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A MINICOURSE ON ENTROPY THEORY ON THE

INTERVAL

by

Jérôme Buzzi

Abstract. — We give a survey of the entropy theory of interval maps as it can be
analyzed using ergodic theory, especially measures of maximum entropy and periodic
points. The main tools are (i) a suitable version of Hofbauer’s Markov diagram, (ii)
the shadowing property and the implied entropy bound and weak rank one property,
(iii) strongly positively recurrent countable state Markov shifts. Proofs are given only
for selected results. This article is based on the lectures given at the Ecole thématique

de théorie ergodique at the C.I.R.M., Marseilles, in April 2006.
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1. Introduction

We are going to give a very selective survey of interval dynamics, mainly (but not
exclusively) those defined by maps with finitely many critical points or discontinuities
(see Definition 1.1 below). We focus on “complexity” as defined through entropy as
seen from an ergodic theory point of view. Ergodic theory will be for us both a
powerful tool and a guide to the “right” questions. In particular, we shall concentrate
on aspects not dealt previously in book form (like the classic treatise [67] or [2]
for another, non-ergodic, point of view on the same subject) around measures of
maximum or large entropy.

As the lectures given in Luminy, these notes are intended to be accessible to readers
with only a basic knowledge of dynamical systems. From a technical point of view
we shall only assume (1) measure theory (e.g., the very first chapters of ([86]); (2)
the Birkhoff ergodic theorem, explained in any textbook on ergodic theory (see, e.g.,
[107]).

We shall deal mainly with the following rather well-behaved class of one-
dimensional dynamics:

Definition 1.1. — I will always denote a compact interval of R. A self-map of I
is piecewise monotone if there exists a partition of I into finitely many subinter-
vals (the ”pieces”) on each of which the restriction of f is continuous and strictly
monotone. Note that one can always subdivide the pieces. The natural partition is
the set of interiors (relatively to R) of the pieces in such a partition with minimum
cardinality.

We denote the set of piecewise monotone maps by PMM(I) and its topology is
defined by d(f1, f2) < ǫ if f1 and f2 both admit natural partitions with n pieces with
endpoints ai

j , b
i
j such that |a1

j −a
2
j | < ǫ, |b1j − b

2
j | < ǫ and |f1(a1

j +(b1j −a
1
j)t)−f

2(a2
j +

(b2j − a2
j)t)| < ǫ for all t ∈ [0, 1].

Remark 1.2. — A piecewise monotone map is not assumed to be continous. The
above topology induce a topology on C0(I) which is neither stronger nor weaker than
the usual one.

Let us outline these notes. We shall recall in Section 2 some general facts about
entropy for smooth, topological or probabilistic dynamical systems. In Section 3,
after recalling the basics of the symbolic dynamics of piecewise monotone maps, we
give combinatorial and geometric formulations of the entropy on the interval using in
particular the special form of its symbolic dynamics defined by the kneading invari-
ants. We discuss the continuity and monotonicity of the entropy function over maps
and over invariant probability measures in Section 4.

To get to the global structure we shall use Hofbauer’s Markov diagram explained in
Section 5. This will leave a part of the dynamics which we analyze using ”shadowing”
in Section 6. The main part of the dynamics is reduced to a Markov shift with
countably many states but most of the properties of the finite case (section 7). We
apply these tools to the piecewise monotone maps getting a precise description of
their measures of large or maximum entropy and their peirodic points, including a
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complete classification from this point of view (section 8). We conclude in Section 9 by
mentioning further works which either analyze more precisely the piecewise monotone
maps or apply the techniques presented here to more general settings, following the
idea that one-dimensional dynamics should be the gateway to (more) general results.

Remark 1.3. — Theorems, Problems and Questions are numbered consecutively and
independently throughout the paper. All other items are numbered in a common se-
quence within each section.

Exercises should be rather straightforward and quick applications of techniques
and ideas exposed in the text. Problems are more ambitious projects that (I believe)
can be solved by standard techniques - but have not been done yet, to the best of my
knowledge. Questions are problems that I don’t know how to handle.

2. Generalities on Entropies

The dynamical entropies have a long story and are related to very basic notions in
statistical physics, information theory and probability theory (see, e.g., [56]).

Putting the work of Shannon on a completely new level of abstraction, Kolmogorov
and Sinai defined in 1958 the measured entropy(1) of any endomorphism T of a
probability space (X,µ) as follows. For any finite measurable partition P , we get a P -
valued process whose law is the image of µ by the map x 7→ (P (x), P (Tx), . . . ) ∈ PN.
This process has a mean Shannon entropy:

h(T, µ, P ) := lim
n→∞

1

n
H(µ, Pn)

where H(µ,Q) =
∑

A∈Q −µ(A) logµ(A) and

Pn := {〈A0 . . . An−1〉 := A0 ∩ T
−1A1 ∩ . . . T

−n+1An−1 6= ∅ : Ai ∈ P}

The elements of Pn are called the (geometric) P, n-cylinders.
The Kolmogorov-Sinai h(T, µ) is then the supremum of the Shannon entropies of

all processes over finite alphabet ”contained” in the considered dynamical system.
We refer to the many excellent texts (see, e.g., [66, 101, 102, 84, 87, 100]) for more
information and only quote a few facts here.

This supremum can look forbidding. However, Sinai showed: if P1, P2, . . . is an
increasing(2) sequence of finite measurable partitions such that {T−kPn : k, n ∈ N}
generates the σ-algebra of measurable subsets of X , then:

h(T, µ) = sup
n≥1

h(T, µ, Pn)

Note the case where all Pn’s are the same partition (said then to be generating
under T ).

The measured entropy is an invariant of measure-preserving conjugacy: if (X,T, µ)
and (Y, S, ν) are two measure preserving maps of probability spaces and if ψ : X → Y

(1)We prefer this nonstandard terminology to the usual, but cumbersome measure-theoretic and even
more to the confusing metric entropy.
(2)That is, the elements of Pn are union of elements of Pn+1 for all n.
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is a bimeasurable bijection ψ : X → Y of probability spaces such that ν = µ ◦ ψ and
ψ ◦T = S ◦ψ (i.e., ψ is an isomorphism of (X,T, µ) and (Y, S, ν)) then T and S have
the same entropy.

Stunningly, this invariant is complete for this notion of isomorphism among
Bernoulli automorphisms according to Ornstein’s theory (see [84] for an introduction
and [87] for a complete treatment). Ornstein theory also (and perhaps more impor-
tantly) shows that many natural systems are measure-preserving conjugate to such a
system (see [80]).

Let us note that the above define the entropy wrt not necessarily ergodic invariant
probability measure. One shows also that h(T, µ) is an affine function of µ so that,
if µ =

∫

µxν(dx) is the ergodic decomposition of µ, then h(T, µ) =
∫

h(T, µx) ν(dx).
We also note that h(T n, µ) = |n|h(T, µ) for all n ≥ 1 (for all n ∈ Z if T is invertible).

From our point of view, the real meaning of measured entropy is given by the
Shannon-McMillan-Breiman theoreom:

Theorem 1 (Shannon-McMillan-Breiman). — Let T be a map preserving a
probability measure µ on a space X. Assume that it is ergodic. Let P be a finite
measurable partition of X. Denote by Pn(x) the set of points y such that fkx and
fky lie in the same element of P for 0 ≤ k < n. Then, as n→ ∞:

1

n
logµ(Pn(x)) → h(T, P, µ) a.e. and in L1(µ)

Corollary 2.1. — Let T and P be a as above. For 0 < λ < 1, let r(P, n, µ, λ)
be the minimum cardinality of a collection of P, n-cylinders the union of which has
µ-measure at least λ. Then:

h(T, µ, P ) = lim
n→∞

1

n
log r(P, n, µ, λ)

Exercise 2.2. — Consider X = {0, 1}N together with the shift σ and the product
probability µ induced by (p, 1 − p). Show that:

h(σ, µ) = −p log p− (1 − p) log(1 − p)

The following general fact is especially useful in dimension 1:

Theorem 2 (Rokhlin formula). — Let T be an endomorphism of a probability
space (X,µ). Assume that there is a generating countable measurable partition of X
into pieces Xi on each of which the restriction T |Xi is one-to-one and non-singular
wrt µ and −

∑

i µ(Xi) logµ(Xi) <∞. Let JT = dµ ◦ (T |Xi)/dµ if x ∈ Xi. Then:

h(T, µ) =

∫

log JF dµ

Compare this with Pesin’s formula (below).

Exercise 2.3. — Recover the result of the previous exercise by applying Rokhlin for-
mula to a suitable dynamical system on the interval.
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2.1. Bowen-Dinaburg formula. — R. Adler, A. Konheim, and M. McAndrew
defined in 1965 a topological counterpart of the measured entropy for arbitrary con-
tinuous maps of compact spaces. Where measured entropy counts orbit segments
”typical” for the measure (Corollary 2.1), topological entropy counts all orbit seg-
ments.

The original definition of topological entropy was given in terms of open covers. In
the case of a compact metric space (X, d), we shall use the Bowen-Dinaburg formula
which we now explain.

Definition 2.4. — For a real number ǫ > 0 and a positive integer n, the (ǫ, n)-ball
at some x ∈ X is:

B(ǫ, n, x) := {y ∈ X : ∀0 ≤ k < n d(T ky, T ky) < ǫ}

The (ǫ, n)-covering number of Y ⊂ X is:

r(ǫ, n, Y ) := min{#C : Y ⊂
⋃

y∈C

B(ǫ, n, y)}

The entropy of Y is then:

h(T, Y ) := lim
ǫ→0+

h(T, Y, ǫ) with h(T, Y, ǫ) := lim sup
n→∞

1

n
log r(ǫ, n, Y )

The topological entropy of T is:

htop(T ) := h(T,X).

Thus, htop(T ) counts all orbit segments.

Remark 2.5. — 1. htop(T ) is an invariant of topological conjugacy.
2. One can replace lim sup by lim inf in the definition of h(T, Y, ǫ). The number

htop(T ) = h(T,X) is then left unchanged.

Question 1. — It is unknown if for X = Y the lim sup in h(T,X, ǫ) is in fact a
limit.

Exercise 2.6. — Show that if T is Lipschitz with constant L on a compact mani-
fold of dimension d then htop(T ) ≤ d log+ L. Note: A very important refinement is
Ruelle-Margulis inequality (see 3 and its descendants. It is false if T is only piecewise
continuous and Lipschitz, see [16, 62].

