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Abstract

Two results by Scḧutzenberger (1965) and by Mc-
Naughton and Papert (1971) lead to a precise description
of the expressive power of first order logic on words inter-
preted as ordered colored structures. In this paper, we study
the expressive power of existential formulas and of Boolean
combinations of existential formulas in a logic enriched by
modular numerical predicates. We first give a combina-
torial description of the corresponding regular languages,
and then give an algebraic characterization in terms of their
syntactic morphisms. It follows that one can effectively de-
cide whether a given regular language is captured by one of
these two fragments of first order logic. The proofs rely on
nontrivial techniques of semigroup theory: stamps, derived
categories and wreath products.

1. Introduction

There is by now an extensive literature on the expres-
sive power of various fragments of first order logic inter-
preted on finite words. There are also known connections
with several areas in mathematics and computer science, in-
cluding finite semigroups, automata, descriptive set theory,
complexity, circuits and communication complexity. Fur-
ther, this research is a necessary step towards the study of
richer structures like infinite words, trees or graphs. This
paper is a contribution to this theory.

Let us briefly describe the framework of our results. We
associate to each nonempty wordu = a0a1 . . . a|u|−1 over

the alphabetA a relational structure

Mu = {(0, 1, . . . , |u| − 1), <, (a)a∈A}

where< is the usual order on the domain anda is a predi-
cate giving the positionsi such thatai = a. For instance,
if u = abbaaba, thena = {0, 3, 4, 6} andb = {1, 2, 5}.
Given a formulaϕ, the language defined byϕ is L(ϕ) =
{u ∈ A+ | Mu satisfiesϕ}. Since languages may contain
the empty word, we make the convention that a languageL
of A∗ is defined byϕ if L(ϕ) = L ∩A+.

McNaughton and Papert [11] showed that a language is
first-order definable (in the signature{<, (a)a∈A}) if and
only if it is star-free. The decidability of this class of regular
languages, denoted byFO[<], follows from a celebrated re-
sult of Schützenberger [20]: a regular language isstar-free
if and only if its syntactic monoid isaperiodic. Thomas [27]
(see also [13]) refined this correspondence between first or-
der logic and star-free languages by showing that the con-
catenation hierarchy of star-free languages is, level by level,
in correspondence with theΣn-hierarchy of first order for-
mulas. However, little is known about the decidability of
these classes. It is not very difficult to decide whether or not
a given regular language belongs toΣ1[<]. The decidabil-
ity of the Boolean closure of this class, denoted byBΣ1[<],
relies on a nontrivial algebraic result of Simon [23]. The
decidability ofΣ2[<] was also proved by algebraic meth-
ods [1, 17], but the decidability of the upper levelsBΣ2[<],
Σ3[<] and beyond is a major open problem.

Several enrichments to the vocabulary< were consid-
ered in the literature. Letk ≥ 0. Recall that ak-arynumer-
ical predicate symbolassociates to eachn ≥ 0 a subset of



{0, . . . , n − 1}k. We view(i1, . . . , ik) ∈ {0, . . . , n − 1}k

as a wordδ0 · · · δn−1 over the alphabet∆ = 2{1,...,k} by
settingδj = {r | ir = j}. Thus each numerical predicate
symbol gives rise to a language in∆∗. We say the numer-
ical predicate symbol isregular if the corresponding lan-
guage is regular. (Note that ifk = 0, {0, . . . , n− 1}k is the
one-element set{∅}.)

Let0 < d andr ∈ Z/dZ. We define two numerical pred-
icate symbols (themodular predicates): The unary symbol
MODd

r assigns ton the set{i < n | i mod d = r}, and the
0-ary symbol Ddr assigns{∅} to n if n mod d = r, and∅
otherwise. The associated languages are(∅d)∗∅r−1{1}∅∗

and (∅d)∗∅r, respectively, so these are regular numerical
predicates. Equivalently, we could introduce a constant
symbolm denoting the last position in a string, in which
case Ddr is equivalent toMODd

r−1m. (This is the notation
that we shall adopt below.)

We denote byFO[< + MOD] the logic obtained by ad-
joining all modular predicates. This signature was consid-
ered implicitly in automata theory and explicitly in a recent
paper byÉsik and Ito [6]. It should not be confused with
first order logic with modular quantifiers.

The logicFO[<+REG] is obtained by adjoining all regu-
lar numerical predicate symbols. This logic was considered
in [2, 10, 12, 25] in connection with circuit complexity.

It is not difficult to see thatFO[< + MOD] = FO[< +
REG]. However, the lower levels of theΣn-hierarchy differ
for the three signatures. The decidability ofΣ1[< + REG]
andBΣ1[< + REG] was established in [10]. In this paper,
we establish the decidability of the fragmentsΣ1[<+MOD]
andBΣ1[<+ MOD], a problem left open in [6]. The situa-
tion is summarized in the table below:

< <+ MOD <+ REG

Σ1

DECIDABLE

[13, 27]
DECIDABLE

New result
DECIDABLE

[8, 10, 21]

BΣ1

DECIDABLE

[23, 27]
DECIDABLE

New result
DECIDABLE

[10]
...

