 3.4
apply to the fractional Brownian motion.

The combination of the following proposition with the results for the general theory
allows us to prove Theorem 2.1.
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Proposition 3.19. Let B be a d-dimensional fractional Brownian motion and suppose
H > 1/3. Then almost all sample paths of B satisfy the Hypothesis 3.7 and 3.16.

Proof. Let us first check Hypothesis 3.7. It is a classical fact that B ∈ Cγ
1 for any

1/3 < γ < H, when B is a fractional Brownian motion with H > 1/3. As far as x2 is
concerned, a natural choice is

x2

st =

∫ t

s

dBu ⊗
∫ u

s

dBv, i. e. x2

st(i, j) =

∫ t

s

dBi
u

∫ u

s

dBj
v, i, j ∈ {1, . . . , d},

for 0 ≤ s < t ≤ T , where the stochastic integrals are understood in the Stratonovich
sense. Then it is a classical result that x2 is well-defined for H > 1/3 (see, e.g., [20] for
i 6= j and [5] for i = j). The substitution formula for Stratonovich integrals also easily
yields that δx2 = δx⊗ δx. Furthermore, by stationarity (6) and the scaling property (5)
of the fractional Brownian motion, we have that

E
[
|x2

st(i, j)|2
]

= |t− s|4HE
[
|x2

01(i, j)|2
]
≤ c|t− s|4H .

¿From this inequality and thanks to the fact that x2 is a process in the second chaos of
the fractional Brownian motion B, on which all Lp norms are equivalent for p > 1, we get
that

E
[
|x2

st(i, j)|p
]
≤ cp|t− s|2pH. (61)

In order to conclude that x2 ∈ C2γ
2 Ld,d for any γ < 1/3, let us recall the following

inequality from [10]: let g ∈ C2(V ) for a given Banach space V ; then, for any κ > 0 and
p ≥ 1 we have

‖g‖κ ≤ c
(
Uκ+2/p;p(g) + ‖δg‖γ

)
with Uγ;p(g) =

(∫ T

0

∫ T

0

|gst|p
|t− s|γp

)p

. (62)

By plugging inequality (61) into (62) and recalling that δx2 = δx ⊗ δx, we obtain that
x2 ∈ C2γ

2 Ld,d for any γ < H , which shows that B satisfies Hypothesis 3.7.

The proof of Hypothesis 3.16 is now a consequence of the Itô-Stratonovich formula for
the fractional Brownian motion (see, e.g., [1]).

�

Remark 3.20. Proposition 3.12 implies that the theory of rough paths presented here
and the classical one of Lyons’ type coincide for the fractional Brownian motion with
H > 1/3. In particular, consider the multiple integrals

∫ t

s

dBα1
u1

∫ u1

s

dBα2
u2

· · ·
∫ αn

s

dBαn−1
un−1

, for (α1, . . . , αn) ∈ {0, . . . , d}n,

with the convention B0
t = t. Then these multiple integrals, which are constructed by

means of Proposition 3.10, coincide with the usual Stratonovich integral with respect to
the fractional Brownian motion, see, e.g., [1, 2].
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4 Malliavin calculus with respect to fBm

In this section, we assume that the Hurst index of B verifies H > 1/2. Let us give a
few facts about the Gaussian structure of fractional Brownian motion and its Malliavin
derivative process, following Chapter 1.2 in [17] and Section 2 in [19]. Let E be the set
of step-functions on [0, T ] with values in R

d. Consider the Hilbert space H defined as the
closure of E with respect to the scalar product induced by

〈
(1[0,t1], . . . , 1[0,td]), (1[0,s1], . . . , 1[0,sd])

〉
H

=

d∑

i=1

RH(ti, si), si, ti ∈ [0, T ], i = 1, . . . , d,

where RH(t, s) is given by (4). The scalar product between two elements φ, ψ ∈ E is given
by

〈ϕ, ψ〉H = γH

d∑

i=1

∫ 1

0

∫ 1

0

ϕi(r)ψi(u)|r − u|2H−2 dr du (63)

with γH = H(2H − 1). The space H contains L
1
H ([0, T ]; Rd) but its elements can be

distributions, see, e.g., [21]. Formula (63) holds also for ϕ, ψ ∈ L
1
H ([0, T ]; Rd). The

mapping

(1[0,t1], . . . , 1[0,td]) 7→
d∑

i=1

Bi
ti

can be extended to an isometry between H and the Gaussian space H1(B) associated with
B = (B1, . . . , Bd). We denote this isometry by ϕ 7→ B(ϕ). Let S be the set of smooth
cylindrical random variables of the form

F = f(B(ϕ1), . . . , B(ϕk)), ϕi ∈ H, i = 1, . . . , k,

where f ∈ C∞(Rk,R) is bounded with bounded derivatives. The derivative operator D
of a smooth cylindrical random variable of the above form is defined as the H-valued
random variable

DF =

k∑

i=1

∂f

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.

This operator is closable from Lp(Ω) into Lp(Ω;H). As usual, D
1,2 denotes the closure of

the set of smooth random variables with respect to the norm

‖F‖2
1,2 = E|F |2 + E‖DF‖2

H.

In particular, if DiF designates the Malliavin derivative of a functional F ∈ D
1,2 with

respect to Bi, we have DiBj
t = δi,j1[0,t] for i, j = 1, . . . , d.

The divergence operator δ is the adjoint of the derivative operator. If a random
variable u ∈ L2(Ω;H) belongs to dom(δ), the domain of the divergence operator, then
δ(u) is defined by the duality relationship

E(Fδ(u)) = E〈DF, u〉H, (64)
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for every F ∈ D
1,2. Moreover, if u ∈ dom(δ) and F ∈ D

1,2 such that Fu ∈ L2(Ω;H), then
we have the following integration by parts formula

δ(Fu) = Fδ(u) − 〈DF, u〉H. (65)

The following proposition is well known. For part (a) see, e.g., [18] and for part (b)
and (c), see Proposition 19 in [19] and Theorem 3.1 in [13].

Proposition 4.1. Let bi and σi,j, i = 1, . . . , n, j = 1, . . . , d be twice continuously differ-
entiable with bounded derivatives.
(a) Then equation (1) has a unique solution X = (X1, . . . , Xn) in the Young sense in the
class of all processes having α-Hölder continuous sample paths with 1 −H < α < H.
(b) It holds

max
i=1,...,n

E sup
0≤t≤T

|X i
t |p <∞

for all p ≥ 1.
(c) Moreover, we have X i

t ∈ D
1,2(H) for all t ∈ [0, T ], i = 1, . . . , n. The Malliavin

derivative satisfies almost surely:

Dj
sX

i
t = σi,j(Xs) +

n∑

k=1

∫ t

s

bixk
(Xu)D

j
sX

k
u du+

n∑

k=1

d∑

j=1

∫ t

s

σi,j
xk

(Xu)D
j
sX

k
u dB

j
u, s ≤ t,

Dj
sX

i
t = 0, s > t,

for j = 1, . . . , d, where Dj
sX

i
t is the j-th component of DsX

i
t . Furthermore

max
j=1,...,d

max
i=1,...,n

sup
0≤s≤t≤T

E|Dj
sX

i
t |p <∞.