Exercise 2.7. — Let σ : AN → AN be the shift map: (σ(A))n = An+1. Let Σ be a
subshift on a finite alphabet A, i.e., Σ is a closed, σ-invariant subset of AN. Show
that

htop(σ|Σ) = lim
n→∞

1

n
log #{w ∈ An : ∃x ∈ Σ s.t. x0 . . . xn−1 = w}

If Σ is the subshift of finite type (see [65] for background) defined by a matrix
A : A×A → {0, 1} according to x ∈ Σ iff x ∈ AN and, for all n ∈ N, A(xn, xn+1) = 1,
then

htop(σ|Σ) = log ρ(A)

where ρ(A) is the spectral radius of A.
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2.2. Katok’s formula. — Let T be an endomorphism of a probability space (X,µ).
Assume that X is also a compact metric space (the measurable structure being the
Borel one). Katok [51] observed that one can compute the measured entropy by a
variant of the Bowen-Dinaburg formula:

Definition 2.8. — The (ǫ, n)-covering number of a probability µ wrt a parameter
λ ∈ (0, 1) is:

r(ǫ, n, µ, λ) := min







# : µ





⋃

y∈C

B(ǫ, n, y)



 > λ







Proposition 2.9 (Katok). — Assume that (T, µ) is ergodic. Then the measured
entropy of (T, µ) is equal to:

h(T, µ) = lim
ǫ→0+

h(T, µ, ǫ) with h(T, µ, ǫ) = lim sup
n→∞

1

n
log r(ǫ, n, µ, λ)

for any 0 < λ < 1. h(T, µ, ǫ) is independent of λ.

Remark 2.10. — One can replace lim sup by lim inf in the above definition. How-
ever it is not known if this is in fact a limit

2.3. Ruelle-Margulis Inequality. — Let f : M →M be a self-map of a compact
manifold with an ergodic and invariant probability measure µ and an open subset U
such that µ(U) = 1 and f |U is C1.

The Lyapunov exponents of (f, µ) are numbers λ1 ≥ λ2 ≥ . . . λd ≥ −∞ such that,
for a.e. x ∈M :

dim {v ∈ TxM : λ(x, v) = λ} = #{i : λi = λ}.

Oseledets Theorem ensures that such a collection of d numbers exists if log+ ‖f ′‖ is
µ-integrable (see, e.g., [61]).

Theorem 3 (Ruelle-Margulis inequality). — If ‖f ′‖ is bounded over U , then

h(f, µ) ≤
d

∑

i=1

λ+
i

See [53] for refinements (i.e., how fast can one let f blow up near ∂U).

2.4. Variational Principle. — The above formulas imply immediately that
h(T, µ) ≤ htop(T ) for all measurable maps T of a compact metric space and all
invariant probability measures µ. In fact much more is true:

Theorem 4 (Goodman, Dinaburg). — For a continuous map of a metric space,
the variational principle holds:

htop(T ) = sup
µ
h(T, µ)

The supremum can be taken either over all invariant probability measures; or over all
ergodic and invariant probability measures.
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The classical proof is due to Misiurewicz (see the textbooks, e.g., [84])

Remark 2.11. — 1. This of course ”justifies” the definition of topological entropy
to the extent that this quantity is shown to depend only on the measurable structure
of T : X → X and not on its topological (or metric) structure.

2. It was not at all obvious that one could find measures with ”almost all the
topological complexity” of the system. For instance, the opposite is true in the set-
ting of Birkhoff theorem: e.g., for the shift on {0, 1}N, the set of points for which

limn→∞
1
n

∑n−1
k=0 φ ◦ σk(x) exists for all continuous function φ is of full measure but

is of first Baire category (i.e., it is negligible from the topological point of view).

Exercise 2.12. — Prove this last assertion.

The variational principle leads to the study of invariant probability measures that
achieve the topological entropy. More generally, one makes the following

Definition 2.13. — For a Borel map T : X → X, the entropy is defined as

h(T ) := sup
µ
h(T, µ)

where µ ranges over all the invariant probability measures. The maximum mea-
sures are the ergodic, invariant probability measure maximizing entropy, i.e., such
that h(T, µ) = h(T ).

Recall that the entropy is an affine function of the measure, hence the invariant
probability measures maximizing entropy are exactly the closed convex hull of the
ergodic ones, i.e., the maximum measures.

Maximum measures sometimes do not exist and sometimes are not unique. For
instance, for each finite r, there are Cr maps with no maximum measures and also
Cr maps with infinitely many maximum measures [15, 90] (see [70] for examples of
diffeomorphisms). But we shall see that for many nice systems, such measures exist,
have some uniqueness and describe important characteristics of the dynamics, e.g.,
the repartition of the periodic points.

2.5. Misiurewicz’s local entropy. — A key aspect of measured entropy is the
uniformity (or lack thereof) in the limits, when µ ranges over the invariant probability
measures, h(f, µ) = limǫ→0 h(f, µ, ǫ). It corresponds to the existence of ”complexity
at arbitrarily small scales”. The simplest way(3) to measure this is the following
quantity introduced by Misiurewicz (under the name topological conditional entropy)
[71]:

Definition 2.14 (Misiurewicz). — The local entropy of a self-map f of a metric
space (X, d) is:

hloc(f) := lim
ǫ→0

hloc(f, ǫ) with hloc(f, ǫ) := lim
δ→0

lim sup
n→∞

sup
x∈X

1

n
log r(δ, n,B(ǫ, n, x)).

(3)Much deeper results have been obtained in the study of symbolic extension entropy, see the
references in Section 9.
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Exercise 2.15. — Show that, if X is compact and f is continuous, then hloc(f) =

limǫ→0 h̃loc(f, ǫ) where h̃loc(f, ǫ) := supx∈X limδ→0 lim supn→∞
1
n log r(δ, n,B(ǫ, n, x)).

Exercise 2.16. — Show that if X is compact, but f not necessarily continuous, then
hloc(f

n) = |n|hloc(f) for all n ∈ N (or n ∈ Z if f is invertible).

A simple but important consequence motivating the above definition is:

Proposition 2.17. — hloc(f) bounds the defect in upper semicontinuity of µ 7→
h(f, µ) over the set of invariant probability measure with the weak star topology: for
any sequence µn → µ,

lim sup
n→∞

h(f, µn) ≤ h(f, µ) + hloc(f)

In particular, if hloc(f) = 0, then the above map is upper semi-continuous and there-
fore achieves its maximum: there exists at least one maximum entropy measure.

Exercise 2.18. — Prove this result. Hint: for any 0 < ǫ′ < ǫ, for all n large enough,
h(f, µn, ǫ) ≤ h(f, µ, ǫ′).

hloc(f) = 0 for C∞ maps follows from Yomdin’s theory to which we now turn.

2.6. Yomdin’s theory. — Yomdin’s theory analyzes the local complexity of differ-
entiable maps. It explains why C∞ interval maps are so much like piecewise monotone
maps (see [15] or section 9).

Theorem 5 (following Yomdin). — Let f : Rd → Rd be a Cr map with all partial
derivatives up to order r bounded by 1, except for the derivatives of order 1 maybe.

Let σ : [0, 1]k → Rd extend to a Cr map defined on a neighborhood of [0, 1]k with
all partial derivatives up to order r bounded by 1.

Then there exists a tree T (i.e., a collection of finite sequences such that if
τ1 . . . τn ∈ T then τ1 . . . τk ∈ T for all 1 ≤ k ≤ n) and a family of maps φτ : [0, 1]k →
[0, 1]k, τ ∈ T , with the following properties. Set for any τ = τ1 . . . τn ∈ Tn (the subset
of sequences of length n),

Φτ1...τn
:= φτ1...τn

◦ φτ1...τn−1
◦ · · · ◦ φτ1

.

Then, for all n ≥ 1,

– σ−1 (B(1, n, σ(0))) ⊂
⋃

τ∈Tn
Φτ ([0, 1]k) ⊂ σ−1 (B(2, n, σ(0)))

– for each τ ∈ Tn, φτ , Φτ and fn ◦ σ ◦ Φτ have all their partial derivatives up to
order r bounded by 1;

– #Tn ≤ C(r, d)Lip+(f)n(k/r)+1 where Lip+(f) is the maximum of the Lipschitz
constant of f and 1.

A slightly weaker claim was prove by Yomdin [110]. However simple modifications
(made in [15]) yields the above statement. We do not give a proof here, but only
sketch the main ideas.
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Sketch of Proof. — The first step of the proof is to observe that one can approximate
fn ◦ σ : [0, 1]k → Rd by its Taylor polynomial, after restricting it to a cube of linear
size o(Lip+(f)−n/r). There are essentially Lip+(f)n(k/r) such cubes in the domain
[0, 1]k. This accounts for the corresponding factor in the above Theorem.

The second step of the proof considers the intersection with the unit cube of the
graph of the polynomial approximation of fn ◦ σ. This is a semi-algebraic subset,
i.e., a subset of Rd defined by finitely many equalities and inequalities involving only
polynomials. It turns out that such subsets can be written as the union of the images
of a constant number of Cr maps with all partial derivatives bounded by 1. Here by
a constant number, we mean one that depends only on the order of differentiability r,
dimension d and the list of the degrees of the polynomials defining the subset. This
natural but deep fact was explained in [39] and a complete proof can be found in
[13].

Applications. — The initial motivation of Yomdin was the following theorem:

Theorem 6 (Yomdin). — Let f be a Cr self-map of a compact d-dimensional Rie-
mannian manifold M . Define the volume growth of f ∈ Cr(M), r ≥ 1, by:

v(f) := max
0≤k≤d

sup
S

lim sup
n→∞

1

n
log

∫

S

‖Λk(fn)′(x)‖ dvolS

where S ranges over all compact subsets of k-dimensional Cr submanifolds of M ,
volS is the volume induced by the restriction to S of the Riemannian structure of M
and ‖Λk(fn)′(x)‖ is the Jacobian corresponding to volS and volfnS. Thus v(f) is the
growth rate of all volumes with multiplicity.

Then,

(2.19) v(f) ≤ htop(f) +
d

r
log+ Lip+(f)

In particular, for C∞ maps, the logarithm of the spectral radius of the action of f on
the total homology is bounded by the topological entropy.

Exercise 2.20. — Deduce the above theorem from Theorem 5. Hint: For any 0 ≤
k ≤ n, bound

∫

B ‖Λk(fn)′(x)‖ dvolB for B contained in an (ǫ, n)-ball.

Note: The last assertion is Shub conjecture in the case of C∞ maps. The conjecture
remains open for less regular functions, in particular C1 functions (for which it was
stated).

The bound (2.19) is sharp among maps, see [110].

Exercise 2.21. — Prove that for a Cr map of a compact d-dimensional manifold,
hloc(f) ≤ d

r log Lip+(f). Hint: apply Theorem 5 to a suitable F representing a scaled
version of f and σ being a suitable chart and consider

⋃

w∈Tn
σ ◦Φτ (Qǫ) where Qǫ is

an ǫ-dense subset of [0, 1]d.

Even more interestingly (for higher dimensional dynamics), Yomdin’s theory im-
plies a sort of submultiplicative property among families of maps of the form fn ◦ σ
where f is the dynamics and σ is a parametrized disk (see [19]).
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3. Computing the Entropy on the Interval

We now turn to one-dimensional dynamics. Here entropy is somewhat ”explicit”.
This first appears in two results of Misiurewicz which say that the entropy for interval
maps is essentially a combinatorial phenomenon.

3.1. Symbolic Dynamics. — We first recall the general definition of the symbolic
dynamics of a piecewise map before explaining the classical description of the subshifts
thus obtained in the class of piecewise monotone maps.

Definition 3.1. — Let f be a self-map of a Baire topological space X with a collec-
tion P of disjoint open subsets with dense union. The symbolic dynamics of f wrt P
is the left-shift σ acting on:

Σ+(f, P ) := {ι(x) : x ∈ X ′} ⊂ PN

where the topology on PN is the product of the discrete topology of P and X ′ :=
⋂

k≥0 f
−k

⋃

A∈P A and

(3.2) ι(x) := A ∈ PN such that ∀k ≥ 0 fkx ∈ Ak.