FO
DECIDABLE

[11, 20]
DECIDABLE

[2, 25]
DECIDABLE

[2, 25]

Our paper is organized as follows. Section 2 presents the
necessary background to understand our proofs. Our main
decidability results on fragments of first order logic are
proved in Section 3 forΣ1[< + MOD] and in Section 4 for
BΣ1[< + MOD]. In the last section, we summarize our re-
sults and compare them with other decidability results.

2. The algebraic approach

In this section, we survey the algebraic approach to au-
tomata theory that is needed to state our main results. We

briefly present Eilenberg’s variety theory [4], its extension
to the ordered case [15] and its more recent generalization
to stamps [5, 6, 7, 16, 26], in a form suitable to our purpose.

2.1 Semigroups, monoids and stamps

A semigroupis a set equipped with a binary associative
operation, denoted multiplicatively, or additively when the
semigroup is commutative. Amonoidis a semigroup with a
unit element. An elemente of a semigroup isidempotentif
e2 = e. In a finite semigroup, every elementx has a unique
idempotent power, denoted byxω .

An elements of a semigroupS is said to beregular if
and only if there exists an elements̄ of S, called aninverse
of s such thatss̄s = s ands̄ss̄ = s̄.

Given two monoidsM andN , a monoid morphismis
a mapϕ : M → N satisfyingϕ(1) = 1 andϕ(uv) =
ϕ(u)ϕ(v) for all u, v inM . A monoidM is asubmonoidof
a monoidN if there exists an injective morphism fromM
intoN . A monoidN is aquotientof a monoidM if there
exists a surjective morphism fromM ontoN . A monoidM
dividesa monoidN if M is a quotient of a submonoid ofN .
Theproductof two monoidsM1 andM2 is the setM1×M2

equipped with the product(x1, x2)(y1, y2) = (x1y1, x2y2).

An orderedsemigroup is a semigroup equipped with a
partial order compatible with the operation of the semi-
group. Anorder idealI of an ordered semigroup(S,≤)
is a subset ofS such that ifx ∈ I andy ≤ x theny ∈ I.

Morphisms of ordered semigroups are order-preserving
morphisms of semigroups. The notions ofordered subsemi-
group, quotient and product are readily adapted from their
unordered version and easily extended to the monoid case.

A relational morphismbetween two monoidsM andN
is a relationτ : M → N which satisfies

(1) for everys ∈M , τ(s) 6= ∅,

(2) for everys1, s2 ∈M , τ(s1)τ(s2) ⊆ τ(s1s2),

(3) 1 ∈ τ(1).

A stamp is a morphism from a finitely generated free
monoid onto a finite monoid. A stampϕ : A∗ →M is said
to betrivial if M is the trivial monoid. Anordered stampis
a stamp onto an ordered monoid.

Let ϕ : A∗ → M be a stamp and letZ = ϕ(A). Then
Z is an element of the monoidP(M) of subsets ofM ,
equipped with the productXY = {xy | x ∈ X, y ∈ Y }.
SinceP(M) is finite, Z has an idempotent power. This
justifies the following definition: thestability indexof a
stampϕ : A∗ → M is the least positive integer such
thatϕ(As) = ϕ(A2s). The setϕ(As) is a subsemigroup
of M called thestable semigroup ofϕ and the monoid
ϕ(As) ∪ {1} is called thestable monoid ofϕ.



2.2 Stamps and languages

Stamps and ordered stamps can be seen as language rec-
ognizers in the following way. Letϕ : A∗ → M be a stamp.
A languageL overA∗ is recognized bythe stampϕ if there
exists a subsetF of M such thatL = ϕ−1(F ). If M is
ordered, we requireF to be an order ideal ofM . By exten-
sion, we say that the (ordered) monoidM recognizesL if
there exists a stampϕ : A∗ →M recognizingL.

A language is said to berecognizableif it is recognized
by some finite monoid. Kleene’s theorem asserts that rec-
ognizable and regular languages coincide.

Given a languageL overA∗, we define thesyntactic con-
gruence∼L and thesyntactic preorder≤L as follows:

(1) u ∼L v iff for all x, y ∈ A∗, xvy ∈ L⇔ xuy ∈ L,

(2) u ≤L v iff for all x, y ∈ A∗, xvy ∈ L⇒ xuy ∈ L.

The monoidA∗/∼L is thesyntactic monoidof L and is de-
noted byM(L). It can be ordered with the partial order re-
lation induced by≤L, to form theordered syntactic monoid
of L. The natural morphismηL : A∗ → M(L) is called the
syntactic (ordered) stampof L. The syntactic monoid ofL
is the smallest monoid (with respect to the division order
on monoids) that recognizesL. In particular, a language is
regular if and only if its syntactic monoid is finite.

From now on, all semigroups and monoids will be either
finite or free.

2.3 The variety approach

The general idea of the variety theory is to classify regu-
lar languages through the algebraic properties of their syn-
tactic invariants. For this purpose, Eilenberg originally
considered classes of finite monoids defined by equations,
called varieties. This gave an appealing framework in
which to study classes of recognizable languages closed un-
der Boolean operations, quotients, and inverse morphisms.