5 Proof of Theorem 2.4

In the present section we will prove Theorem 2.4. We separate the proof in two parts:
in the first one, we will show how to use trees for the parametrization of the expansion;
while in the second one we explain how to control the remainder term, which appears
when we expand Ptf(a) with respect to t.

5.1 Rooted trees approach

In this section, we assume that the Hurst index of the fBm B verifies H > 1/3. The first
step in the proof of the algebraic part of Theorem 2.4 is the following result.

Theorem 5.1. Let (Xa
t )t∈[0,T ] be the solution of SDE (1) with initial value Xa

0 = a ∈ R
n.

Then for m ∈ N0 and f ∈ Cm+1
b (Rn; R), b, σj,∈ Cm+1

b (Rn; Rn), 1 ≤ j ≤ d, we get for
t ∈ [0, T ] the expansion

f(Xa
t ) =

∑

t∈LTS
l(t)−1≤m

d∑

j1,...,js(t)=1

F (t)(a) It(1)0,t + Rm(0, t) (66)
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with a truncation term

Rm(0, t) =
∑

t∈LTS
l(t)−1=m+1

d∑

j1,...,js(t)=1

It(F (t)(Xa
s ))0,t (67)

Proof. The proof is very similar to the proof of Theorem 4.2 in [23]. Recall we defined
the differential operators D0 and Dj as

D0 =
n∑

k=1

bk
∂

∂xk
and Dj =

n∑

k=1

σk,j ∂

∂xk
(68)

for j = 1, . . . , d. Moreover, set

∆k([s, t]) = {(τ1, . . . , τk) ∈ [0, T ]k : s ≤ τ1 ≤ τ2 ≤ · · · ≤ τk ≤ t}

for 0 ≤ s ≤ t ≤ T and k ∈ N.
By reapplication of the change-of-variable formula (8), which holds true for the solution

Xa to our SDE, and setting Dα = Dα1 . . .Dαk and dBα(s, s1, . . . , sk−1) = dBα1
s dBα2

s1
. . .

dBαk
sk−1

for a multi-index α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, we get that

f(Xa
t ) = f(a) +

m∑

k=1

∑

α∈{0,1,...,d}k

Dαf(a)

∫

∆k([0,t])

dBα(s, s1, . . . , sk−1) + R∗
m(0, t) (69)

with the truncation term

R∗
m(0, t) =

∑

α∈{0,1,...,d}m+1

∫ t

0

∫ sm

0

. . .

∫ s1

0

Dαf(Xa
s ) dBα1

s dBα2
s1
. . . dBαm+1

sm
. (70)

Clearly, for m = 0 there exists only the tree t = γ ∈ LTS with l(t)−1 = 0 and we obtain

∑

t∈LTS
l(t)−1=0

F (t)(a) It(1)0,t = F (γ)(a) = f(a). (71)

Thus, to prove (66) it is sufficient to show for every m ∈ N that

∑

α∈{0,1,...,d}m

Dαf(a)

∫

∆m([0,t])

dBα(s, s1, . . . , sm−1) =
∑

t∈LTS
l(t)−1=m

F (t)(a) It(1)0,t . (72)

The proof proceeds by induction. Step m = 1 is performed for a better understanding.
In this case two different trees t1 = (τ 2

0 )1 and t2 = (τ 2
j1

)1 in LTS, all of length 2, with
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ρ(t1) = 1 and ρ(t2) = H have to be considered. For these two trees we have

∑

α∈{0,1,...,d}

DαF (γ)(a)

∫

∆1([0,t])

dBα(s)

=
n∑

k=1

bk(a)
∂f

∂xk
(a) t+

d∑

j1=1

n∑

k=1

σk,j1(a)
∂f

∂xk
(a)

∫ t

0

dBj1
s

= F (t1)(a) It1(1)0,t +
d∑

j1=1

F (t2)(a) It2(1)0,t

=
∑

t∈LTS
l(t)−1=1

d∑

j1,...,js(t)=1

F (t)(a) It(1)0,t .

Under the assumption that equation (72) holds for m ∈ N0 we proceed to prove the case
m+ 1. Therefore, writing α = (α1, . . . , αm+1) for an element of {0, 1, . . . , d}m+1, we get

∑

α∈{0,1,...,d}m+1

Dαf(a)

∫

∆m+1([0,t])

dBα(s, s1, . . . , sm)

=
∑

t∈LTS
l(t)−1=m

d∑

j1,...,js(t)=1

∑

αm+1∈{0,1,...,d}

Dαm+1F (t)(a)

∫ t

0

It(1)0,sm dB
αm+1
sm

.
(73)

Now, we apply Lemma 2.7 in [23] to Dαm+1F (t)(a). Then, it holds for any u ∈ LTS with
l(u) − 1 = m in the case of αm+1 = 0 that

Dαm+1

d∑

j1,...,js(u)=1

F (u)(a) =

n∑

k=1

bk(a)
∂

∂xk

d∑

j1,...,js(u)=1

F (u)(a) =
∑

t∈D(u)

d∑

j1,...,js(t)=1

F (t)(a),

(74)
where D(u) is the set of all trees t ∈ LTS with l(t) = m + 2, t′|{2,...,m+1} = u′,
t′′|{1,...,m+1} = u′′ and t′′(m+ 2) = τ0. Clearly s(u) = s(t) holds for all t ∈ D(u).