ι(x) is called the itinerary of x.

Exercise 3.3. — For A0 . . . An−1 ∈ Pn, let

〈A0 . . . An〉 := A0 ∩ f
−1A1 ∩ · · · ∩ f−n+1An−1 ⊂ X.

Check that Σ+(f, P ) = {A ∈ PN : ∀n ≥ 0 〈A0 . . . An〉 6= ∅}.

For piecewise monotone map, the symbolic dynamics is very close to the interval
dynamics:

Exercise 3.4. — Show that for a piecewise monotone map f with its natural parti-
tion P , ι is well-defined except on a countable set. Show that ι is one-to-one except
on a set negligible wrt any nonatomic invariant probability measure. Hint: Consider
the homtervals of f , i.e., the maximum open intervals on which fk is monotone and
continuous for all k ≥ 1.

Give a counter-example for a smooth interval map. Can you obtain htop(σ|Σ+(f, P )) >
htop(f) or the reverse inequality? See [16, 62] for some piecewise affine examples in
higher dimensions.

3.2. Kneading theory. — Let (T, P ) be a piecewise monotone map.
Endpoints of pieces in P have no itinerary in the proper sense. However, one can

define left/right itineraries of any point x ∈ I:

ι(x±) := lim
ǫ→0+

ι(x ± ǫ).

If c0 < c1 < · · · < cN are the endpoints of the intervals in the partition P of I =
[c0, cN ], the set of kneading invariants is:

K(T, P ) := {ι(γ) : γ ∈ {c0+, c1−, c1+, . . . , c
−
N}}
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These are obviously invariants of topological conjugacy. In fact, they determine com-
pletely the symbolic dynamics (hence, they are (essentially) complete invariants of
topological conjugacy – see [67] for the details).

Definition 3.5. — T defines a modified lexicographic order on PN according
to:

A �T B ⇐⇒ A = B or (A0 . . . An−1 = B0 . . . Bn−1 and

〈A0 . . . An−1An〉 < 〈B0 . . . Bn−1Bn〉)

where I < J means that for every x ∈ I, y ∈ J , x < y.

This is the standard lexicographic order if T is increasing on each element of P .

Exercise 3.6. — Show that ι : (I,≤) → (Σ+,�T ) is order preserving.

Proposition 3.7. — Let (T, P ) be a piecewise monotone map. A ∈ PN belongs to
Σ+(T, P ) iff

(3.8) ∀n ≥ 0 ι(en) �T σnA �T ι(fn)

where en = ci+ and fn = ci+1− if (ci, ci+1) = An.

Exercise 3.9. — Prove the above.

It is remarkable that the symbolic dynamics of piecewise monotone maps admits
such a simple description, even though it is not a finite one as for subshifts of finite
type (but this is impossible in general as, for instance, their topological entropy can
take uncountably many values — see 3.12). We shall see that these subshifts are
however very close to being of finite types and share many of their properties. The
notion of quasi-finite type described in Section 9 put this observation to work.

Remark 3.10. — (3.8) is satisfied in particular by the kneading invariants them-
selves. This can be formulated abstractly as a property of a finite alphabet A where
each element is given a sign and two sequences in AN. The abstract version of (3.8) is
then necessary and sufficient to ensure that these data are realized (up to an obvious
identification) as the kneading invariants of some piecewise monotone map. See [67].

3.3. Misiurewicz and Szlenk’s lap numbers. — This formula says that the
topological entropy of a piecewise monotone map is combinatorial:

Theorem 7 (Misiurewicz-Szlenk). — Let f : [0, 1] → [0, 1] be a piecewise mono-
tone and piecewise continous map. Let P be its natural partition. Consider the
partition Pn into P, n-cylinders. The topological entropy of f can be computed as:

(3.11) htop(f) = lim
n→∞

1

n
log #Pn

#Pn is called the n-lap number of f .

Using the Hofbauer diagram below one should be able to solve the following:

Problem 1. — The rate of convergence in the above formula is exponential.
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One can give a very easy ergodic proof of the Misiurewicz-Slenk formula:
Recognize in eq. (3.11) the topological entropy of the symbolic dynamics Σ+(f, P ).

The equality htop(σ|Σ+(f, P )) = htop(f) will follow rather easily from the variational
principle. Indeed, according to this principle it is enough to see that one can identify
invariant and ergodic probability measures of non-zero entropy of both systems in an
entropy preserving way. Conclude by applying Exercise 3.4.

Exercise 3.12. — Prove that if β > 1 and T : x 7→ βx mod 1 on [0, 1], then
htop(T ) = log β (you may consider first the case β ∈ N). Hint: Use Ruelle’s inequal-
ity.

3.4. Misiurewicz’s Horseshoes. —

Definition 3.13. — A horseshoe is a collection of pairwise disjoint compact in-
tervals J1, . . . , JN and an integer T ≥ 1 such that fT (Ji) contains a neighborhood of
J1 ∪ · · · ∪ JN . The entropy of the horseshoe is logN/T .

A piecewise monotone horseshoe is a horseshoe such that, in the above nota-
tion, fT |Ji is continuous and strictly monotone.

Theorem 8 (Misiurewicz). — Let f be (i) a continuous map or (ii) a piecewise
monotone map of a compact interval. If the topological entropy of f is not zero, then it
is the supremum of the entropies of its horseshoes (its piecewise monotone horseshoes
if f is piecewise monotone).

Complete proofs can be found in [2] and also [93]. These are combinatorial proofs.
We give one using ergodic theory and techniques involved in the spectral decompositon
of A.M. Blokh [5]. We consider only the case f ∈ C0(I).

Exercise 3.14. — Prove Misiurewicz’s theorem for piecewise monotone maps either
by adapting the proof below or by using Hofbauer’s Markov diagram (see below).

Ergodic construction of Misiurewicz horseshoes. — We have to build a horseshoe of
entropy at least H for every H < htop(f). Fix such a H . By the variational principle,
we can find an ergodic and invariant probability measure µ such that h(f, µ) > H .
By Katok’s entropy formula, we can find ǫ0 > 0 so that h(f, µ, ǫ0) > H .

Step 1: A Cycle

Let supp′µ be the support of µ minus the countably many points x such that
µ([x, x+ t])µ([x− t, x]) = 0 for t > 0 small enough. In the rest of the construction, x
will be a point of supp′µ.

If I is an open interval, define F (I) as the interior of f(I). For r > 0 and x ∈ [0, 1],
define:

Vr(x) :=
⋃

k≥0

F k(B(x, r)) and Cr(x) is the c.c. of Vr(x) containing x.

As x ∈ supp′µ, there exists k ≥ 1 such that F k(B(x, r))∩B(x, r) has positive measure.
Hence Vr(x) has finitely many, say n(x, r), connected components.
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Exercise 3.15. — Check that F permutes these connected components and that x ∈
Vr(x).

We claim that

(3.16) sup
r>0

n(x, r) <∞.

An entropy argument shows that the proportion ξ(x, r) of 0 ≤ k < n(x, r) such that
diam(F kCr(x)) > ǫ0 satisfies: ξ(x, r) ≥ H/ log(ǫ−1

0 + 1). Indeed, r(ǫ0, n, Cr(x)) ≤
(ǫ−1

0 + 1)ξ(x,r)n so H < h(f, µ, ǫ0) ≤ ξ(x, r) log(ǫ−1
0 + 1). But, considering the lengths

of the pairwise disjoint F k(Cr(x)), we have: (1 − ξ(x, r))n(x, r)ǫ0 ≤ 1, proving eq.
(3.16). This implies that

⋂

r>0 Cr(x) =: C(x) is a non-trivial interval defining a cycle

V (x) of period p(x) with F p(x)(C(x)) = C(x) (if F p(x)(C(x)) ( C(x), then taking
r > 0 so small that F p(x)(Cr(x)) ∪ B(x, r) ( C(x) we would get Cr(x) ( C(x), a
contradiction).

If y is another point of supp′µ, we claim that V (y) = V (x). Indeed, observe that

µ(V (x)) = 1 by ergodicity, so suppµ ⊂ V (x). As y ∈ supp′µ, y ∈ V (x). Hence
B(y, r) ⊂ V (x) for r > 0 small enough, so V (y) ⊂ V (x). By symmetry, V (y) = V (x).
Henceforth, we drop the dependence on x, simplifying V (x), C(x), p(x) to C, V, p.

Step 2: Strong Mixing

Call a subinterval I ⊂ [0, 1] such that
⋃

k≥0 F
k(I) ( V negligible. Introduce

the following relation on [0, 1]: x ∼ y iff [x, y] is negligible. Observe that x ∼ y
implies f(x) ∼ f(y) as [f(x), f(y)] ⊂ f([x, y]) and that the equivalence classes of ∼
are compact subintervals.

Exercise 3.17. — Show that f : [0, 1] → [0, 1] induces a continuous self-map of
[0, 1]/ ∼ and that, up to a homeomorphism, this new map is a continuous map
f ′ of [0, 1] which admits an invariant and ergodic probability measure µ′ satisfying
h(f ′, µ′, ǫ′0) > H for some ǫ′0 > 0.

By this exercise one can assume that no non-trivial subinterval of V is negligible.
Hence for every non-trivial subinterval J ⊂ C,

⋃

k≥0 F
kJ = V .

Observe that fp(C) = C implies the existence of a fixed point fp(x0) = x0 in
the closure C̄. In particular, there is an integer n0 > 0 such that fn0J ∋ x0 by the
following:

Exercise 3.18. — Show that either one can find x0 ∈ C (in which case we set
y0 := x0), or there exists y0 ∈ V such that f(y0) = x0.

Observe that fn0J cannot be negligible, as it would imply that all connected com-

ponents of
⋃n0−1

k=0 fkJ must also be negligible, but this union must have full µ-measure,
a contradiction.

If x0 ∈ ∂C, let z0 ∈ C such that µ([x0, z0]) > 0. Otherwise, let w0 ∈ ∂C such that
µ([x0, w0]) > 0 and z0 ∈ (x0, w0) such that µ([x0, z0])µ([z0, w0]) > 0. In both cases,
set K0 := [x0, z0].

As fn0J is not negligible, there exists n1 > n0 such that fn1J ∋ z0, so fn1J ⊃ K0.
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Step 3: Conclusion

Divide V into subintervals I1, . . . , IL, each of length ǫ0/2. By Step 2, for each
i = 1, . . . , L, a positive integer ti such that f ti(Ii) ⊃ K0. Let t∗ := max ti.

By Katok’s entropy formula, µ(K0) > 0 implies that, for all large n, there exist
x1 < x2 < · · · < xN points in K0 which are (ǫ0, n)-separated with N ≥ 2net∗HenH :
for every i = 1, . . . , N−1, there exists ni < n such that |fnixi−fnixi+1| ≥ ǫ0. Hence,
fni([xi, xi+1]) ⊃ Ij for some j = ji ∈ {1, 2, . . . , L}. Thus, fni+tj ([xi, xi+1]) ⊃ K0.