However, our classesΣ1[<+MOD] andBΣ1[<+MOD]
are not closed under inverse morphisms and the first one is
not even closed under complement. Still, they are closed un-
der inverses oflength-multiplyingmorphisms and it is pos-
sible to adapt Eilenberg’s variety theory to this weaker set-
ting. The price to pay is the shift from the syntactic monoid
to the syntactic stamp (forBΣ1[<+MOD]) or to the syntac-
tic ordered stamp (forΣ1[< + MOD]). The general frame-
work for this study is the theory ofC-varieties, recently in-
troduced by Straubing [26].

We first recall the classical notion of varieties. Avariety
of finite monoidsis a class of (finite) monoids closed under
division and finite product. Varieties of finite semigroups
and of finiteorderedmonoids are defined analogously.

We now turn to varieties of stamps. Recall that a mor-
phismf : A∗ → B∗ is length-multiplying(lm for short) if

there exists an integerk such that the image of each letter
of A is a word ofBk. A stampϕ : A∗ → M lm-divides
a stampψ : B∗ → N if there is a pair(f, η) (called an
lm-division), wheref : A∗ → B∗ is an lm-morphism,
η : N → M is a partial surjective monoid morphism, and
ϕ = η ◦ ψ ◦ f . If f is the identity onA∗, the pair(f, η)
is simply called a division. Ifϕ andψ are ordered stamps,
that is, ifM andN are ordered monoids,η is required to be
order-preserving.

A∗ B∗

M NIm(ψ ◦ f) ⊆

f

ϕ ψ

η

Figure 1. A division diagram.

The product of two stampsϕ1 : A∗ → M1 and ϕ2 :
A∗ → M2 is the stampϕ with domainA∗ defined by
ϕ(a) = (ϕ1(a), ϕ2(a)). The range ofϕ is a submonoid
of M1 ×M2.

An lm-variety of stampsis a class of stamps contain-
ing the trivial stamps and closed underlm-division and fi-
nite products. The definition of a variety of ordered stamps
is similar. Note that ifV is a variety of finite (ordered)
monoids, then the class of all (ordered) stamps whose range
is in V forms anlm-variety of (ordered) stamps, also de-
noted byV.

We now come to the definition of varieties of languages.
A positive Boolean algebrais a set of languages that is
closed under finite union and finite intersection. If it is also
closed under complement, it is called aBoolean algebra.
Given a languageL and a wordu, we set

u−1L = {v ∈ A∗ | uv ∈ L}

Lu−1 = {v ∈ A∗ | vu ∈ L}

A class of recognizable languagesV assigns to each finite
alphabetA a setV(A∗) of recognizable languages ofA∗.
A positive variety of languagesis a class of recognizable
languagesV such that for any alphabetsA andB,

(1) V(A∗) is a positive Boolean algebra,

(2) if L ∈ V(A∗) anda ∈ A thena−1L,La−1 ∈ V(A∗),

(3) if ϕ : A∗ → B∗ is a morphism,L ∈ V(B∗) implies
ϕ−1(L) ∈ V(A∗).

A variety of languagesis a positive varietyV such that, for
each alphabetA, V(A∗) is closed under complement.

Positivelm-varietiesandlm-varietiesof languages are
defined in the same way by weakening Condition (3) to

(3′) if ϕ : A∗ → B∗ is an lm-morphism,L ∈ V(B∗)
impliesϕ−1(L) ∈ V(A∗).



Given a variety of finite monoidsV, the classV of all lan-
guages recognized by a monoid inV is a variety of lan-
guages. Eilenberg’s theorem [4] asserts that the correspon-
denceV → V is one-to-one and onto.

Similarly, if V is a variety of finite ordered monoids, the
classV of all languages recognized by an ordered monoid
in V is a positive variety of languages. It is proved in [15]
that the correspondenceV → V is one-to-one and onto.

Finally, given anlm-variety of (ordered) stampsV, the
classV of all languages recognized by a stamp inV is a
(positive)lm-variety of languages. It is proved in [26] that
the correspondenceV → V is one-to-one and onto.

2.4 Examples

Example 2.1 The trivial variety of monoidsI consists only
of one monoid, the trivial monoid. The corresponding va-
riety of languagesI is defined, for every alphabetA, by
I(A∗) = {∅, A∗}.

Example 2.2 A semigroupS is locally trivial if eSe = {e}
for each idempotente of S. The class oflocally trivial semi-
groups form a variety of semigroups, denoted byLI.

Example 2.3 Let us denote byJ+ the class of all finite or-
dered monoids(M,≤) such that, for allx ∈ M , x ≤ 1.
One can show thatJ+ is a variety of ordered monoids and
that a language belongs toJ +(A∗) if and only if it is a finite
union of languages of the formA∗a1A

∗ · · · akA
∗, where

k ≥ 0 anda1, . . . , ak are letters ofA. Further, it is shown
in [13] thatJ + is equal to the classΣ1[<].

Example 2.4 A monoidM isJ -trivial if division is a par-
tial order onM , that is, if the conditionsuxv = y and
syt = x imply x = y. The class ofJ -trivial monoids form
a variety, denoted byJ. Simon’s theorem [22] states that
J (A∗) is the Boolean algebra generated by the languages
of the formA∗a1A

∗ · · · akA
∗, wherek ≥ 0 anda1, . . . , ak

are letters ofA. It follows from [27] thatJ is also equal to
the classBΣ1[<].