Then we proceed by considering the case of αm+1 ∈ {1, . . . , d}. Again, by applying
Lemma 2.7 in [23], we get for u ∈ LTS with l(u) − 1 = m that

∑

αm+1∈{1,...,d}

Dαm+1

d∑

j1,...,js(u)=1

F (u)(a) =
d∑

j1,...,js(u),αm+1=1

n∑

k=1

σk,αm+1(a)
∂

∂xk
F (u)(a)

=
∑

t∈S(u)

d∑

j1,...,js(t)=1

F (t)(a),

(75)

where S(u) denotes the set of trees t ∈ LTS with l(t) = m + 2, t′|{2,...,m+1} = u′,
t′′|{1,...,m+1} = u′′ and t′′(m+ 2) = τjs(u)+1

. Here we have s(t) = s(u) + 1 for all t ∈ S(u).
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Combining now the results for the case of αm+1 = 0 and αm+1 ∈ {1, . . . , d}, the
equation

∑

αm+1∈{0,1,...,d}

Dαm+1
d∑

j1,...,js(u)=1

F (u)(a) =
∑

t∈D(u)∪S(u)

d∑

j1,...,js(t)=1

F (t)(a) (76)

holds for every u ∈ LTS with l(u) − 1 = m. Now it is easily seen that

⋃

u∈LTS
l(u)−1=m

D(u) ∪ S(u) = {t ∈ LTS : l(t) − 1 = m+ 1}. (77)

As a last step, we observe that

∫ t

0

Iu(1)0,sm dB
αm+1
sm

= It(1)0,t (78)

holds for all t ∈ D(u) in the case of αm+1 = 0 and for all t ∈ S(u) with t′′(m+1) = ταm+1

for all αm+1 ∈ {1, . . . , d}. By applying (76)–(78) to (73) we thus arrive at (72) with m
replaced by m+ 1, which completes the proof of the first part of Theorem 5.1.

Finally, we have to prove that Rm(0, t) = R∗
m(0, t) given in (66) and (69). From (74)–

(77) it follows that for each α ∈ {0, 1, . . . , d}m+1 there exists a subset LTS(α) ⊂ LTS
with a fixed choice of j1, . . . , js(t) ∈ {1, . . . , d} for t ∈ LTS(α) such that l(t)− 1 = m+ 1,
t′′(1) = γ, t′′(i) = ταi−1

for i = 2, . . . , m+ 2 and

Dαf(a) =
∑

t∈LTS(α)

F (t)(a) (79)

for all a ∈ R
n and m ∈ N0. Then, the sets LTS(α), α ∈ {0, 1, . . . , d}m+1, build a

partition of {t ∈ LTS : l(t) − 1 = m + 1}. Thus, we have It(Z
a
s )0,t = Iu(Za

s )0,t for all
t,u ∈ LTS(α) and any integrable process Z. Replacing now Za

s by F (t)(Xa
s ) yields that

for all α ∈ {0, 1, . . . , d}m+1, the following relation holds true:

∑

t∈LTS(α)

It(F (t)(Xa
s ))0,t =

∫ t

0

∫ sm

0

. . .

∫ s1

0

Dαf(Xa
s ) dBα1

s dBα2
s1
. . . dBαm+1

sm
(80)

which completes the proof.
�

Invoking Theorem 5.1 we obtain the following corollary:

Corollary 5.2. Let (Xa
t )t∈I be the solution of SDE (1) with initial value Xa

0 = a ∈ R
n.

Then for m ∈ N0 and f ∈ Cm+1
b (Rn,R), b, σj ∈ Cm+1

b (Rn,Rn), 1 ≤ j ≤ d, we get for
t ∈ [0, T ] the expansion

Ptf(a) =
∑

t∈LTS(S)
l(t)≤m+1

d∑

j1,...,js(t)=1

F (t)(a) E(It(1)0,1) t
ρ(t) + E(Rm(0, t)) . (81)
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Proof. Apply Theorem 5.1 and take the expectation in formula (66). Using the notation
of the proof of Theorem 5.1, we observe that for each t ∈ LTS there exists an α ∈
{0, 1, . . . , d}m with m = l(t)−1 such that t ∈ LTS(α). Then, due to (78) and the scaling
property (5) it follows that

E (It(1)0,t) = E (It(1)0,1) t
H |α|+m−|α| = E (It(1)0,1) tρ(t) (82)

holds with |α| =
∑m

i=1 1{αi 6=0} since we have ρ(t) = H |α| +m− |α|.
�

The sequel of the paper is now devoted to derive the announced controls on the remain-
der term E(Rm(0, t)) appearing in (81), according to the value of H and the assumptions
on f, b and σ. These estimates will imply easily our Theorem 2.4.

5.2 Study of the remainder term for 1/3 < H < 1/2

We assume in this section that 1/3 < H < 1/2 and that assumption (A) holds true. Then
we will show that for fixed m ∈ N, we have

E(Rm(0, t)) = O(t(m+1)H) (83)

as t → 0, a fact which trivially yields (15) in Theorem 2.4. Furthermore, notice that the
control (83) is a direct consequence of the following:

Lemma 5.3. Let g ∈ C2(Rn) be bounded together with its derivatives and X be the unique
solution to (7) in Qκ,a(R

n) with κ ∈ (1−H
2
, H). For any α1, . . . , αr ∈ {0, . . . , d} we have

E

∣∣∣∣
∫

∆r([0,t])

g(X)dBαr . . . dBα1

∣∣∣∣ = O(tr−|α|(1−H)), as t→ 0, (84)

where |α| =
∑r

i=1 1{αi 6=0}.

Proof. The more difficult setting holds when αj 6= 0 for all 1 ≤ j ≤ r, that is when
r = |α|. For this reason we will only prove the assertion in this case. Moreover, we split
the proof in several steps.

Step 1: Scaling. For j ∈ {1, . . . , r} and c > 0 set B
αj ,(c)
u = cH B

αj

u/c and let X(c) denote

the solution of (7), where B is replaced by B(c). For fixed t, we have

∫
∆r([0,t])

g(X)dBαr . . . dBα1 =
∫ t

0
dBα1

t1

∫ t1
0
dBα2

t2 . . .
∫ tr−1

0
dBαr

tr g(Xtr)

=
∫ 1

0
dBα1

t·t1

∫ t1
0
dBα2

t·t2 . . .
∫ tr−1

0
dBαr

t·trg(Xt·tr)
L
=

∫ 1

0
dB

α1,(t)
t·t1

∫ t1
0
dB

α2,(t)
t·t2 . . .

∫ tr−1

0
dB

αr,(t)
t·tr g(X

(t)
t·tr)

= trH
∫ 1

0
dBα1

t1

∫ t1
0
dBα2

t2 . . .
∫ tr−1

0
dBαr

tr g(X
(t)
t·tr).

Consequently, in order to obtain (84), it suffices to prove that

sup
t∈[0,T ]

E

∣∣∣∣
∫ 1

0

dBα1
t1

∫ t1

0

dBα2
t2 . . .

∫ tr−1

0

dBαr
tr g(X

(t)
t·tr)

∣∣∣∣ <∞.
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Step 2: Fix t and set

zs =

∫ s

0

dBαr
tr g(X

(t)
t·tr), s ∈ [0, 1].

By (37) and (30) we have

N (z,Qκ,0) ≤ cB
(
1 + N (g(X

(t)
t · ),Qκ,g(a))

)
≤ cBcg

(
1 + N 2(X

(t)
t · ,Qκ,a)

)
.