The integers ni + tji
belong to [0, n + t∗]. Hence, one can select i1, . . . , iM from

{1, . . . , N} with M = N/(n+ t∗) ≥ e(n+t∗)H , j(i1) = · · · = j(iM ) and T := ni1 + tj(i1)

such that:

– Jℓ := Iiℓ
⊂⊂ K0 for ℓ = 1, . . . ,M ;

– Jℓ ∩ Jℓ′ = ∅ if ℓ 6= ℓ′;
– fT (Ji) ⊃ K0

That is, f has a horseshoe with entropy at least H , proving Misiurewicz theorem.

3.5. Entropy and length. — Entropy is reflected in the growth rate of volume.
The situation is especially simple on the interval [74, 110].

Proposition 3.19 (Misiurewicz-Przyticky, Yomdin). — For f ∈ C1(I) define
the growth of length under iterations of f to be:

ℓ(f) := lim sup
n→∞

1

n
log

∫

I

|(fn)′(x)| dx.

Then ℓ(f) ≥ htop(f). For f ∈ PMM(I) ∩ C1(I) or f ∈ C∞(I), this is in fact an
equality:

(3.20) htop(f) = ℓ(f).

The above remain true for f ∈ PMM(I), provided that ℓ(f) is suitably redefined
using the variation of fn (minus that occuring at its discontinuities). The proof is
the same for f ∈ PMM(I) ∩ C0(I) and slightly more delicate for the general case.

This formula has generalizations to C∞-smooth self-maps in arbitrary dimension –
see [77] and also [60]. One can compare it with the following consequence of Rokhlin
formula (Theorem 2). Let f be a piecewise monotone, piecewise C1 map of the
interval. If µ is an invariant probability measure with absolutely continuous ergodic
components, then:

h(f, µ) =

∫

lim sup
n→∞

(1/n) log |(fn)′(x)| dµ

This has been generalized to arbitrary invariant probability measures absolutely con-
tinuous (this is Pesin’s formula) or not and self-maps on manifolds of arbitrary dimen-
sion by taking into account the relevant dimensions (see [109, 48]) and considering
the Lyapunov exponents instead of the single derivatives (see [53, 64]).

Exercise 3.21. — Check (3.20) in the case where f maps each of its piece to the
full interval (up to its endpoints).
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Proof: We first prove ℓ(f) ≥ htop(f) for all C1 maps. Let ǫ > 0. For all large n,

there exists x1 < · · · < xN a (ǫ, n)-separated subset with N ≥ nen(htop(f)−ǫ)/ǫ. As
in the proof of Theorem 8, we can find a subset y1 < · · · < yM with M ≥ N/n and
0 ≤ m ≤ n such that |fkyi − fkyi+1| ≥ ǫ. Therefore,

1

n
log

∫

I

|(fm)′(x)| dx ≥ em(htop(f)−ǫ)

which implies the claimed inequality.
We prove the converse inequality. The C∞ case follows from Yomdin’s theory -

Theorem 5 - we leave its details to the diligent reader. For f ∈ PMM(I) ∩ C1(I), we
observe:

∫

I

|(fn)′(x)| dx =
∑

A∈P n

|fn(A)| ≤ #Pn

so that the Misiurewicz-Szlenk formula is enough to conclude. �

Remark 3.22. — Misiurewicz and Przytycki [74] have shown that, in any dimen-
sions, the logarithm of the degree is a lower bound for the entropy for C1 maps (but not
C0 maps). This is a (rather) special case of the Shub entropy conjecture mentioned
before.

4. Entropy as a function

4.1. Local entropy. — Recall that local entropy quantifies the complexity at ar-
bitrarily small scales. The situation is not so bad for ”reasonable” interval maps:

Proposition 4.1. — For f ∈ PMM(I) or f ∈ C∞(I), hloc(f) = 0.

Exercise 4.2. — If K ⊂ I is such that fk|K is monotone for 0 ≤ k < n, then
r(ǫ, n,K) ≤ n(|I|/ǫ+ 1) + 1.

Proof: We have already explained how the assertion for f ∈ C∞(I) follows from
Yomdin’s theory. Assume f ∈ PMM(I).

Consider first f ∈ PMM(I). The exercise below implies that r(ǫ, n, J) ≤ Cn#{A ∈
Pn : A ∩ J 6= ∅} where P is the natural partition of f . Now, if K ⊂ B(ǫ, n, x), then
each fkK, 0 ≤ k < n, meets at most two elements of P , hence #{A ∈ Pn : A ∩ J 6=
∅} ≤ 2n so that hloc(f) ≤ 2. Applying the same to fN we get, by Exercise 2.16
hloc(f) = (1/N)hloc(f

N ) ≤ log 2/N . Letting N → ∞, we get the claim for piecewise
monotone maps. �

4.2. Measured entropy. — Recall that a map φ : X → R is lower semi-continuous
at x ∈ X , if, for ǫ > 0, there exists a neighborhood of x on which φ is at least φ(x)−ǫ:
that is, φ cannot ”collapse”. Upper semi-continuity of φ is lower semi-continuity for
−φ: it means that φ cannot ”explode”. In particular an upper semi-continuous
function over a non-empty compact subset achieves its maximum.

The preceding result on the local entropy yields the:
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Corollary 4.3. — For any f ∈ PMM(I) or f ∈ C∞(I), the measured entropy is
upper semi-continuous on the compact of invariant probability measure and therefore
f admits measures of maximum entropy.

Note that such an existence proof says nothing about the multiplicity or the struc-
ture of these measures. These two points will require a rather complete analysis of
the one-dimensional dynamics through Hofbauer’s Markov diagram below.

Fact 4.4. — If f ∈ C0(I) or f ∈ PMM(I) and h(f, µ0) > 0, then µ 7→ h(f, µ) is not
lower semi-continuous at µ = µ0.

This follows from the density of periodic measures (invariant and ergodic proba-
bility measures defined by periodic orbits) among all invariant measures (which holds
because of specification properties enjoyed by these maps (see [5, 17, 47])).

Fact 4.5. — If f ∈ C∞(I) or f ∈ PMM(I), then µ 7→ h(f, µ) is upper semi-
continuous.

For any r <∞ there are examples of f ∈ Cr(I) with invariant probability measures
µ0 at which the entropy fails to be upper semicontinuous.

The first fact follows from hloc(f) = 0 (see Proposition 4.1). For r <∞, examples
on the interval are given in [15, 90]. Note: In these examples, h(f, µ0) = 0.

Remark 4.6. — S. Ruette [92] observed that this gives examples of topologically
mixing, smooth interval maps with the same nonzero topological entropy which are
not Borel conjugate.

Remark 4.7. — M. Rychlik [94] proved that the measured entropy of the unique ab-
solutely continuous invariant probability measure of a family of piecewise C2, piecewise
expanding map has modulus of continuity x log 1/x.

The following should be tractable by using the perturbative results of Keller and
Liverani [57] about the transfer operator.

Problem 2. — Study the regularity of the measured entropy for families of piecewise
expanding, piecewise monotone maps.

4.3. Topological entropy. — We consider the dependance of the topological en-
tropy on the map.

4.3.1. Continuity. —

Theorem 9. — The map f 7→ htop(f) is lower semi-continuous both over C0([0, 1])
and over PMM([0, 1]).

This map is upper semi-continuous (and therefore continuous) over C∞([0, 1]) and
over PMM([0, 1]) but not over Cr([0, 1]) for any finite r.

Remark 4.8. — In our choice of topology over PMM(I), two maps can be close only
if they have the same number of pieces. This is not always the chosen definition but
it is necessary to get the upper semi-continuity.
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It is easy to find a counter-example to the upper semi-continuity in the C0(I)
topology even among piecewise monotone maps:

Exercise 4.9. — Let ft(x) = (1 − t)(1 − 2t|x|/(1 − t)) if |x| < 1 − t and ft(x) = 0
otherwise. Show that htop(ft) = log(2t) pour t < 1 and htop(f1) = 0.

Can you find such an example among polynomials?

The basic phenomenon here is that a periodic point becomes a cycle of intervals
containing a horseshoe. This in fact the only obstruction – see [2, Prop. 4.5.3]. We
refer to [67, Th. 9.1] or [2, Cor. 4.5.5] for two rather different proofs: the original
one, due to Milnor and Thurston, which involves the ”kneading determinant” which
is a sort of zeta function, and a combinatorial one, closer to the spirit of this paper.
We indicate below the outline of the proof in the smooth case.

The proof of the above theorem will use the:

Exercise 4.10. — Show that for every ǫ > 0, C(gn) ⊂ B(C(fn), ǫ) for all g close
enough to f ∈ PMM(I).

Exercise 4.11. — Assume that for all α > 0, there exist ǫ0 > 0 and a continuous
function Cα : (0,∞) → (0,∞) such that, for all g in a neighborhood of f , all δ > 0:

(4.12) ∀n ≥ 1 rg(δ, n,Bg(ǫ0, n, x)) ≤ Cα(δ)eαn.

Show that g 7→ htop(g) is then upper semi-continuous at g = f .

Proof: The lower semi-continuity follows from Theorem 8: recall that a horseshoe is
defined by finitely many conditions like (i) fn|[a, b] continuous; (ii) intfn([a, b]) ⊃ [c, d]
and each of these is equivalent to fn|[a, b] continuous and fn(a′) < c and fn(b′) > d
for some a′, b′ ∈ [a, b]. This is obviously an open condition in C0(I). It is also open
in PMM(I) by Exercise 4.10.

The upper semi-continuity of the topological entropy in the C∞ smooth case follows
from Yomdin’s theory which gives, not only that hloc(f) = 0, but the very strong
uniformity stated as the assumption in (4.12). By the above exercise, this concludes
the proof of the proposition.

We refer the reader to the references quoted above for the proof in the piecewise
monotone case. �

Lower semi-continuity also holds for surface diffeomorphisms of class C1+ǫ accord-
ing to a classical result [51] of Katok which shows the existence of horesehoes. This
is false for surface homeomorphisms as can be deduced from examples of Rees. The
natural case of C1 diffeomorphisms is still open. It fails however in higher dimensions,
even in the analytic category.

Exercise 4.13. — Find a family of maps Fλ : [0, 1]2 → [0, 1]2, λ ∈ [0, 1] with
Fλ(t, x) = (λt, ft(x)) such that λ = 1 is a discontinuity point for λ 7→ htop(Fλ).

The following question seems not to have been studied though the characterization
of entropy as an eigenvalue of a transfer operator should allow the application of
techniques like [57].
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Question 2. — Study the modulus of continuity of topological entropy in families of
piecewise monotone maps.

4.3.2. Monotonicity. — The following fact was proved by Sullivan, Milnor, Douady
and Hubbard:

Theorem 10. — Let Qt(x) = 4tx(x − x) be the quadratic family Qt : [0, 1] → [0, 1].
Then t 7→ htop(Qt) is non-decreasing for t ∈ [0, 1].

Remark 4.14. — This sounds very natural. One must be careful however that the
similar statements involving other families of the type t 7→ tQ(x) for a smooth map
Q : [0, 1] → [0, 1] satisfying Q′(x) = 0 iff x = 1/2 for x ∈ [0, 1]. See [11]. See
[76, 38, 68] for further results.