Example 2.5 A monoidM is aperiodic if there exists an
integern such that, for everyx ∈M , xn = xn+1. The class
of aperiodic monoids form a variety denoted byA. The
results of Schützenberger [20] and McNaughton and Papert
[11] show that the corresponding variety of languages is the
class of star-free languages, or in logical terms, the class
FO[<].

Example 2.6 Let MOD be the class of all stampsϕ :
A∗ → M such thatM is a cyclic group andϕ(a) = ϕ(b)
for all lettersa, b in A. Then MOD is an lm-variety of
stamps. For each alphabetA, a language ofMod(A∗) is

recognized by some stampπn : A∗ → Z/nZ and hence
is a finite union of languages of the form(An)∗Ak with
0 ≤ k < n.

Example 2.7 Given a variety of finite semigroupsV, a
stamp is said to be aquasi-V stampif its stable subsemi-
group belongs toV. It is stated in [26] that the quasi-V
stamps form anlm-variety, denoted byQV. It was proved
in [2] that FO[< + MOD] is the lm-variety of languages
corresponding toQA.

2.5 Identities

Both varieties of finite monoids andlm-varieties of
stamps have equational characterizations [19, 9, 16]. The
same result holds for their ordered counterparts. The formal
definition of identities requires the introduction of profinite
topologies. Here we consider a simpler notion, illustrated
with a few basic examples, which implies the result.

We start by recalling an elementary fact about finite
semigroups. Letx be an element of a finite semigroup
S. SinceS is finite, there exist integersi, p > 0 such that
xi+p = xi. The subsemigroup ofS generated byx is rep-
resented below.

•
x

•
x2

•
x3

. . . . . . . . . . . .

&%
'$

xi+p = xi

•

xi+1

•
xi+2

•

xi+p−1
•

It is easy to see that the semigroup{xi, . . . , xi+p−1} is a
cyclic groupG(x), whose identity isxω , the unique idem-
potent power ofx.

An ω-termon an alphabetA is built from the letters ofA
using the usual concatenation product and two unary oper-
ators:x → xω andx → xω−1. Thus, ifA = {a, b, c}, abc,
aω and((abω−1c)ωab)ω are examples ofω-terms.

Let ϕ : A∗ → M be a stamp. The imageϕ(t) of an
ω-term t is defined recursively as follows. Ift is a letter,
thenϕ(t) is already defined. Ift andt′ areω-terms, then
ϕ(tt′) = ϕ(t)ϕ(t′). If t = uω, thenϕ(t) is the unique
idempotent power ofϕ(u). Finally if t = uω−1, thenϕ(t)
is the inverse ofϕ(u)ωϕ(u) in the cyclic groupG(ϕ(u)).

Let u, v be twoω-terms on a finite alphabetB. A stamp
ϕ : A∗ → M is said tosatisfy thelm-identityu = v if, for
everylm-morphismf : B∗ → A∗, ϕ ◦ f(u) = ϕ ◦ f(v). If
M is ordered, we say thatϕ satisfies thelm-identityu ≤ v
if, for every lm-morphismf : B∗ → A∗, ϕ ◦ f(u) ≤ ϕ ◦
f(v).

A monoid (ordered monoid)M satisfies the identityu =
v (u ≤ v) if for every morphismϕ : B∗ → M , ϕ(u) =
ϕ(v) (ϕ(u) ≤ ϕ(v)).

An lm-variety V satisfies a givenlm-identity if every
stamp inV satisfies this identity. The class of all stamps



satisfying a given set oflm-identities is anlm-variety of
stamps. Similarly the class of all (ordered) monoids sat-
isfying a given set of identities is an variety of (ordered)
monoids.

By extension, we say that a languageL satisfies a
monoid identity (lm-identity) if its syntactic monoid (or-
dered monoid, stamp, ordered stamp) satisfies this identity.

Example 2.8 As anlm-variety of stamps,MOD is defined
by the single identityxω−1y = 1.

The variety of finite aperiodic monoidsA is defined by
the identityxω = xω+1.

The variety of finite ordered monoidsJ+ is defined by
the identityx ≤ 1. The variety of finite monoidsJ is defined
by the two identitiesxω = xω+1 and(xy)ω = (yx)ω .

3. Expressive power of Σ1[< + MOD]

We first give a simple combinatorial description of the
languages definable inΣ1[<+ MOD].

Let us call modular simplea language of the form
(Ad)∗a1(A

d)∗a2(A
d)∗ · · · ak(Ad)∗, whered > 0, k ≥ 0

anda1, a2, . . . , ak ∈ A.

Proposition 3.1 A language is definable inΣ1[<+MOD] if
and only if it is a finite union of modular simple languages.