Here, cB > 1 is the random constant appearing in (37) (see also (38)), whose value will
not change from line to line, while cg denotes a non-random constant depending only on
g, whose value can change from one line to another. Set now

qs =

∫ s

0

dB
αr−1

tr−1

∫ tr−1

0

dBαr
tr g(X

(t)
t·tr) =

∫ s

0

dB
αr−1

tr−1
ztr−1 , s ∈ [0, 1].

Similarly, we have

N (q,Qκ,0) ≤ cB
(
1 + N (z,Qκ,0)

)
≤ cB

2cg
(
1 + N 2(X

(t)
t · ,Qκ,a)

)
.

By induction, we easily deduce that

N
(∫ ·

0

dBα1
t1

∫ t1

0

dBα2
t2 . . .

∫ tr−1

0

dBαr
tr g(X

(t)
t·tr),Qκ,0

)
≤ cB

rcg
(
1 + N 2(X

(t)
t · ,Qκ,a)

)
.

Since we have |z1| ≤ ‖z‖κ ≤ N (z,Qκ,0) for a path z starting from 0, we deduce from the
Cauchy-Schwarz inequality that (84) is in fact a consequence of showing

E(cB
2r) <∞ (85)

and
sup

t∈[0,T ]

E
∣∣∣N 4(X

(t)
t · ,Qκ,a)

∣∣∣ = sup
t∈[0,T ]

E
∣∣N 4(Xt ·,Qκ,a)

∣∣ <∞. (86)

Step 3: Using that B has moments of all order and (62), we easily obtain by (38) that
(85) is verified. So, let us concentrate on (86), which is more difficult. We will in fact
only prove that E

∣∣N 4(X,Qκ,a)
∣∣ < +∞, since we can obtain the control (86) in a similar

way. Recall from the proof of Theorem 3.13 that X defined on [0, τ ] belongs by definition
to the ball BM given by (46), where M and τ verify

M ≥ cσ,B

(
1 + τγ−κM2

)
.

For fixed τ , the inequality u ≥ cσ,B

(
1+ τγ−κu2

)
admits solutions u iff cσ,B

−2 − 4τγ−κ > 0,
i.e., iff τγ−κ < (4 cσ,B

2)−1. In this case, the solutions are u ∈ [M−,M+], whereby

M± =

1
cσ,B

±
√

1
cσ,B

2 − 4τγ−κ

2τγ−κ
.

By choosing for instance
τγ−κ = (8 cσ,B

2)−1 (87)
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we obtain that
N (X|[0,τ ]

,Qκ,a) ≤ (4 − 2
√

2)cσ,B. (88)

Furthermore, as explained at the end of the proof of Theorem 3.13 and due to the crucial
fact that σ and its derivatives are bounded, we can in fact choose the same M for the
bound of δX on [τ, 2τ ], [2τ, 3τ ], etc. Using the triangle inequality we deduce:

N (X,Qκ,a)
≤ N (X|[0,τ ]

,Qκ,a) + N (X|[τ,2τ ]
,Qκ,Xτ ) + . . .+ N (X|[⌊Tτ−1⌋τ,T ]

,Qκ,X⌊Tτ−1⌋τ
)

≤ (⌊Tτ−1⌋ + 1)M.

In other words, we deduce N (X,Qκ,a) ≤ cst cσ,B
1+ 2

γ−κ , see (87) and (88). Thus it follows
easily that E

∣∣N 4(X,Qκ,a)
∣∣ < +∞ and the proof of Lemma 5.3 is finished.

�

5.3 Some properties of iterated integrals in the case H > 1/2

Let us say first a few words about the strategy we have adopted in order to get equation
(15): the key point will be again to get an accurate bound for E[Rm(0, t)], and thus we
use estimates based on Malliavin calculus tools and explicit computations of moments for
multiple iterated integrals with respect to the fractional Brownian motion. For a proposed
pathwise control on the remainder Rm(0, t) , see., e.g. in [11, Remark 7.4].

Before we turn to the control of the remainder in the case H > 1/2, we will establish
first some properties of iterated integrals with respect to fractional Brownian motion. To
do this, we require some additional notations.

For a multi-index α ∈ {0, 1, . . . , d}k with k ∈ N denote by l(α) the length of α, i.e.,
l(α) = k. Moreover set Ak = {0, 1, . . . , d}k for k ∈ N, i.e., Ak is the set of all multi-indices
of length k. Furthermore, define for α ∈ Ak the sets

Jα = {j = 1, . . . , k : αj 6= 0}, and Jα,i = {j = 1, . . . , k : αj = i},
for i = 1, . . . , d and |α| = |Jα|. Finally for a multi-index α ∈ Ak and j = 1, . . . , k we
denote

α−j = (α1, α2, . . . , αj−1, αj+1, . . . , αk).

Recall that for m ∈ N and 0 ≤ t1 ≤ t2 ≤ T we set

∆m([t1, t2]) = {(τ1, . . . , τm) ∈ [0, T ]m : t1 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm ≤ t2}.
Moreover, we will use the notation

∫

∆k([t1,t2])

dBα =

∫ t2

t1

∫ sk−1

t1

· · ·
∫ s1

t1

dBα1
s dBα2

s1
. . . dBαk

sk

for α ∈ Ak.
With these notations in hand, the following proposition is shown easily, and its proof

will be omitted here. Indeed, part (a) follows immediately by the symmetry of fractional
Brownian motion and part (b) can be shown analogously to Theorem 11 in [2].
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Proposition 5.4. Let k ∈ N and α ∈ Ak.
(a) If |α| is odd, then we have

E

∫

∆k([0,1])

dBα = 0.

(b) If |α| is even, then it holds

E

∫

∆k([0,1])

dBα =
(γH/2)|α|/2

(|α|/2)!

∑

s∈SJα

V(s, α)

with

V(s, α) =

∫

0≤t1<...<tk≤1

|α|/2∏

l=1

δαs(2l−1),αs(2l)
|ts(2l) − ts(2l−1)|2H−2dt1 . . . dtk,

where SJα is the group of all permutations of the set Jα, γH = H(2H − 1) and δi,j is
Kronecker’s symbol.
(c) It holds

E

∣∣∣∣
∫

∆k([0,1])

dBα

∣∣∣∣
2

=
(γH/2)|α|

|α|!
∑

s∈SJ2
α

W(s, α)

with

W(s, α) =

∫

0≤t1<...<tk≤1

∫

0≤tk+1<...<t2k≤1

|α|∏

l=1

δαs(2l−1),αs(2l)
|ts(2l) − ts(2l−1)|2H−2 dtk+1 · · · dt2kdt1 · · · dtk,

where SJ2
α denotes the group of all permutations of the set

J2
α = {j = 1, . . . , 2k : j ∈ Jα or j − k ∈ Jα}.