Most of the proofs rely on complex dynamics (e.g., Teichmuller theory or quasicon-
formal maps). Let us describe the strategy of the remarkable ”real”(4) proof found
by Tsujii [103].

Recall how the kneading invariants of a piecewise monotonic map define its sym-
bolic dynamics (Proposition 3.7) and therefore its topological entropy. Observe that
Qt(0) = Qt(1) = 0 and Qt is continuous, hence there is only one non-trivial kneading
invariant, κ(Qt) := ι(Qt(1/2)) and that, with respect to the lexicographic order de-
fined by any of the Qt, the symbolic dynamics as a subset and therefore the topological
entropy as a number are non-decreasing functions of κ(Qt).

Proposition 3.7 implies that the map that associates to such a kneading invariant
the topological entropy of the corresponding unimodal map is nondecreasing. Hence
monotonicity of t 7→ κ(Qt) (for the above order on {−1, 0, 1}N will imply the mono-
tonicity of the entropy. Hence the above theorem is reduced to showing the following
property:

(4.15) if n := min{k ≥ 1 : Qk
t (0) = 0} then,

∂

∂t
Qn

t (0) and
∂

∂x
Qn

t (Qt(0))

Tsujii proves this last property by considering the following Ruelle transfer op-
erator (see [3] for this very important notion):

R(Ψ)(x) =
∑

y∈Q−1(x)

Ψ(y)

(∂Qt(y)/∂y)2

acting on the space E linearly generated by 1/(z −Qk(0)), k ≥ 0 (there are exactly
n such functions because of the assumption on t). A computation shows that

det(IdE −R|E) =
∂

∂t
Qn

t (0)/
∂

∂x
Qn

t (Qt(0))

Now, Tsujii proves thatR|E is a contraction. This proves that φ(z) := det(IdE −zR|E) 6=
0 for all |z| < ρ for some ρ > 1. Clearly φ(0) = 1 and φ(z) is real for all real z.
Hence, φ(1) > 0, concluding Tsujii’s proof.

(4)With the following restriction: as remarked by Tsujii in his paper, the map R below is a local
version of Thurston map on the Teichmuller space - see [63].
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5. The Markov Diagram

The main tool for the detailed analysis of the complexity of interval maps with
nonzero entropy is Hofbauer’s Markov diagram, which reduces much of their study
to that of a countable state Markov shift with very good properties. It is inspired from
a classical construction in the theory of subshifts of finite type and sofic subshifts: the
canonical extension, which builds for any sofic subshift a topological extension which
is a subshift of finite type with the same entropy — see [65].

5.1. Abstract construction. — Let us describe this construction, or rather a
variant introduced in [15] which allows slightly stronger statements (and, more im-
portantly, is necessary for generalizations, see remark 5.3 below).

The Hofbauer construction applies to any subshift. Let Σ+ ⊂ AN be a one-sided
subshift (i.e., a closed, shift-invariant subset of AN, not necessarily of finite type). Let
Σ ⊂ AZ be its natural extension:

Σ := {A ∈ AZ : ∀p ∈ Z ApAp+1 · · · ∈ Σ+}

with the action of the (invertible) shift σ : A 7→ (An+1)n∈Z

Definition 5.1. — A word is a map from a finite integer interval {a, a+1, . . . , b} to
A, up to an integer translation of the indices. The follower set of a word A−n . . . A0

is:

fol(A−n . . . A0) = {B0B1 · · · ∈ Σ+ : ∃B ∈ Σ B−n . . . B0 = A−n . . . A0}.

A minimal word of Σ (or Σ+) is A−n . . . A0 such that:

fol(A−n . . . A0) ( fol(A−n+1 . . . A0).

The minimal form of A−n . . . A0 is

min(A−n . . . A0) := A−k . . . A0

where k ≤ n is maximum such that A−k . . . A0 is minimal.

Definition 5.2. — The Markov diagram D of a subshift Σ is the oriented graph
whose vertices are the minimal words of Σ and whose arrows are:

A−n . . . A0 → B−m . . . B0 ⇐⇒ B−m . . . B0 = min(A−n . . . A0B0).

The corresponding Markov shift is:

Σ̂ := {α ∈ DZ : ∀p ∈ Z αp → αp+1 on D},

with the left shift σ may be called the Hofbauer shift. There is a natural, continuous
projection:

π̂ : α ∈ Σ̂ 7−→ A ∈ Σ

with An the last symbol of the word αn for each n ∈ Z.

Remark 5.3. — The vertices of Hofbauer’s original diagram were simply the fol-
lower sets, as in the classical construction for sofic subshifts [65]. It can also be used
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beyond piecewise monotonic maps [18] but it leads to a less tight relationship of the
dynamics. In particular, periodic points may have several lifts(5).

Exercise 5.4. — Show that a subshift has a finite Markov diagram iff it is a subshift
of finite type. Note: Hofbauer’s Markov diagram is finite if and only if the subshift is
sofic.

Exercise 5.5. — Compute the Markov diagram of the even shift, that is, Σ ⊂ {0, 1}Z

obtained by excluding the words 012n+10, n ≥ 0.

5.2. Eventual Markov property and partial isomorphism. — We are going to
see that the Hofbauer shift Σ̂ is partially isomorphic with Σ, the (invertible) original
subshift.

Definition 5.6. — Let Σ be a subshift on a finite alphabet. A ∈ Σ is eventually
Markov (or just Markov) at time p ∈ Z if there exists N = N(x, p) such that:

∀n ≥ N fol(Ap−n . . . Ap) = fol(Ap−N . . . Ap)

The eventually Markov part ΣM ⊂ Σ is the set of A ∈ Σ which are eventually
Markov at all times p ∈ Z.

Remark 5.7. — ΣM is a topological version of the so-called ”variable length Markov
chains”.

The following was shown by Hofbauer for piecewise monotone maps and the original
Markov diagram (building on work of Y. Takahashi) and then generalized to arbitrary
subshifts [15, 18]:

Theorem 11 (Hofbauer, Buzzi). — The natural projection from the Hofbauer

shift Σ̂ to the subshift Σ defined by:

π̂ : (αp)p∈Z 7−→ (Ap)p∈Z with Ap ∈ P the last symbol of αp

is well-defined and is a Borel isomorphism from Σ̂ to Σ \ Σ+.

Exercise 5.8. — Show that if Σ is the symbolic dynamics defined by an irrational
rotation T with P a partition into two disjoint intervals, then ΣM is empty.

Lemma 5.9. — Let α0 → . . . αn be a finite path on D. Let B−k . . . B0 = α0 and
A = π̂(α) ∈ Σ. Then,

αn = min(B−k . . . B0A1A2 . . . An).

Exercise 5.10. — Prove the lemma.

(5)This creates only a finite number of extra periodic orbits on the interval but can be a serious issue
for generalizations
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Proof of Theorem 11: The following measurable map is a candidate to be a partial
inverse to π̂:

ι : A ∈ ΣM 7−→ α ∈ Σ̂ with αp = lim
n→∞

min(Ap−n . . . Ap)

The above limit is to be understood in the most trivial sense: it is equal to Ap−N . . . Ap

if this is the value of min(Ap−n . . . Ap) for all large n (i.e., use the discrete topology
on the countable set of finite words). A ∈ ΣM is equivalent to the existence of this
”limit” for all p ∈ Z.

Step 1: π̂ : Σ̂ → ΣM is well-defined

Let α ∈ Σ̂. Let A := π̂(α) ∈ AZ. We first show that for each p ∈ Z and n ≥ 0,
Ap . . . Ap+n is a word of Σ+(T, P ). But the lemma applied to αp → αp+1 . . . implies
that it is a suffix of such a word, which gives the property so A ∈ Σ.

Let us check that A ∈ ΣM . For any n ≥ 0, α−n = Dn
−k(n) . . .D

n
0 with Dn

0 = A−n.

Let m := k(0). By the Lemma applied to α−n → · · · → α0, we have:

(5.11) min(Dn
−k(n) . . . D

n
−1A−n . . . A0) = D0

−m . . .D0
0

But this implies that

∀n ≥ m min(A−n . . . A0) = D0
−m . . . D0

0

so that A is Markov at time 0. The same applies to any time, hence A ∈ ΣM .

Step 2: ι(ΣM ) ⊂ Σ̂

Let A ∈ ΣM and α := ι(A) ∈ DZ. Let p ∈ Z. We have, for n large enough,

αp = min(Ap−n . . . Ap) and αp+1 = min(Ap+1−n . . . Ap+1)

Hence αp = Ap−ℓ . . . Ap = min(Ap−ℓ−1Ap−ℓ . . . Ap), so:

σ([Ap−ℓ−1]) ⊃ [Ap−ℓ . . . Ap]

which implies:
σ([Ap−ℓ−1]) ⊃ [Ap−ℓ . . . Ap+1]

giving that min(Ap−ℓ−1 . . . Ap+1) = min(Ap−ℓ . . . Ap+1). By induction:

αp+1 = min(Ap−n . . . Ap+1) = min(Ap−ℓ . . . Ap+1)

We have shown:

αp = Ap−ℓ . . . Ap and αp+1 = min(Ap−ℓ . . . Ap+1)

and this is the definition of αp → αp+1. Hence ι(ΣM ) ⊂ Σ̂.

Step 3: π̂ : Σ̂ → ΣM is a bijection

By the previous steps, ι ◦ π̂(α) is well-defined for α ∈ Σ̂. Eq. (5.11) implies that

α0 = D0
−m . . .D0

0 = A−m . . . A0 = min(A−n . . . A0) ∀n ≥ m.

Hence, ι ◦ π̂ : Σ̂ → Σ̂ is the identity.
The previous steps also show that π̂ ◦ ι is well-defined over ΣM and it is obviously

the identity there. This concludes the proof of the theorem. �
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Remark 5.12. — G. Keller introduced another point of view in [54] by observing
that the one-sided Markov shift defined by the Markov diagram contains a (non nec-
essarily invariant) copy of Σ so that one can lift any probability measure of Σ there
and try and make it invariant by pushing it forward. It leads to other type of lifting
theorems. See Remark 6.5 below for a (quick) comparison between the two approaches.

5.3. Markov diagrams for piecewise monotone maps. — Hofbauer discovered
that the Markov diagram of a piecewise monotone map is very special. Recall how
the symbolic dynamics is defined by the finite set of kneading invariants K(T, P )
(see Section 3.2 above).

Theorem 12 (Hofbauer). — Let T : [0, 1] → [0, 1] be a piecewise monotone map
with natural partition P . Let Σ+(T, P ) be its symbolic dynamics.

All the vertices of the Markov diagram are obtained from the kneading invariants:

D = {A0 . . . An : 0 ≤ n < N(A) and A ∈ K(T, P )}

where N(A) := inf{n ≥ 0 : min(A0 . . . An) 6= A0 . . . An} (usually infinite) and the
arrows are exactly:

(i) A0 . . . An → min(A0 . . . An+1);
(ii) A0 . . . AS(A,i+1)−1 → min(AS(A,i) . . . AS(A,i+1)) if S(A, i+ 1) <∞;
(iii) A0 . . . AS(A,i+1) → Q for Q ∈ P (A, i) if S(A, i+ 1) <∞.

where P (A, i) ⊂ P and S : K(T, P ) × N → {1, 2, . . . ,∞} satisfies for each i ≥ 0,
S(A, i + 1) = S(A, i) + S(B, j) or ∞ (in the finite case (B, j) ∈ K(T, P ) × N is
determined by B0 . . . BS(B,j) = AS(A,i) . . . AS(A,i+1)).

