Varieties generated by certain models of reversible finite automata
Abstract
Reversible finite automata with halting states (RFA) were first considered by Ambainis and Freivalds to facilitate the research of Kondacs-Watrous quantum finite automata. In this paper we consider some of the algebraic properties of RFA, namely the varieties these automata generate. Consequently, we obtain a characterization of the boolean closure of the classes of languages recognized by these models.
Loading...