Notice that part (a) and (b) of the above proposition yield a representation for the
coefficients E(It(1)0,1), since

E(It(1)0,1) = E

∫

∆l(t)([0,1])

dBα

with t′′(i) = αi ∈ {0, 1, . . . , d}, i = 1, . . . , l(t).

For further computations, we also need the following positivity result for iterated
integrals of the fractional Brownian motion.

Proposition 5.5. Let mi ∈ N for i = 1, . . . , n with n ∈ N. Moreover let αmi ∈ Ami
and

0 ≤ si ≤ ti ≤ T for i = 1, . . . , n. It holds

E

[
n∏

i=1

∫

∆mi ([si,ti])

dBαmi

]
≥ 0.
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Proof. Let tlk = k2−l, k = 0, 1, . . . , 2l. Denote by Bl,(α
mi
j ) the piecewise linear interpolation

of B(α
mi
j ) with step size 2−l, i.e.,

B
l,(α

mi
j )

t = B
(α

mi
j )

tlk
+ 2l(t− tlk)(B

(α
mi
j )

tlk+1
− B

(α
mi
j )

tlk
), t ∈ [tlk, t

l
k+1).

We have
n∏

i=1

∫

∆mi([si,ti])

dBαmi = lim
l→∞

n∏

i=1

∫

∆mi ([si,ti])

dBl,αmi

almost surely, due to Proposition 3.12. Since
∏n

i=1

∫
∆mi ([si,ti])

dBl,αmi belongs to a finite

Wiener chaos, we also have

E

n∏

i=1

∫

∆mi([si,ti])

dBαmi = lim
l→∞

E

n∏

i=1

∫

∆mi ([si,ti])

dBl,αmi

according to [4]. Note that

∫

∆mi ([si,ti])

dBl,αmi =

∫ ti

si

∫ tmi

si

· · ·
∫ t2

si

mi∏

j=1

Z
l,(α

mi
j )

tj dt1 · · · dtmi−1 dtmi
,

where

Z
l,(α

mi
j )

t = 2l(B
(α

mi
j )

tlk+1

− B
(α

mi
j )

tlk
), t ∈ [tlk, t

l
k+1)

for αmi
j 6= 0 and Z

l,(0)
t = 1 for t ∈ [0, T ]. We thus have

n∏

i=1

∫

∆mi ([si,ti])

dBl,αmi

=

∫

∆mn ([sn,tn])

· · ·
∫

∆m1 ([s1,t1])

n∏

i=1

mi∏

j=1

Z
l,(α

mi
j )

tij
dtm1

1 . . . dtm1
m1

· · · dtmn
1 . . . dtmn

mn
.

But the term
∏n

i=1

∏mi

j=1 Z
l,(α

mi
j )

tij
is a product, which consists only of increments of the

independent fractional Brownian motions B1, . . . , Bd with Hurst parameter H > 1/2
and of the constant factors 1. Since it is well-known that the increments of a fractional
Brownian motion of Hurst index H > 1/2 are positively correlated, and also that we have,
for a centered Gaussian vector (G1, . . . , G2k):

E(G1 . . . G2k) =
1

k!2k

∑

s∈S2k

k∏

ℓ=1

E(Gs(2ℓ)Gs(2ℓ−1)),

we clearly deduce that

E

n∏

i=1

mi∏

j=1

Z
l,(α

mi
j )

tij
≥ 0
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for all tm1
1 , . . . , tmn

mn
∈ [0, T ]. Hence we obtain

E
n∏

i=1

∫

∆mi ([si,ti])

dBl,αmi ≥ 0

for every l ∈ N, and the assertion follows.

�

Our estimate of the remainder will also require the Malliavin derivative of an iterated
integral. Recall then that for a random variable F ∈ D

1,2 we denote by DiF the i-th
component of the Malliavin derivative, i.e., DF = (D1F, . . . , DdF ). Recall moreover that
for α ∈ Ak, k ∈ N, we have defined

Jα = {j = 1, . . . , k : αj 6= 0}, Jα,i = {j = 1, . . . , k : αj = i},

for i = 1, . . . , d and
α−j = (α1, α2, . . . , αj−1, αj+1, . . . , αk).

Then the stochastic derivative of a multiple integral can be computed as follows:

Proposition 5.6. Let m ∈ N and α ∈ Am. We have

Di
u

∫

∆m([s,t])

dBα(t1, . . . , tm) (89)

=
∑

j∈Jα,i

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤t

dBα−j (t1, . . . , tm−1)

for i = 1, . . . , d.

Proof. We proceed by induction over l(α).

(a) Assume that l(α) = 1. For α = (0) the assertion clearly holds. Moreover for α = (j),
j = 1, . . . , d, we have

Di
u

∫ t

s

dB(j)
τ = Di

u(B
(j)
t − B(j)

s ) = δi,j1[s,t](u), for i = 1, . . . , d,

which corresponds to expression (89).

(b) Now assume that (89) holds for all multi-indices of length m and all i = 1, . . . , d. For
α ∈ Am+1 we have

Di
u

∫

∆m+1([s,t])

dBα = Di
u

∫ t

s

Yτ dB
(αm+1)
τ

with

Yτ =

∫

∆m([s,τ ])

dBα̃,
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where α̃ = α−(m+1). If αm+1 = 0, then

Di
u

∫ t

s

Yτ dτ =

∫ t

s

Di
uYτ dτ.

Hence we obtain by the induction assumption

Di
u

∫

∆m+1([s,t])

dBα(t1, . . . , tm+1)

=
∑

j∈Jα̃,i

∫ t

s

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤τ

dBα̃−j (t1, . . . , tm−1) dτ

=
∑

j∈Jα,i

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤τ≤t

dBα−j (t1, . . . , tm−1, τ),

which shows the assertion in this case. Hence it remains to consider the case αm+1 6= 0.
In this case, some standard arguments based on the linear interpolation of Y and Lemma
1.2.3 in [17] yield

Di
u

∫ t

s

Yτ dB
(αm+1)
τ =

∫ t

s

Di
uYτ dB

(αm+1)
τ + Yuδi,αm+11[s,t](u),

for i = 1, . . . , d. But now we obtain by the induction assumption that

Di
u

∫ t

s

Yτ dB
(αm+1)
τ

=

∫ t

s

∑

j∈Jα̃,i

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤τ

dBα̃−j (t1, . . . , tm−1) dB
(αm+1)
τ

+δi,αm+11[s,t](u)

∫

∆m([s,u])

dBα−(m+1)

=
∑

j∈Jα,i,j 6=m+1

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤τ≤t

dBα−j (t1, . . . , tm−1, τ)

+δi,αm+11[s,t](u)

∫

∆m([s,u])

dBα−(m+1)

=
∑

j∈Jα,i

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤tm≤t

dBα−j (t1, . . . , tm−1, tm),

which is our announced relation.