Exercise 5.13. — For β > 1, compute the Markov diagram of the β-transformation:
Tβ : [0, 1] → [0, 1] defined by Tβ(x) = βx − [βx] ∈ [0, 1) ([·] is the integer part). Hint:
Introduce {R1 < R2 < . . . } := {r ≥ 1 : ι(1−)n 6= (0, β−1)} and show that, up to
finitely many vertices, it can be represented as a ”linear graph” 0 → 1 → 2 → . . .
with additional ”backwards” arrows that you will specify.

Show that the Markov diagram of Tβ can be finite only if β is algebraic.

Proposition 5.14 (Hofbauer). — Let T : [0, 1] → [0, 1] be unimodal, that is, T
is continuous and there exists c ∈ (0, 1) such that T |[0, c] and T |[c, 1] are continuous
and strictly monotone, normalized by T (0) = T (1) = 0. Assume that c < T (c) < 1
(otherwise the situation is easy to analyze). Let A = ι(c−) be the unique nontrivial
kneading invariant.

The Markov diagram of T has the following structure.
Its vertices are: In := min(A0 . . . An), for n ≥ 0, together with a transient vertex

(c, 1).
Its arrows are:

– (c, 1) → I0, I1;
– In → In+1 for all n ≥ 0;
– IS(n)−1 → IS(Q(n+1)) if Q(n+ 1) <∞

where S : N → N and Q : N → N satisfy S(n+1) = S(n)+S(Q(n+1)) if Q(n) <∞,
Q(n) < n unless it is infinite.
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Remark 5.15. — The simplicity already observed on the level of symbolic dynamics
(which gives rise to the notion of quasi finite type described in section 9) is again
visible in the Markov Diagrams of piecewise monotone maps. They are not finite
(except in very special cases) but they are ”almost so”. This is made precise by the
notion of strongly positive recurrence (see section 7).

Remark 5.16. — F. Hofbauer translated the relatively simple admissibility condition
on the kneading invariants to one on the above Q-function. This results allowed the
construction of quadratic map with finely tuned properties (see, e.g., [49]).

6. Non-Markov sequences, Shadowing and Weak Rank One

We have showed that any invertible subshift Σ contains a Markov part ΣM which
is the continuous, Borel isomorphic image of the Markov shift defined by the Markov
diagram of Σ. To use this, one needs to control the complement Σ \ ΣM . For the
symbolic dynamics of piecewise monotone maps (and many other kind of subshifts,
see Section 9) we use the following notion.

6.1. Non-Markov Sequences. —

Definition 6.1. — Let Σ+ ⊂ AN be a subshift over a finite alphabet and Σ its natural
extension. Let S ⊂ Σ+. A ∈ Σ is shadowed by S if there exist arbitrarily large
integers n such that A−n . . . A0 is the beginning of a sequence in S. A measure µ on
Σ is shadowed if µ-a.e. sequence is.

Theorem 13 (after Hofbauer). — If (T, P ) is a piecewise monotone map, then
the non-Markov part of its invertible symbolic dynamics Σ(T, P ) carries only zero
entropy measure and therefore the partial isomorphism of Theorem 11 is an entropy-
conjugacy.

More precisely, except for finitely many periodic sequences, a sequence of Σ(T, P )
is shadowed at all times by K(T, P ) iff it is non-Markov at all times.

Moreover, π̂ is a period-preserving bijection between the periodic orbits of Σ̂ and
their image in Σ+(T, P ) except for finitely many periodic orbits.

Proof: We check that all invariant and ergodic probability measures µ with µ(ΣM ) =
0 are shadowed byK(T, P ), the kneading set. This extends immediately to nonergodic
measures, using the ergodic decomposition and yields the result as K(T, P ) is finite
(so that htop(σ,K(T, P )) = 0. We shall finally prove the converse.

Step 1: Almost every A Markov at 0 belongs to ΣM

Let Xp is the set of A ∈ Σ which are Markov at time p. We claim that Xp ⊂ Xp+1.
Indeed, for A ∈ Σ, [. . . ]+ denoting the symbolic cylinders in Σ+ (i.e., the set of
sequences in Σ+ starting with a given word),

(6.2) σn+1[Ap−n−1 . . . A0]+ = σn[Ap−n . . . A0]+ ⇐⇒ σ(Ap−n−1) ⊃ [Ap−n . . . A0]+
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as σ|[A−n . . . A0] is one-to-one. But

σ(Ap−n−1) ⊃ [Ap−n . . . Ap]+

=⇒ σ(Ap+1−(n+1)−1) ⊃ [A(p+1)−(n+1) . . . Ap]+ ⊃ [A(p+1)−(n+1) . . . Ap+1]+

proving the claim. On the other hand, σ−1(Xp) = Xp+1 so Xp and Xp+1 both have
the same measure for any invariant probability measure.

Thus Xp ⊂ Xp+1 implies Xp = Xp+1 modulo a set negligible wrt all invariant
probability measures so that:

X0 =
⋂

p∈Z

Xp = ΣM

modulo a negligible set wrt any invariant probability measure as claimed.

Step 2: Geometric consequence of non-Markovianness

By eq. (6.2), A is non-Markov at time 0 implies on the interval that, for arbitrarily
large integers n:

T 〈A−n−1〉 6⊃ 〈A−n . . . A0〉

The right hand side is an interval so it is connected implying that

(∂T 〈A−n−1〉) ∩ 〈A−n . . . A0〉 6= ∅

This implies that A−n−1 . . . A0 is the beginning of the itinerary of one endpoint of
〈A−n−1〉, i.e., a sequence in K(T, P ). Thus A non-Markov at time 0 implies that A
is shadowed at time 0 by K(T, P ).

Step 3: Shadowed sequences are non-Markov

We prove the converse implication (up to finitely many periodic sequences).
Let A ∈ Σ(T, P ) be a sequence which is shadowed at time 0: there are infinitely

many integers n→ ∞ such that (*) A−n . . . A0 is the beginning of K ∈ K(T, P ) (we
may assume K to be fixed as K(T, P ) is finite). Assume also that A is Markov at
time 0: on the interval we have: TA−n−1 ⊃ 〈A−n . . . A0〉 for all large n (note that
this holds whether or not P is generating).
K is the itinerary of, say, the left endpoint of (c, c′) ∈ P . Assume for simplicity

that T |(c, c′) is increasing.
Take a large integer n with both properties. Let (d, e) := 〈A−n . . . A0〉. By the the

assumptions, TA−n−1 = T (c, c′) ⊃ (d, e) and Tc ∈ [d, e], so that c is the left endpoint
of 〈A−n−1 . . . A0〉.

Consider n′ > n also satisfying the first property. Let p = n′ − n. T p maps
〈A−n′ . . . A0〉 to 〈A−n . . . A0〉 as A is Markov at time 0. Hence the endpoint c, which
is the left endpoint of both previous intervals, is p-periodic. More precisely, for any
ǫ > 0, there exists δ > 0 such that 0 < t < δ =⇒ fp(c+ t) ∈ (c, c+ ǫ). This implies
that (Ak)−n′≤k≤0 is p-periodic.

Taking A non-Markov for all times and n′ → ∞, we get that A is a periodic
sequence from K(T, P ), finishing the proof of the theorem. �



A MINICOURSE ON ENTROPY THEORY ON THE INTERVAL 25

Remark 6.3. — The non-Markov part of Σ(T, P ) is non-trivial for many piecewise
monotone maps. For instance, for an infinitely renormalizable map, it carries the
corresponding odometer. Even for β-transformation, it can carries non-periodic mea-
sures, for instance ones isomorphic to rotations (see [26]). Note that this does not

says that one cannot find a Borel isomorphism between Σ(T, P ) and Σ̂, just that it is
not given by the natural map π̂.

Exercise 6.4. — Find a piecewise monotone map (T, P ) with an invariant proba-
bility measures µ on the one-sided Markov shift defined by D which is not sent by
π̂ to an isomorphic one on Σ+(T, P ). Hint: Use for instance that, for piecewise in-
vertible maps T with invariant probability measure µ, the measure-theoretic Jacobian
dµ ◦ T/dµ is an invariant of measured conjugacy.

Remark 6.5. — G. Keller has developped another approach to Hofbauer’s construc-
tion by trying to keep the smoothness of the interval map in the picture. In par-
ticular he showed that, for ”nice” interval maps, like unimodal maps with negative
Schwartzian derivative and no attracting periodic orbits, the measures that cannot be
lifted to the Markov shift have been characterized by G. Keller and H. Bruin [54, 12]
as those having a zero or negative Lyapunov exponent. Assumptions on Lyapunov
exponents are more general (recall Ruelle’s inequality) but are also seem much harder
to generalize.

6.2. Entropy Bound. —

Proposition 6.6. — If µ is an invariant probability measure on Σ shadowed by S ⊂
Σ+, then

h(σ, µ) ≤ htop(S, σ)

Recall that htop(S, σ) = lim supn→∞
1
n log #{A0 . . . An : A ∈ S}.

Proof: Observe that the canonical partition of P Z (which we’ll also denote by P ) is
generating so that, according to Corollary 2.1, it is enough to find, for some λ > 0,
for arbitrarily large n ≥ 1, a small collection of P, n-cylinders with a union of measure
≥ λ.

Recall that S ⊂ Σ+ and let Sn := {A0 . . . An−1 : A ∈ S}. Let ǫ > 0. By definition
of the topological entropy, there exists N0 <∞ such that for all n ≥ N0,

#Sn ≤ en(htop(σ,S)+ǫ).

Increase N0 if necessary so that the binominal coefficients satisfy:
(

2n/N0

n

)

≤ eǫn

According to the main assumption the following measurable function over Σ is
finite a.e.:

n(A) := min{n ≥ N0 : A−n+1 . . . A0 ∈ Sn}

Thus there exists M0 <∞ such that

µ({x ∈ Σ : n(x) > M0}) < ǫ/ log#P
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By the ergodic theorem, there exists N1 < ∞ and X1 such that µ(X1) > λ and for
all n ≥ N1, for all x ∈ X1:

#{0 ≤ k < n : n(σkx) ≤M0} <
ǫ

log #P
n

For n ≥ max ((log #P/ǫ)M0 +N1) we cover X1 with a small number of P, n-
cylinders.