Proof. The language(Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(Ad)∗

can be defined by theΣ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)

∧(MODd
0 x1∧MODd

1 x2∧· · ·∧MODd
k−1 xk∧MODd

k−1m)

This shows that any finite union of modular simple lan-
guages is definable inΣ1[< + MOD]. To prove the re-
sult in the opposite direction, consider aΣ1-formulaψ =
∃x1 . . . ∃xk ϕ(x1, . . . , xk). We may assume thatϕ is
in disjunctive normal form. Negations of atomic formu-
las can be eliminated by replacing¬(x = y) by (x <
y) ∨ (y < x), ¬(x < y) by (x = y) ∨ (y < x),
¬(MODd

r x) by∨s6=rMODd
s x and¬(ax) by∨b6=a(bx). Fur-

ther, by the Chinese remainder theorem, conjunctions of
atomic formulas of the formMODd0

r0
m∧

∧

1≤i≤n MODdi
ri
xi

can be replaced by disjunctions of formulas of the form
MODd

s0
m ∧

∧

1≤i≤n MODd
si
xi, whered = lcm(di). Al-

together,ψ is equivalent to a disjunction of formulas of
the form∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧
akxk)∧(MODd

r1
x1∧· · ·∧MODd

rk
xk∧MODd

r m) defining the
language (Ad)∗As1a1(A

d)∗As2a2(A
d)∗ · · · ak(Ad)∗As

where, for1 ≤ i ≤ k, s1 + s2 + · · ·+ si ≡ ri (mod d) and
rk + s ≡ r (mod d). Finally, observing that(Ad)∗Ar =
[(Ad)∗(∪a∈Aa)]

r(Ad)∗, it suffices to use the distributivity
of concatenation over union to conclude that the language

L(ψ) is a finite union of modular simple languages.

The concatenation hierarchy of star-free languages men-
tioned in the introduction is defined by alternating two types
of operations: the Boolean operations and the polynomial
closure, that we now define. Given a class of languagesL,
we denote by Pol(L) thepolynomial closureof L, which is
the class of languages that are finite unions of languages
of the formL0a1L1a2 · · · akLk, whereL0, . . . , Lk ∈ L
anda1, . . . , ak are letters. We also denote byBPol(L) the
Boolean closure of Pol(L).

It is shown in [13] thatΣ1[<] is equal to Pol(I) where
I is the trivial variety of languages. The next proposition
shows thatΣ1[<+ MOD] is equal to Pol(Mod).

Proposition 3.2 A language belongs to Pol(Mod) if and
only if it is a finite union of modular simple languages.

Proof. First, Pol(Mod) clearly contains the modular sim-
ple languages. Conversely, any language of Pol(Mod)(A∗)
can be written as a finite union of languages of the form
L = L0a1L1a2 · · ·akLk, wherea1, . . . , ak are letters and
L0, . . . , Lk ∈ Mod(A∗). Thus eachLi is a finite union of
languages of the form(Ani)∗Ak, with 0 ≤ k ≤ ni. Let d
be the least common multiple of theni. Settingri = d/ni,
we observe that(Ani)∗ = ∪0≤k<ri

(Ad)∗Akni . Applying
the distributivity of concatenation over union, we may as-
sume that allLi are of the form(Ad)∗Ak. But (Ad)∗Ak can
be written as∪a1a2···ak∈Ak(Ad)∗a1(A

d)∗a2 · · ·ak(Ad)∗. It
follows that any language of Pol(Mod)(A∗) is a finite
union of modular simple languages.

Our decidability result forΣ1[<+ MOD] relies on an al-
gebraic characterization of the polynomial closure [16, 17].
However, the formulation of this general result requires us
to introduce Mal’cev products of varieties and we prefer
here a simpler formulation.

Proposition 3.3 A language belongs to Pol(Mod) if and
only if its ordered syntactic stampϕ satisfies the following
property: there exists a positive integern such that the or-
dered monoidϕ((An)∗) satisfies the identityx ≤ 1.

Unfortunately, Proposition 3.3 does not provide a decidabil-
ity criterion for Pol(Mod). The next result fixes this prob-
lem.

Theorem 3.4 A language belongs to Pol(Mod) if and only
if the stable ordered monoid of its ordered syntactic stamp
satisfies the identityx ≤ 1.

Proof. By Proposition 3.3, it suffices to show that if
ϕ((An)∗) satisfies the identityx ≤ 1 for somen > 0, then
ϕ((As)∗) satisfies the same identity. But sinceϕ(As) =



ϕ(Ans), ϕ((As)∗) = ϕ((Ans)∗). It follows thatϕ((As)∗)
is a submonoid ofϕ((An)∗) and thus satisfies the identity
x ≤ 1.

Theorem 3.4 gives a decidable condition for testing
membership in Pol(Mod). But since we know that
Pol(Mod) is a positivelm-variety of languages, it is inter-
esting to find the identities defining the corresponding vari-
ety of ordered stamps.

Theorem 3.5 A language belongs to Pol(Mod) if and only
if its ordered syntactic stamp satisfies thelm-identities
xω−1y ≤ 1 andyxω−1 ≤ 1.

Proof. Let L be a regular language,ϕ : A∗ → M its or-
dered syntactic stamp,S its stable monoid ands its stability
index.

First assume thatL belongs to Pol(Mod). Letx andy be
two words inA∗ of equal length and letu = x(s−1)ωxω−1y.
The length ofu is a multiple ofs and thusϕ(u) belongs to
S. By Theorem 3.4,S satisfies the identityx ≤ 1 and hence
ϕ(u) ≤ 1. Butϕ(u) = ϕ(xω−1y) and thusϕ(xω−1y) ≤ 1.
This proves thatϕ satisfies thelm-identitiesxω−1y ≤ 1. A
symmetrical argument works for the second identity.