�

Now, we will establish an estimate for the second moment of an iterated integral,
which will be the key for the control of the remainder Rm(0, t) in the expansion of Ptf(a).
Indeed, the term (m!)−1/2 appearing in (90) will be crucial in order to get some series
convergence which will entail a nice bound on Rm(0, t).
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Proposition 5.7. Let m ∈ N and α ∈ Am. There exists a constant K1 > 0, depending
only on H and T , such that

(
E

∣∣∣∣
∫

∆m([s,t])

dBα

∣∣∣∣
2
)1/2

≤ Km
1√
m!

|t− s||α|H+m−|α| (90)

for 0 ≤ s ≤ t ≤ T .

Proof. The proof is separated in three steps.

(i) By stationarity (6) of the fractional Brownian motion, it follows

∫

∆m([s,t])

dBα L
=

∫

∆m([0,t−s])

dBα.

Hence we obtain by the scaling property (5) of fractional Brownian motion that

∫

∆m([s,t])

dBα L
= (t− s)H|α|+m−|α|

∫

∆m([0,1])

dBα.

Now from Proposition 5.4 (c) it is obvious that we have

E

∣∣∣∣
∫

∆m([0,1])

dBα

∣∣∣∣
2

≤ E

∣∣∣∣
∫

∆m([0,1])

dBα̃

∣∣∣∣
2

, (91)

where α̃ is given by α̃ = (α̃1, . . . , α̃m) with α̃j = 0 if j ∈ Jα,0 and α̃j = 1 if j ∈ Jα, i.e., all
integrals with respect to B(i), i = 2, . . . , n are replaced by integrals with respect to B(1).

(ii) In the next step, we will replace also the integrals with respect to t by integrals with
respect to B(1). More precisely, we will show that

E

∣∣∣∣
∫

∆m([0,1])

dBα̃

∣∣∣∣
2

≤ γ
|α|−m
H E

∣∣∣∣
∫

∆m([0,1])

dB(1,...,1)

∣∣∣∣
2

, (92)

with γH = H(2H − 1). To prove (92) assume first that there is only one integral with
respect to t, i.e. |Jα,0| = 1. Thus we have

∫

∆m([0,1])

dBα̃ =

∫

∆k1([0,1])

∫ s

0

∫

∆k2([0,s])

dBα̃2 ds dBα̃1

with k1 + k2 + 1 = m and α̃ = (α̃2, 0, α̃1). By rearranging the order of integration, which
is possible, since all integrals are pathwise defined, we get

∫

∆k1 ([0,1])

∫ s

0

∫

∆k2 ([0,s])

dBα̃2 ds dBα̃1 =

∫ 1

0

Ys ds,

where we have set

Ys =

∫

∆k1([s,1])

∫

∆k2([0,s])

dBα̃2 dBα̃1 .
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With this notation in hand, observe that we also have

∫

∆m([0,1])

dB(1,...,1) =

∫ 1

0

YsdB
(1)
s .

Hence, when |Jα,0| = 1, one can recast (92) into

E

∣∣∣∣
∫ 1

0

Ys ds

∣∣∣∣
2

≤ γHE

∣∣∣∣
∫ 1

0

YsdB
(1)
s

∣∣∣∣
2

. (93)

We will now proceed to the estimation of the two terms in (93): first of all, we easily get

E

∣∣∣∣
∫ 1

0

Ys ds

∣∣∣∣
2

=

∫ 1

0

∫ 1

0

EYs1Ys2 ds1 ds2.

Let us compute now E|
∫ 1

0
YsdB

(1)(s)|2: by the relation between the Young and the diver-
gence integral for fractional Brownian motion, see, e.g. [1] or Proposition 5.2.3 in [17], we
have ∫ 1

0

YsdB
(1)(s) = δ(1)(Y 1[0,1]) + γH

∫ 1

0

∫ 1

0

D1
s1
Ys2|s1 − s2|2H−2 ds1 ds2,

where we use the notation

δ(1)(Y 1[0,1]) = δ
(
(Y 1[0,1], . . . , 0)

)
.

Thus we obtain

E

∣∣∣∣
∫ 1

0

YsdB
(1)(s)

∣∣∣∣
2

= E
∣∣δ(1)(Y 1[0,1])

∣∣2 + γ2
HE

∣∣∣∣
∫ 1

0

∫ 1

0

D1
s1
Ys2|s1 − s2|2H−2 ds1 ds2

∣∣∣∣
2

+2γHEδ(1)(Y 1[0,1])

∫ 1

0

∫ 1

0

D1
s1
Ys2|s1 − s2|2H−2 ds1 ds2

≥ E
∣∣δ(1)(Y 1[0,1])

∣∣2

+2γHEδ(1)(Y 1[0,1])

∫ 1

0

∫ 1

0

D1
s1
Ys2|s1 − s2|2H−2 ds1 ds2.

Since clearly
∫ 1

0

∫ 1

0
D1

s1
Ys2|s1 − s2|2H−2 ds1 ds2 ∈ D

1,2, we have, owing to (64), that

E

[
δ(1)(Y 1[0,1])

∫ 1

0

∫ 1

0

D1
s1
Ys2|s1 − s2|2H−2 ds1 ds2

]

= γH

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

E
[
Ys1D

1
s2
D1

s3
Ys4

]
|s3 − s4|2H−2|s1 − s2|2H−2 ds3 ds4 ds1 ds2.

By the definition of Ys, s ∈ [0, 1], and applying Proposition 5.6, we can decompose the
product Ys1D

1
s2
D1

s3
Ys4 into a sum of products of iterated integrals, and hence

E
[
Ys1D

1
s2
D1

s3
Ys4

]
≥ 0, s1, s2, s3, s4 ∈ [0, 1],
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by Proposition 5.5. Consequently we obtain

E

∣∣∣∣
∫ 1

0

YsdB
(1)(s)

∣∣∣∣
2

≥ E
∣∣δ(1)(Y 1[0,1])

∣∣2 .

Furthermore, invoking [1], we get

E
∣∣δ(1)(Y 1[0,1])

∣∣2 = γH

∫ 1

0

∫ 1

0

EYs1Ys2|s1 − s2|2H−2 ds1 ds2

+ γ2
H

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

ED1
τ1Ys1D

1
s2
Yτ2|s1 − s2|2H−2|τ1 − τ2|2H−2 ds1 ds2 dτ1 dτ2.