For x ∈ X1, we are going to define c(x) = (a, b) where a, b are integer sequences
satisfying:

0 < ar < br < ar−1 < br1
< · · · < a1 < b1 ≤ a0 = n

and:

(i) for 1 ≤ s ≤ r, ℓs := bs − as + 1 ≥ N0;
(ii) Aas

. . . Abs
∈ Sℓs

;

(iii)
∑r

s=1 |bs − as + 1| >
(

1 − 2 ǫ
log #P

)

n

We claim that this will prove:

r(P, n,X1, λ) ≤

(

2n/N0

n

)

(#P )n(ǫ/ log #P )+M0 expn(htop(S)+ǫ) ≤ expn(htop(S)+4ǫ)

and therefore the entropy bound as ǫ > 0 is arbitrary. We conclude the proof of the
proposition by proving this claim. Define c(x) = (a, b) over X1 by setting: a0 = n
and then, inductively:

– bs+1 := max{b < as : n(σbx) ≤M0};
– as+1 := bs+1 − n(σbs+1x)

and r := max{s ≥ 0 : as ≥ 0}. Observe that c takes at most
(

2n/N0

n

)

distinct values.

x|
⋃r

s=1[as, bs] can be described by specifying for each 1 ≤ s ≤ r, x|[as, bs] ∈ Sℓs
:

there are at most expn(htop(σ, S) + ǫ) choices.
Let I∗ := [0, ar[∪

⋃r
s=1]bs, as−1[. For k ∈ I∗, either k ∈]ar+1, br+1[ (which has

length at most M0) or n(T kx) > M0, therefore this subset of [0, n[ has cardinality
at most M0 + (ǫ/ log #P )n by the choice of M0. Thus there are at most (#P )#I∗ ≤
(#P )M0+(ǫ/ log #P )n distinct choices for x|I∗.

Multiplying these numbers of choices we get the claim. �

6.3. Weak Rank One. — The non-Markov part of the symbolic dynamics of a
piecewise monotone map is shadowed by a finite set. As the entropy of a finite set
is zero, Proposition 6.6 implies that the entropy of any invariant probability measure
carried by this part is zero. Can one go further?

A motivation would be to find other type of arguments to control Σ\ΣM , especially
in higher dimensions where the kneading set is replaced by a set with positive entropy.

Here, finiteness is much stronger than having zero entropy so it is natural to ask
whether one can say more about these measures:

What are the measures shadowed by finitely many sequences?
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The good news is that this property can be formulated as a natural generalization
of the classical, ergodic theory notion of rank one [58]: an automorphism T of a
probability space (X,P ) has rank one if, for every finite measurable partition P , for
every ǫ > 0 and N <∞, there exists a finite word ω with length at least N such that;
for almost every x ∈ X , for all n ≥ n0(x, ǫ,N), one can write the n, P -itinerary of x
as G0ω1G1 . . .Gr−1ωrGr where:

– the sum of the lengths of the gaps Gs is at most ǫn;
– |ωs| = |ω| and

∑r
s=1 #{0 ≤ i < |ω| : ωs

i 6= ωi} ≤ ǫn.

Indeed, the propery of weak rank one is obtained by loosening the ”approximate
copies of a long word” to ”approximate copies of long prefixes of a word”:

Definition 6.7. — An automorphism T of a probability space (X,P ) has weak
rank one [20] if, for every finite measurable partition P , for every ǫ > 0 and N <∞,
there exists a finite word ω such that; for almost every x ∈ X, for all n ≥ n0(x, ǫ,N),
one can write the n, P -itinerary of x as G0ω1G1 . . . Gr−1ωrGr where:

– the sum of the lengths of the gaps Gs is at most ǫn;
– N ≤ |ωs| ≤ |ω| and

∑r
s=1 #{0 ≤ i < |ωs| : ωs

i 6= ωi} ≤ ǫn.

Proposition 6.8. — An automorphism T of a probability space (X,µ) is weak rank
one iff, there exists a finite, measurable, generating partition P with respect to which
µ is shadowed by a single sequence [20].

Weak rank one is weaker than the usual generalizations of rank one:

Proposition 6.9. — All systems which have locally finite rank [36] are weak rank
one and the inclusion is strict. However there exists zero entropy loosely Bernoulli
systems which are not weak rank one. In the d̄-metric (see [87, 100]), the generic
system is not weak rank one (i.e., the weak rank one systems are contained in a
countable union of closed subset with empty interiors).

Exercise 6.10. — Recall that system is of rank r < ∞ if it satisfies the definition
of rank one with the modification that instead of a single word ω one has r, possibly
distinct, words ω(1), . . . , ω(r). Show that such systems are weak rank one.

The bad news is:

Question 3. — Find a bona fide ergodic property holding for all systems with weak
rank one, but not all some zero entropy systems.

6.4. Shadowing Sequences. — A shadowing sequence is a sequence which
shadows an invariant probability measure. Not every sequence is shadowing:

Exercise 6.11. — Show that any word appearing in a shadowing sequence must ap-
pear infinitely many times.

Question 4. — What can one say about the repetition times of x (i.e., n(ℓ) ≥ 1
minimum such that xn(ℓ) . . . xn(ℓ)+ℓ−1 = x0 . . . xℓ−1)? And about the return times of
µ? Is there a relationship?
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In fact, shadowing sequences are exceptional from a measure-theoretic point of
view:

Exercise 6.12. — Show that the set of sequences in {0, 1}N which shadow at least
one measure has zero measure wrt the (1

2 ,
1
2 )-Bernoulli measure. Hint: Use the ergodic

theorem to restrict the measures that could be shadowed.

Does the same occur in ”concrete” situations:

Question 5. — Is the set of β > 1 such that the itinerary of 1− is a shadowing se-
quence a set of zero Lebesgue measure? (It is known [26] that this set is uncountable).

One the other hand, it is common from the topological point of view:

Exercise 6.13. — Show that the set of sequences that shadow some measure is of
second Baire category (contains a dense countable intersection of open subsets). Hint:
Consider, for each n ≥ 1, Gn := {x ∈ {0, 1}N : x = x0 . . . xn+m−1(x0 . . . xn−1)

p . . .
for some p ≥ (n+m)2}. See [20].

Some shadowing sequences x satisfy: µx := limn→∞
1
n

∑n−1
k=0 δσkx exists in the

weak star topology.

Exercise 6.14. — Show that when the limit µx exists, x can shadow only that mea-
sure. Build two shadowing sequences one such that the measure exists and one such
that it does not.

Say that two measures are co-shadowed if there exists a sequence which shadows
both of them.

Exercise 6.15. — Show that two measures that are shadowed by two possible dis-
tinct sequences are co-shadowed iff they have the same support. Generalize this to a
countable collection of measures [20].

Question 6. — Does there exists a sequence which shadows uncountable many dis-
tinct measures? Does there exists a ”universal shadowing sequence”, i.e., such that
any shadowable measure with full support is shadowed by it? Do these sequences form
a set of second Baire category?

7. SPR Markov shifts

The heart of the entropy theory of interval maps presented here is the representa-
tion of their dynamics by combinatorial systems. These are countable state Markov
shifts but of a special kind, called Strongly (or Stably) Positive Recurrent Markov
shifts. They are the closest to the finite state Markov shifts: most of the classical
results generalize to them as we are going to explain.

For countable Markov shift we refer to [59, 96, 97, 91] and especially to the
treatise [42] which considers the SPR ones in more details.

Recall the following definitions. A (countable state) Markov shift is Σ = Σ(G)
where G is a countable oriented graph and Σ := {x ∈ GZ : ∀p ∈ Z xp → xp+1 on G}
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endowed with the left-shift σ. Note that Σ(G) is the vertex shift of G - see [65] for
the edge shift). One can define an obvious one-sided Markov shift Σ+(G) where the
left-shift is again denoted by σ.
G or Σ are called irreducible if there is a path from any vertex to any other vertex

in G (i.e., G is strongly connected) (or, equivalently, if Σ is topologically transitive).
The spectral decomposition of a Markov shift is the at most countable collection

of irreducible Markov shifts defined by the maximum subgraphs of its defining graph
which are strongly connected components. Any ergodic invariant probability measure
is carried on a single piece of the spectral decomposition.

The period of an irreducible G is the highest common factor of all the lengths of
its loops.

The outdegree of a vertex v ∈ G is #{w ∈ G : v → w}. The outdegree of G is
the supremum of the outdegrees of all vertices.

7.1. Definition. — Let Σ be an irreducible Markov shift defined by a countable
oriented graph G. The basic classification of such objects from our point of view
is due to Vere-Jones [104, 105, 106], which remarked that one could extend the
probabilistic classification of stochastic matrices (related to the underlying Markov
chain) to a large class of positive matrices.

Theorem 14 (Vere-Jones). — Fix an arbitrary vertex v of G. Let fn be the num-
ber of first returns after time n to v. Let ℓn be the number of returns after time n to
v. Let R be the radius of convergence of ℓ(z) :=

∑

n≥1 ℓnz
n:

R = exp−h(Σ)

Assume that R is finite. Then
∑

n≥1 fnR
−n ≤ 1.

(1)
∑

n≥1 fnR
−n < 1: G is transient and A admits no left or right positive eigenvec-

tors;
(2)

∑

n≥1 fnR
−n = 1 and

∑

n≥1 nfnR
−n = ∞: G is null recurrent and A has both

a left and a right eigenvectors, say ℓ and r, with
∑

i ℓi · vi = ∞;
(3)

∑

n≥1 fnR
−n = 1 and

∑

n≥1 nfnR
−n < ∞: G is positive recurrent and A has

both a left and a right eigenvectors, say ℓ and r, with
∑

i ℓi · vi <∞;

Moreover, one can distinguish among the last type, those graphs which are SPR defined
by the condition:

lim sup
n→∞

|fn|
1/n < R.

In the above cases, the iterates of A have the following behavior as n → ∞ for any
(and then all) i, j:

(1)
∑

n≥0A
n
ijR

−n <∞;

(2)
∑

n≥0A
n
ijR

−n = ∞ and An
ijR

−n → 0;

(3) An
ijR

−n → d · ℓirj 6= 0 where d is the period of G and r and ℓ are positive

eigenvectors:
∑

i ℓiAij = Rℓj and
∑

j Aijrj = Rri normalized by
∑

k ℓk · fk = 1.
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In the SPR case, we additionally have:

lim sup
n→infty

1

n
log

(

An
ijR

−n − d · ℓirj
)

< 0

B.M. Gurevič [40] discovered the link with dynamics and that there was in fact a
probability measure hidden in these positive matrices.

Theorem 15 (Gurevič). — In the Vere-Jones theorem, R = exp−h(G), where
h(G) is the supremum of the measured entropies of Σ. This supremum is achieved by
at most one measure (called the maximum measure).
G is positive recurrent if and only if there exists a maximum measure. In this case,

this measure µM is Markov and satisfies:

µM ([v1 . . . vn]) = R−nℓv1
rvn

or 0 if [v1 . . . vn] = ∅.

Exercise 7.1. — Show that the above data defines a probability measure µM which
is invariant.

Proposition 7.2. — Such measures as µM are finite extension of a Bernoulli mea-
sure [50]. The period of the extension is called the period of the measure.

Exercise 7.3. — Show that a positive recurrent graph is SPR iff the maximum mea-
sure is exponentially filling: for any non-empty open U ⊂ Σ:

lim sup
n→∞

1

n
logµ





⋃

0≤k<n

σ−kU



 < 0

The SPR graphs have other characterizations:

Proposition 7.4 (Gurevič). — Let G be irreducible with finite entropy. G is SPR
iff any subgraph G′ obtained by removing one arrow satisfies: h(G′) < h(G).