Conversely, assume thatϕ satisfies thelm-identities
xω−1y ≤ 1 andyxω−1 ≤ 1. We claim thatm ≤ 1 for
all m ∈ S. The relation is trivial ifm = 1. If m 6= 1, then
m ∈ ϕ(As) = T . SinceT 2 = T , it follows from [14, Chap.
1, Proposition 1.12] thatm = uev for someu, e, v ∈ T
with e idempotent. Thus there existx, y, z ∈ As such that
ϕ(y) = u, ϕ(x) = e andϕ(z) = v. Since|x| = |y| = |z|,
one hasϕ(yxω−1) ≤ 1 andϕ(xω−1z) ≤ 1. It follows that
ue ≤ 1 andev ≤ 1, whencem = uev = ueev ≤ 1. This
proves the claim and shows, by Theorem 3.4, thatL belongs
to Pol(Mod).

The results of this section should be compared with the
characterization of the classΣ1[< + REG] which can be
derived from the two papers [8, 21].

4. Expressive power of BΣ1[< + MOD]

In this section we give several characterizations of the
classBΣ1[< + MOD]. Let us start with an immediate con-
sequence of Proposition 3.1:

Proposition 4.1 A language is definable inBΣ1[<+MOD]
if and only if it is a Boolean combination of modular simple
languages.

Our second characterization is based on properties of the
wreath product. The non-specialist reader can skip the tech-
nical definitions given below, admit Theorem 4.2 and jump
directly to Theorem 4.3.

The wreath productN ◦K of two monoidsN andK is
defined on the setNK ×K by the following product:

(f1, k1)(f2, k2) = (f, k1k2), with f(k) = f1(k)f2(kk1)

This definition can be extended to varieties of stamps as fol-
lows. LetV,W be twolm-varieties of stamps. A(V,W)-
product stamp is a stampϕ : A∗ →M such that:

(1) M is a submonoid of a wreath productN ◦K, where
N andK are finite monoids.

(2) Let π : N ◦ K → K be the canonical projection
morphism. Then the stampπ ◦ ϕ : A∗ → π(M) is in
W.

(3) Fora inA, we can writeϕ(a) = (fa, π◦ϕ(a)) where
fa is inNK . We now treatK×A as a finite alphabet
and we define a stampΦ : (K ×A)∗ → Im(Φ) ⊆ N
by Φ(k, a) = fa(k). We requireΦ to be inV.

We defineV ∗ W to be the class of all stamps that divide a
(V,W)-product stamp. The classV∗W is called thewreath
productof the lm-varieties of stampsV andW. It can be
shown [3] thatV ∗ W is an lm-variety of stamps contain-
ing W. The wreath product is an associative operation on
lm-varieties of stamps which extends the classical wreath
product on Eilenberg’s varieties.

The wreath product principle [6, 3] gives a description
of languages recognized by a stamp ofV ∗ W. It is based
on similar results for varieties of monoids [24, 18]. We only
give here a simplified version for the caseW = MOD.
For eachn > 0, letBn = Z/nZ × A andσn : A∗ → B∗

n

be the sequential function defined by setting:

σn(a1 · · ·ak) = (0, a1)(1, a2) · · · (k − 1, ak).

Theorem 4.2 Let V be anlm-variety of stamps and letU
be thelm-variety of languages associated withV ∗ MOD.
Then for every alphabetA, U(A∗) is the smallest positive
Boolean algebra containingMod(A∗) and the languages
of the formσ−1

n (V ), wheren > 0 andV is in V(B∗
n).

Proof. The general Wreath Product Principle on stamps
(WPP for short) [3] makes use of slightly more involved
sequential functions that we shall introduce now. Given a
stampϕ : A∗ → M and an elementm in M , we define the
sequential functionρm : A∗ → (M ×A)∗ by setting:

ρm(a1 · · · an) =

(m, a1)(mϕ(a1), a2) · · · (mϕ(a1 · · · an−1), an)

A sequential functionρ is said to beassociated withϕ if
ρ = ρm for somem inM . The WPP states thatU(A∗) is the
smallest positive Boolean algebra containingMod(A∗) and
the languages of the formρ−1(V ), whereρ is a sequential
function associated with a stampϕ : A∗ → M in MOD
andV is in V

(

(M ×A)∗
)

.



Notice first that, ifϕ : A∗ → M is in MOD then
M is a finite cyclic group, and one can thus assume that
M = Z/nZ for some positive integern. We denote this
group additively. Further, sinceϕ is surjective, there ex-
ists a generatork of Z/nZ such thatϕ(A) = {k}. Thus
ϕ is isomorphic to the stampπn : A∗ → Z/nZ, defined
by πn(A) = {1}. ThereforeU(A∗) is the smallest positive
Boolean algebra containingMod(A∗) and the languages of
the formρ−1(V ), whereρ is a sequential function associ-
ated with some stampπn andV is in V(B∗

n).
Now, letV be a language inV(B∗

n) and letρk : A∗ →
B∗

n be the sequential function associated withπn and an
elementk in Z/nZ. Define thelm-morphismfk : B∗

n →
B∗

n by fk(x, a) = (x + k, a), and letV ′ = f−1
k (V ). Then

V ′ is in V(B∗
n) andρ−1

k (V ) = σ−1
n (V ′). Therefore, it is

sufficient to consider sequential functions of the formσn,
which concludes the proof.