Besides, according to Proposition 5.5, and thanks to the fact that both Ys1Ys2 and
D1

τ1
Ys1D

1
s2
Yτ2 are products of iterated integrals, we obtain that

EYs1Ys2 ≥ 0, and ED1
τ1Ys1D

1
s2
Yτ2 ≥ 0, s1, s2 ∈ [0, 1].

Since
|s1 − s2|2H−2 ≥ 1, s1, s2 ∈ [0, 1],

we end up with

E

∣∣∣∣
∫ 1

0

Ys dB
(1)(s)

∣∣∣∣
2

≥ γHE

∣∣∣∣
∫ 1

0

Ys ds

∣∣∣∣
2

,

which is the announced relation (93). We have thus proved that

E

∣∣∣∣
∫

∆k1([0,1])

∫ s

0

∫

∆k2 ([0,s])

dBα̃2 ds dBα̃1

∣∣∣∣
2

≤ γ−1
H E

∣∣∣∣
∫

∆k1([0,1])

∫ s

0

∫

∆k2([0,s])

dBα̃2 dB(1) dBα̃1

∣∣∣∣
2

.

Applying this procedure m− |α| times to replace all integrals with respect to t, equation
(92) is now easily checked.

(iii) Let us conclude our proof: combining (91) and (92) yields

E

∣∣∣∣
∫

∆m([0,1])

dBα

∣∣∣∣
2

≤ γ
|α|
H

γm
H

E

∣∣∣∣
∫

∆m([0,1])

dB(1,...,1)

∣∣∣∣
2

.

But clearly ∫

∆m([0,1])

dB(1,...,1) =
1

m!
(B1)

m

and thus we have

E

∣∣∣∣
∫

∆m([0,1])

dB(1,...,1)

∣∣∣∣
2

=
(2m)!

2m(m!)3
.

Since
(2m)!

2m(m!)2
≤ 2m
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the assertion (90) follows. �

Putting together Propositions 5.6 and 5.7, we also get the following estimate for the
second moment of the Malliavin derivative of an iterated integral.

Proposition 5.8. Let m ∈ N and α ∈ Am. There exists a constant K2 > 0, depending
only on H and T , such that we have

(
E

∣∣∣∣D
i
u

∫

∆m([s,t])

dBα

∣∣∣∣
2
)1/2

≤ |Jα,i|
Km−1

2√
(m− 1)!

|t− s|(|α|−1)H+m−|α| (94)

for i = 1, . . . , d and all 0 ≤ s ≤ t ≤ T .

Proof. Thanks to Proposition 5.6 we have that

Di
u

∫

∆m([s,t])

dBα =
∑

j∈Jα,i

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤t

dBα−j (t1, . . . , tm−1).

Thus it follows

(
E

∣∣∣∣D
i
u

∫

∆m([s,t])

dBα(t1, . . . , tm)

∣∣∣∣
2
)1/2

≤
∑

j∈Jα,i



E

∣∣∣∣∣

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤t

dBα−j (t1, . . . , tm−1)

∣∣∣∣∣

2



1/2

(95)

Furthermore, it is easily checked that

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤t

dBα−j (t1, . . . , tm−1)

=

∫

∆l(αj1 )([s,u])

dBαj1 ×
∫

∆l(αj2 )([u,t])

dBαj2
,

with α = (αj1, i, αj2). Since an iterated integral belongs to a finite chaos with respect to
B, all its Lp norms are equivalent. See, e.g., Theorem 1.4.1 in [17]. Thus, we obtain from
Proposition 5.7 and Hölder’s inequality that


E

∣∣∣∣∣

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤t

dBα−j (t1, . . . , tm−1)

∣∣∣∣∣

2



1/2

c2,4|t− s||α−j |H+m−1−|α−j |
Km−1

1√
l(αj1)!

√
l(αj2)!

, (96)
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with a constant c2,4 > 0. Moreover, it is readily seen that

1√
l(αj1)!

√
l(αj2)!

≤ 1

[m/2]!
,

and according to the fact that (2k)!/(k!)2 ≤ 22k, we end up with

1√
l(αj1)!

√
l(αj2)!

≤ 2(m−1)/2

√
(m− 1)!

.

Plugging this inequality into (96) and (95), we obtain

E

∣∣∣∣∣D
i
u

∫

s≤t1≤...≤tj−1≤u≤tj≤...≤tm−1≤t

dBα−j(t1, . . . , tm−1)

∣∣∣∣∣

2



1/2

≤ c2,4
(
√

2K1)
m−1

√
(m− 1)!

|Jα,i| |t− s|(|α−j |H+m−1−|α−j |),

and since
|α−j|H +m− 1 − |α−j| = (|α| − 1)H +m− |α|,

our claim (94) follows.

�

5.4 Study of the remainder term for H > 1/2

To avoid notational confusion we will write in the following Xt, t ∈ [0, T ], instead of Xa
t ,

t ∈ [0, T ], for the solution of the SDE with X0 = a. Moreover, recall that X i
t , t ∈ [0, T ],

denotes the i-th component of X. Recall also that the differential operators D0 and Dj

are defined as

D0 =

n∑

k=1

bk
∂

∂xk
and Dj =

n∑

k=1

σk,j ∂

∂xk
(97)

for j = 1, . . . , d and that we have set Dα = Dα1 . . .Dαk for a multi-index α ∈ Ak.
With the help of the auxiliary results contained in the previous section, we are now

able to bound ERm(0, t) in the following way when H > 1/2:

Theorem 5.9. Let m ∈ N, H > 1/2 and assume that assumption (A) holds. Then there
exists a constant K3 > 0, depending only on H, T , d and n, such that

|ERm(0, t)| ≤ (Um+1 + Ũm+1Y)
Km

3 t
H(m+1)

√
m!

for all t ∈ [0, T ], where

Um = sup
α∈Am

sup
0≤t≤T

(
E |Dαf(Xt)|2

)1/2
,

Ũm = max
i=1,...,n

sup
α∈Am

sup
0≤t≤T

(
E

∣∣∣∣
∂

∂xi
Dαf(Xt)

∣∣∣∣
2
)1/2
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and

Y = max
i=1,...,n

max
j=1,...,d

sup
0≤u≤s≤T

(
E
∣∣Dj

uX
i
s

∣∣4
)1/4

.

Notice then that the second part of Theorem 2.4 is an immediate consequence of the
above estimate.

Before we can prove Theorem 5.9, we will need the following proposition, which is a
straightforward consequence of Proposition 5.2.3 in [17], Proposition 4.1 and the properties
of iterated integrals of fractional Brownian motion.