Exercise 7.5. — Show that if G is irreducible with finite entropy, then G is SPR iff
any subgraph G′ obtained by removing one arrow is still positive recurrent.

From our point of view the following characterization is fundamental, showing that
graphs that are ”simple at infinity” are good:

Theorem 16 (Gurevič-Zargaryan). — Let G be an irreducible Markov shift with
finite entropy. Define its entropy at infinity by:

h∞(G) := inf
F⊂⊂G ǫ>0

sup{h(σ, µ) : µ ∈ Prob(Σ) s.t. µ({x ∈ Σ : x0 ∈ F}) < ǫ}

where F ranges over the finite subsets of vertices of G. G is SPR iff h∞(G) < h(G).
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7.2. Artin-Masur Zeta Function. —

Definition 7.6. — If F is a subset of the vertices of the graph G, the Artin-Masur
zeta function at F is the formal power series:

ζG
F (z) := exp

∑

n≥1

zn

n
#{x ∈ Σ(G) : σnx = x and {x0, x1, . . . } ∩ F 6= ∅}

(provided each cardinality above is finite).
For finite F ⊂ G, ζG

F (z) is a semi-local zeta function. For F reduced to a single
vertex a, ζG

a (z) := ζG
{a}(z) is called the local zeta function.

The full zeta function ζG
G (z) may fail to be defined or to have the expected prop-

erties (see [42, Thm. 9.4 and following]).

Theorem 17 (Gurevich-Savchenko, Buzzi). — Let G be an irreducible count-
able oriented graph with h(G) < ∞. Let d be its period, i.e., the largest common
divisor of the length of all loops in G.

(1) Each semi-local zeta function of G defines a holomorphic function over |z| <
exp−h(G).

(2) These functions have a meromorphic extension to |z| < exp−h∞(G).[25]
(3) G is SPR iff any of its local zeta functions ζG

a has a meromorphic extension to
|z| < Ra for Ra > e−h(G) without zeroes and whose only singularities are simple
poles at z = e−h(G)e2iπk/d, for k = 0, . . . , d− 1.[42]

7.3. Classification. — The following result shows that such systems are in some
sense very simple (or completely chaotic depending on your point of view).

Theorem 18 (Boyle-Buzzi-Gomez). — To each irreducible Markov shift Σ asso-
ciate its entropy h(G) and the list of the periods of its maximum measures (repeated
according to multiplicities).

This data is a complete invariant for entropy-conjugacy among SPR Markov shifts.

Remark 7.7. — In fact a stronger notion of conjugacy is established in [9]: one finds
in each graph a vertex and a Borel conjugacy between the sets of all sequences that
visit infinitely often in the past and in the future these vertices, except for those that
remain in two finite subgraphs and a (necessarily countable) set of periodic sequences.

Remark 7.8. — For subshifts of finite type this is a classical result of Adler and
Marcus [1].

The idea of the proof of the above is quite simple. Let us sketch it. Consider
two SPR graphs. One can assume these graphs to be loop graphs with many first
return loops of each large length after discarding some subshifts of finite type (which
have strictly smaller entropy by the SPR property). Then one modifies these graphs
by removing loops of increasing length from one or the other until they both have
the same number of loops of all lengths. These removals are operated on first return
loops. A first return loop ℓ is removed and first return loops Lℓn, n ≥ 1, for any
first return loop L 6= ℓ are added back so that no other sequence has been removed
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from the shift. The Markov shift obtained in this limit is Borel isomorphic, except
for the set of removed periodic sequences, to the initial ones if, for instance, one has
been able to remove only first return loops that were already present in these initial
graphs. The SPR assumption ensures that the number of loops to be removed is so
small that the previous condition can easily be fulfilled (see Theorem 17).

8. Application to Piecewise Monotone Maps

Let (T, P ) be a piecewise monotone map with its symbolic dynamics Σ+(T, P ) and
the natural extension of it, Σ(T, P ).

By Theorem 13, Σ(T, P ), after discarding a subset carrying only zero entropy
measures and finitely many periodic sequences, is Borel isomorphic to the Markov
shift Σ̂ defined by its Markov diagram D.

We claim that h∞(D) = 0 so that, for every H > 0, the spectral decomposition of

Σ̂ contains only finitely many irreducible Markov shifts with entropy ≥ H and that
each of these is SPR.

This follows from the description of Theorem 12. D has finite outdegree (bounded
by #P ) and, after removing the finite subset

DN := {min(K0 . . .Kn) : K ∈ K(T, P ) and n ≤ N}

the remaining graph D \ DN has outdegree at most 2 and the following property: if
α0 → . . . αn is a path on this graph with α0 and αn with outdegree > 1 in D \ DN ,
then n ≥ N .

Exercise 8.1. — Check that the above property holds and that it implies that
h∞(D) = 0.

8.1. Measures of Maximum or Large Entropy. — We prove in this section
the following:

Theorem 19 (Hofbauer, Boyle-Buzzi-Gomez). — A piecewise monotone map
with nonzero entropy has a finite number of ergodic measure, each of which is up to
a period, a Bernoulli probability measure [43, 50].

More precisely, the topological entropy together with the list with repetitions of the
periods of the maximum measure is a complete invariant for the entropy-conjugacy of
the natural extensions of these maps [9].

Remark 8.2. — This is false if one removes the words ”natural extensions of”.

Question 7. — Is a piecewise monotone map with nonzero topological entropy al-
ways entropy-conjugate to some countable state Markov shift?

The first part of the theorem follows from Gurevič result that a Markov shift has
exactly one maximum measure (ergodic, invariant probability measure with maximum
entropy) on each piece of the spectral decomposition which is positive recurrent.
Moreover these measures are Markov and this implies by [50] that they are Bernoulli
up to a period.
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Exercise 8.3. — Show that there is a bijection which is entropy and ergodicity pre-
serving between a dynamical system and its natural extension.

Hence the above implies that piecewise monotone maps with nonzero topological
entropy have a finite number of maximum measures.

By exploiting the very special structure of the Markov diagram of a piecewise
monotone map one can obtain quantitative bounds.

Theorem 20 (Hofbauer,Buzzi). — A unimodal map with positive topological en-
tropy has exactly one maximum measure [44].

A piecewise monotone map T : [0, 1] → [0, 1] with nonzero entropy and N pieces
under the normalization T ({0, 1}) ⊂ {0, 1} has at most 4(N − 1) maximum measures
(only 3(N − 1) if it is continuous) [14].

However the following very natural conjecture remains open:

Question 8. — A piecewise monotone map with nonzero entropy and N pieces has
at most N − 1 maximum measures.

Remark 8.4. — Another approach to this problem is to use the following results: (1)
for a piecewise monotone map with slope constant in absolute value, the maximum
measures are exactly the ergodic absolutely continuous invariant probability measures
(this is not totally obvious because of the discontinuity [33]); (2) any piecewise mono-
tone map with nonzero entropy admits as a topological factor a piecewise monotone
map of the previous type [69]; (3) the number of distinct ergodic absolutely continuous
invariant probability measure of, say, an interval map with piecewise constant slope
and N pieces is bounded by N − 1. The problem is to understand what measures are
collapsed under the factor map and to relate the number of maximum measures to the
successive renormalizations of the map.

8.2. Periodic points. — The above estimate h∞(D) = 0 yields, using Theorem
17:

Theorem 21 (Milnor-Thurston, Hofbauer). — Let (T, P ) be a piecewise mono-
tone map with non zero entropy. The Artin-Masur zeta function:

ζT (z) := exp
∑

n≥1

zn

n
#{A ∈ Σ+(T, P ) : σnA = A}

is holomorphic on |z| < e−htop(T ). It has a meromorphic extension to |z| < 1 [69]
(see [89] for a later, simpler proof).

The periodic orbits are equidistributed according to the maximum measures:

1

#{A ∈ Σ+(T, P ) : T nA = A}

∑

A∈Σ+(T,P ) s.t. A=T nA

δA −→n→∞
n∈pN

1
∑r

i=1 pi

r
∑

i=1

piµi

where p := lcm(p1, . . . , pr), µ1, . . . , µr are the maximum measures on Σ+(T, P ) and
pi is the period of µi.
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9. Further Results

9.1. Generalization to Other Dynamics. — The results presented above are
well-known in the classical hyperbolic setting, e.g., for subshifts of finite type [65].
They in turn can be vastly generalized to various non-uniformly expanding systems.

To begin with, one can define a class of subshifts over finite alphabets, the sub-
shifts of quasi-finite type [23], which includes both the subshifts of finite type and
the symbolic dynamics of piecewise monotone maps and satisfy most of the properties
explained in this paper:

Definition 9.1. — A subshift Σ over a finite alphabet is of quasi-finite type if the
minimum words of length n, Mn, satisfy:

lim sup
n→∞

1

n
log #Mn < htop(σ|Σ).

This class also contains new dynamics, e.g., multidimensional β-transformations,
i.e., self-maps of [0, 1]d defined by x 7→ A.x mod Zd where A is an affine transforma-
tion such that ‖AN .v‖ > ‖v‖ for some N and all v ∈ Rd \ {0}. The entropy theory of
arbitrary piecewise affine maps in higher dimension is mostly unknown [62] beyond
similar maps and piecewise affine surface homeomorphisms [24].

One can further extend the approach explained here to entropy-expanding maps,
which are multidimensional smooth maps with critical points such that the entropy
of smooth submanifolds is smaller than their topological entropy. This class includes
arbitrary C∞ interval maps with nonzero entropy [15, 29] and maps like:

(x, y) 7→ (1.9 − x2 + ǫy, 1.8 − y2 + ǫx)

for small |ǫ|. They can be treated either geometrically [19, 22] or, under a ”general
position assumption”, by symbolic techniques with the introduction of puzzles of
quasi-finite type [25] which generalize to combinatorial puzzles (as defined in com-
plex dynamics) the notions above. One obtains in this way, e.g., that they possess
finitely many maximum measures with Bernoulli extensions (up to a period).

9.2. Thermodynamical Formalism. — The thermodynamical formalism in-
troduced in the uniformly hyperbolic setting by Sinai and Ruelle involves the in-
troduction of a weight in the countings defining the entropy. This generalization of
entropy is called ”pressure” (it is in fact the free energy per site of a one-dimensional
crystal formally associated to the dynamical system) [88, 107, 55]. The measures
maximizing the pressure are called the equilibrium measures.

This generalization is very important for several reasons. For instance, if f is a
smooth uniformly expanding map of the circle, the equilibrium measure for the weight
|f ′| is the absolutely continuous invariant measure. Most of the entropy theory can
generalized to this setting either when in one-dimension ([4, 89] and the references
in the book [3]) or when there is enough uniformity in the expansion (see, e.g., [21,
28, 27]) so that the regularity properties of the weight (bounded variation or Holder
continuity) also hold in the symbolic representation.
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9.3. Further Questions. — We have not been able to discuss stability issues, that
is, the (dis)continuity of the map that associates to a piecewise monotone map its set
of maximum measures (see [85]).

We can only refer the reader to the already well-developed dimension theory [83,
48] which in particular relates Hausdorff dimension, entropy and Lyapunov exponents
or the developping symbolic extension theory [6, 7, 34] which has already obtained
deep refinements of the local entropy estimates presented in section 3.
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