We now arrive at our second characterization of
BΣ1[<+ MOD].

Theorem 4.3 A language is a Boolean combination of
modular simple languages if and only if its syntactic stamp
belongs to the lm-varietyJ ∗ MOD.

Proof. Let U be thelm-variety of languages correspond-
ing to J ∗ MOD. We first show that each language ofU is
a Boolean combination of modular simple languages. By
Proposition 3.2, it suffices to show thatU is contained in
BPol(Mod).

Let A be an alphabet. According to Theorem 4.2,
U(A∗) is the smallest positive Boolean algebra containing
Mod(A∗) and the languages of the formσ−1

n (V ), where
n > 0 andV belongs toJ (B∗

n). SinceMod is contained
in Pol(Mod), it remains to prove that all languages of the
form σ−1

n (V ) are inBPol(Mod). Further, sinceσ−1
n com-

mutes with Boolean operations, we may assume by Simon’s
theorem [22] thatV is equal toB∗

nb1B
∗
n · · · bpB∗

n for some
b1, . . . , bp ∈ Bn. Settingbi = (ri, ai), we observe that

σ−1
n (V ) = (An)∗Ar1a1(A

n)∗As2a2 · · · (A
n)∗AspapA

∗,

with si = ri − (ri−1 + 1) mod n, for i = 2 · · · p. SinceA∗

and all languages of the form(An)∗Aj are inMod(A∗),
σ−1(V ) belongs to Pol(Mod(A∗)).

We now prove that any Boolean combination of modular
simple languages is inU . A simple computation shows that
if

L = (Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(Ad)∗

is a modular simple language ofA∗, then

L = σ−1
d (B∗

db1B
∗
d · · · bkB

∗
d) ∩ (Ad)∗Ak

with bi = (i−1, ai) for 1 ≤ i ≤ k. SinceB∗
db1B

∗
d · · · bkB

∗
d

is in J (B∗
d), L belongs toU(A∗). Finally, sinceU(A∗) is

a Boolean algebra, any Boolean combination of modular
simple languages ofA∗ is in U(A∗).

It follows from Proposition 4.1 and Theorem 4.3 that
deciding whether a given regular language is definable in
BΣ1[< + MOD] amounts to showing that the lm-variety
J ∗ MOD is decidable. The proof requires us to introduce
derived categories [28]. In this paper, categories are viewed
as generalizations of monoids since a one-object category is
in fact a monoid.

Let C,D be two categories. Adivisionof categoriesτ :
C → D is given by a mappingτ : Obj(C) → Obj(D)
and for each pair(u, v) of objects ofC, by a relationτ :
C(u, v) → D(τ(u), τ(v)) such that

(1) τ(x)τ(y) ⊆ τ(xy) for any consecutive arrowsx, y,

(2) τ(x) 6= ∅ for any arrowx,

(3) 1τ(u) ∈ τ(1u),

(4) τ(x) ∩ τ(y) 6= ∅ impliesx = y for any coterminal
arrowsx, y of C.

If V is variety of monoids, we denote bygV the class of
all categories that divide a monoid inV (regarded as a one-
object category). By transitivity of division of categories,
gV is always closed under division.

Letϕ : A∗ →M be a stamp. For each integern, letπn :
A∗ → Z/nZ be the stamp defined byπn(u) = |u| mod n
and letϕn be the relational morphismϕn = πn ◦ ϕ−1.

A∗

M Z/nZ

ϕ πn

ϕn

Let Cn(ϕ) be the category whose objects are elements
of Z/nZ and whose arrows from objecti to objectj are the
triples(i,m, j) wherej − i ∈ ϕn(m). Its composition rule
is given by(i,m1, j)(j,m2, k) = (i,m1m2, k).

The next result is a special instance of the derived cate-
gory theorem due to Tilson [28], but two modifications oc-
cur. First, Tilson’s original definition of the derived cate-
gory was different from ours, but this more complex defini-
tion is not required for relational morphisms onto a group.
Second, Tilson’s proof needs to be adapted to the context of
stamps. Altogether, we obtain the following result:

Theorem 4.4 A stampϕ is in J ∗ MOD if and only if there
exists a positive integern such thatCn(ϕ) is in gJ.

We shall now improve Theorem 4.4 by giving an explicit
bound on the integern. First, it was shown by Knast that
a category belongs togJ if and only if, for each of its sub-
graphs of the form given in Figure 2, one has

(m1m2)
ω(m3m4)

ω = (m1m2)
ωm1m4(m3m4)

ω (1)



i j

(i,m1, j)

(i,m3, j)

(j,m2, i)

(j,m4, i)

Figure 2. A Knast subgraph.

We now state our new characterization.

Theorem 4.5 Letϕ be a stamp of stability indexs. Thenϕ
belongs toJ ∗ MOD if and only ifCs(ϕ) is in gJ.

Proof. First, ifCs(ϕ) is in gJ, thenϕ belongs toJ ∗ MOD
by Theorem 4.4.