Proposition 5.10. Let m ∈ N, α ∈ Am, g ∈ C2
b (Rn; R), and set Jα(s, t) =

∫
∆m([s,t])

dBα.

Then it holds

E

(∫ t

0

g(Xs)Jα(s, t) dBj
s

)

= γHE

(∫ t

0

∫ s

0

n∑

i=1

gxi
(Xs) Jα(s, t)Dj

uX
i
s |s− u|2H−2 du ds

)

+γHE

(∫ t

0

∫ t

s

g(Xs)D
j
uJα(s, t) |s− u|2H−2 du ds

)

for t ∈ [0, T ] and j = 1, . . . , d.

We are now ready to prove the main result of this section.

Proof of Theorem 5.9: Note that by the proof of Theorem 5.1 we have

Rm(0, t) =
∑

α∈Am+1

∫ t

0

∫ tm+1

0

. . .

∫ t2

0

Dαf(Xt1) dB
α1
t1 dB

α2
t2 . . . dB

αm+1

tm+1
.

(a) We first consider a single integrand. By interchanging the order of integration, which
is possible since all integrals are pathwise defined, we have

∫ t

0

∫ tm+1

0

· · ·
∫ t2

0

Dαf(Xt1) dB
α1
t1 dB

α2
t2 · · · dBαm+1

tm+1

=

∫ t

0

∫ t

t1

∫ tm+1

t1

· · ·
∫ t3

t1

dBα2
t2 · · · dBαm

tm dB
αm+1

tm+1
Dαf(Xt1) dB

α1
t1

=

∫ t

0

∫

∆m([s,t])

dBα−1 Dαf(Xs) dB
α1
s .

Recall that
Um = sup

α∈Am

sup
0≤t≤T

(
E|Dαf(Xt)|2

)1/2

and

Ũm = sup
i=1,...,n

sup
α∈Am

sup
0≤t≤T

(
E

∣∣∣∣
∂

∂xi
Dαf(Xt)

∣∣∣∣
2
)1/2

.
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If α1 = 0, we clearly have

∣∣∣∣E
∫

∆m+1([0,t])

Dαf(Xt1) dB
α(t1, . . . , tm+1)

∣∣∣∣

≤ Um+1

∫ t

0

(
E

∣∣∣∣
∫

∆m([s,t])

dBα−1

∣∣∣∣
2
)1/2

ds

≤ Um+1K
m
1

tHm+1

√
m!

. (98)

If α1 6= 0 we have, according to Proposition 5.10:

∣∣∣∣E
∫

∆m+1([0,t])

Dαf(Xt1) dB
α(t1, . . . , tm+1)

∣∣∣∣

≤ γH

∣∣∣∣∣

∫ t

0

∫ s

0

n∑

i=1

E
∂

∂xi
Dαf(Xs)

∫

∆m([s,t])

dBα−1 Dα1
u X i

s |s− u|2H−2 du ds

∣∣∣∣∣

+γH

∣∣∣∣
∫ t

0

∫ t

s

EDαf(Xs) D
α1
u

∫

∆m([s,t])

dBα−1 |s− u|2H−2 du ds

∣∣∣∣ .

Thus it follows
∣∣∣∣E
∫

∆m+1([0,t])

Dαf(Xt1) dB
α(t1, . . . , tm+1)

∣∣∣∣

≤
n∑

i=1

Ũm+1γH

∫ t

0

∫ s

0

(
E
∣∣Dα1

u X i
s

∣∣4
)1/4

(
E

∣∣∣∣
∫

∆m([s,t])

dBα−1

∣∣∣∣
4
)1/4

|s− u|2H−2 du ds

+Um+1γH

∫ t

0

∫ t

s

(
E

∣∣∣∣D
α1
u

∫

∆m([s,t])

dBα−1

∣∣∣∣
2
)1/2

|s− u|2H−2 du ds.

So recalling that we have set

Y = max
i=1,...,n

max
j=1,...,d

sup
0≤u≤s≤T

(
E
∣∣Dj

uX
i
s

∣∣4
)1/4

,

we get

∣∣∣∣E
∫

∆m+1([0,t])

Dαf(Xt1) dB
α(t1, . . . , tm+1)

∣∣∣∣

≤ nŨm+1YγH

∫ t

0

∫ s

0

(
E

∣∣∣∣
∫

∆m([s,t])

dBα−1

∣∣∣∣
4
)1/4

|s− u|2H−2 du ds

+Um+1γH

∫ t

0

∫ t

s

(
E

∣∣∣∣D
α1
u

∫

∆m([s,t])

dBα−1

∣∣∣∣
2
)1/2

|s− u|2H−2 du ds.
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Furthermore, invoking again the equivalence of Lp norms for iterated integral and Propo-
sition 5.7, we obtain

γH

∫ t

0

∫ s

0

(
E

∣∣∣∣
∫

∆m([s,t])

dBα−1

∣∣∣∣
4
)1/4

|s− u|2H−2 du ds

≤ c2,4
Km

1√
m!
γH

∫ t

0

∫ s

0

|t− s|Hm |s− u|2H−2 du ds

≤ c2,4K
m
1

tH(m+2)

√
m!

.

By Proposition 5.8, we get similarly

γH

∫ t

0

∫ t

s

(
E

∣∣∣∣D
α1
u

∫

∆m([s,t])

dBα−1

∣∣∣∣
2
)1/2

|s− u|2H−2 du ds

≤ c2,4K
m−1
2

tH(m+1)

√
(m− 1)!

.

Thus, we have shown for α1 6= 0 the estimate

∣∣∣∣E
∫

∆m+1([0,t])

Dαf(Xt1) dB
α(t1, . . . , tm+1)

∣∣∣∣ (99)

≤ nŨm+1Yc2,4K
m
1

tH(m+2)

√
m!

+ Um+1c2,4K
m−1
2

tH(m+1)

√
(m− 1)!

.

(b) Now we consider the complete remainder term. We have

|ERm(0, t)| ≤
∑

α∈Am+1,α1=0

∣∣∣∣E
∫

∆m+1([0,t])

Dαf(Xt1) dB
α(t1, . . . , tm+1)

∣∣∣∣

+
∑

α∈Am+1,α1 6=0

∣∣∣∣E
∫

∆m+1([0,t])

Dαf(Xt1) dB
α(t1, . . . , tm+1)

∣∣∣∣

Since |Am| = (d + 1)m, it follows by (98) and (99), that there exists a constant K3 > 0
depending only on H , T , n and d such that

|ERm(0, t)| ≤
(
Um+1 + YŨm+1

)
Km

3

tH(m+1)

√
m!

,

which completes the proof.

�

Acknowledgments. Part of this work was done during the stays of authors at our
respective institutions and we would like to thank them for their support and hospitality.

45



References
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