Now assume thatϕ : A∗ → M belongs toJ ∗ MOD.
Then, by Theorem 4.4, there exists a positive integern
such thatCn(ϕ) is in gJ. We prove thatCs(ϕ) is in gJ
by showing that it satisfies Knast’s equation. Consider a
Knast subgraph ofCs(ϕ), with the notation in Figure 2. Set
k = j − i. There exist wordsu1, u2, u3, u4 in A∗ such that
ϕ(ui) = mi for 1 ≤ i ≤ 4 and

|u1| ≡ |u3| ≡ −|u2| ≡ −|u4| ≡ k mod s.

SinceM is a finite monoid, there exists an integerω such
that, for allx ∈ M , xω is idempotent. Further we can as-
sume thatω is greater thans. Now setting

{

v1 = (u1u2)
ωu1, v2 = u2(u1u2)

ω−1

v3 = (u3u4)
ωu3, v4 = u4(u3u4)

ω−1

we still have|v1| ≡ |v3| ≡ −|v2| ≡ −|v4| ≡ k mod s.
Further(ϕ(v1), ϕ(v2)) and(ϕ(v3), ϕ(v4)) are pairs of mu-
tually inverse elements ofM . If k 6= 0, then for eachi,
|vi| ≥ s and one can find an integerpi such that

{

|vi| = pis+ k , pi > 0, for i = 1, 3

|vi| = pis− k , pi > 1, for i = 2, 4

By definition ofs, we haveϕ(As) = ϕ(A2s) and hence

{

ϕ(Apis+k) = ϕ(Anpis+k), for i = 1, 3

ϕ(Apis−k) = ϕ(Anpis−k), for i = 2, 4

Thus, there exist wordsx1, x2, x3, x4 in A∗ such that
ϕ(vi) = ϕ(xi) for 1 ≤ i ≤ 4 and

{

|xi| = npis+ k, for i = 1, 3

|xi| = npis− k, for i = 2, 4

Therefore,|x1| ≡ |x3| ≡ −|x2| ≡ −|x4| ≡ k mod n, and
Cn(ϕ) contains the subgraph pictured in Figure 3.

i j

(i, ϕ(x1), j)

(i, ϕ(x3), j)

(j, ϕ(x2), i)

(j, ϕ(x4), i)

Figure 3. A subgraph ofCn(ϕ).

SinceCn(ϕ) is in gJ, it satisfies Knast’s equation, that is,

ϕ(x1x2)
ωϕ(x3x4)

ω = ϕ(x1x2)
ωϕ(x1x4)ϕ(x3x4)

ω ,

which finally yields Equation (1). Therefore,Cs(ϕ) is in
gJ.

We now treat the case wherek = 0. If u1 = u2 = u3 =
u4 = 1, Equation (1) holds trivially. Else, ifu1 = u2 = 1
but u3u4 6= 1, we setx1 = x2 = 1 and since|v3|, |v4| ≥
s, we can takex3, x4 as above. Then, it is still true that
|x1| ≡ |x3| ≡ −|x2| ≡ −|x4| ≡ 0 mod n and thatCn(ϕ)
contains the subgraph pictured in Figure 3, which gives the
result. The argument is symmetrical ifu3 = u4 = 1. In all
remaining cases, the wordsvi have length greater or equal
to s and the proof of the casek 6= 0 carries over.

Corollary 4.6 Given a regular languageL, one can effec-
tively decide whetherL is definable inBΣ1[<+ MOD].

Proof. It suffices to compute the syntactic stamp ofL and
its stability indexs and check whether the derived category
Cs(ϕ) satisfies Knast’s identity (1).

5. Summary

We proved the decidability of the two classesΣ1[< +
MOD] andBΣ1[< + MOD]. In algebraic terms, our results
can be summarized as follows:

< <+ MOD <+ REG

Σ1
J+ J+ ∗ MOD J+ ∗ LI ∗ MOD

BΣ1
J J ∗ MOD J ∗ LI ∗ MOD

...

FO A A ∗ MOD A ∗ MOD

However, there are subtle differences between these two
new results, as well as important features that distinguish



them from the older results listed in the fourth column of
the table. Indeed, given a stampϕ, one can decide whether
ϕ belongs to the varieties of the fourth column by verify-
ing that their stable (ordered) monoid satisfies certain condi-
tions. This is due to the properties that the varietiesJ+ ∗LI,
J ∗ LI and A satisfy the conditionV ∗ LI = V. It was
observed both in [6] and in [12] that for varieties satisfying
this condition, the decidability ofV andV∗MOD are equiv-
alent. The variety of ordered monoidsJ+ does not satisfy
this condition, but it is alocal varietyin the sense of Tilson
[28]: this still suffices to get the decidability ofJ+ ∗ MOD.
The hardest case isJ ∗ MOD: the varietyJ is known to be
nonlocal and Knast identities are required to get the decid-
ability.

It would be interesting to obtain a purely model theoretic
proof of our results.
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Thérien. Finite semigroup varieties defined by pro-
grams. Theoret. Comput. Sci., 180(1-2):325–339,
1997.

[13] Dominique Perrin and Jean-Éric Pin. First order logic
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