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Abstract the alphabet! a relational structure

Two results by Sdlizenberger (1965) and by Mc- My = {01, uf = 1), <, (Q)aea}
Naughton and Papert (1971) lead to a precise description yhere< is the usual order on the domain aads a predi-
of the expressive power of first order logic on words inter- ~5te giving the positionssuch thatz; = a. For instance,
preted as ordered colored structures. In this paper, weystud i ,, — bbaaba, thena = {0,3,4,6} andb = {1,2,5}.
the expressive power of existential formulas and of Booleangjyen a formulap, the language defined by is L(p) =
combinations of existential formulas in a logic enriched by {u € A* | M, satisfiesp}. Since languages may contain
modular numerical predicates. We first give a combina- {ne empty word, we make the convention that a language
torial description of the corresponding regular languages f A+ is defined byp if L(¢) = LN A*.
and then give an algebraic characterization in terms ofithei McNaughton and Papert [11] showed that a language is
syntactic morphisms. It follows that one can effectively de fi;st-order definable (in the signatufec, (a),c4}) if and
cide whether a given regular language is captured by one of 5y if it is star-free. The decidability of this class of egr
these two fragments of first order logic. The proofs rely on languages, denoted BBO[<], follows from a celebrated re-
nontrivigl techniques of semigroup theory: stamps, detive gt of Schitzenberger [20]: a regular languagstis-free
categories and wreath products. if and only if its syntactic monoid iaperiodic Thomas [27]
(see also [13]) refined this correspondence between first or-
der logic and star-free languages by showing that the con-
1. Introduction catenation hierarchy of star-free languages is, leveltsi e
in correspondence with the,,-hierarchy of first order for-
There is by now an extensive literature on the expres- mulas. However, little is known about the decidability of
sive power of various fragments of first order logic inter- these classes. Itis not very difficult to decide whether @r no
preted on finite words. There are also known connectionsa given regular language belongs¥jg [<]. The decidabil-
with several areas in mathematics and computer science, inity of the Boolean closure of this class, denotedi®y, [<],
cluding finite semigroups, automata, descriptive set theor relies on a nontrivial algebraic result of Simon [23]. The
complexity, circuits and communication complexity. Fur- decidability of35[<] was also proved by algebraic meth-
ther, this research is a necessary step towards the study abds [1, 17], but the decidability of the upper levBE . [<],
richer structures like infinite words, trees or graphs. This X3[<] and beyond is a major open problem.
paper is a contribution to this theory. Several enrichments to the vocabulatywere consid-
Let us briefly describe the framework of our results. We ered in the literature. Lét > 0. Recall that &-ary numer-
associate to each nonempty ward= agay . . . aj,|— OVer ical predicate symbaohssociates to eaeh > 0 a subset of



{0,...,n — 1}*. We view(iy,...,i;) € {0,...,n — 1}*
as a worddy - - - 0,,_; over the alphabef = 211} py
settingd; = {r | i» = j}. Thus each numerical predicate
symbol gives rise to a language i&*. We say the numer-
ical predicate symbol isegular if the corresponding lan-
guage is regular. (Note thatif= 0, {0,...,n — 1}* isthe
one-element sef}.)

Let0 < dandr € Z/dZ. We define two numerical pred-
icate symbols (thenodular predicates The unary symbol
mMoD¢ assigns to: the set{i < n | i mod d = 7}, and the
0-ary symbol [} assigns{} to n if n mod d = r, and§
otherwise. The associated languages (@fe* (™ —1{1}p*

and (04)*(", respectively, so these are regular numerical
Equivalently, we could introduce a constant

predicates.
symbolm denoting the last position in a string, in which
case [J is equivalent tovop? ,m. (This is the notation
that we shall adopt below.)

We denote byFO[< + MoD] the logic obtained by ad-

joining all modular predicates. This signature was consid-

ered implicitly in automata theory and explicitly in a reten
paper byEsik and Ito [6]. It should not be confused with
first order logic with modular quantifiers.

The logicFO[<+REG is obtained by adjoining all regu-

briefly present Eilenberg’s variety theory [4], its extamrsi
to the ordered case [15] and its more recent generalization
to stamps [5, 6, 7, 16, 26], in a form suitable to our purpose.

2.1 Semigroups, monoids and stamps

A semigrougs a set equipped with a binary associative
operation, denoted multiplicatively, or additively whéret
semigroup is commutative. Aonoidis a semigroup with a
unit element. An elementof a semigroup isdempotentf
e2 = e. In afinite semigroup, every elemenhas a unique
idempotent power, denoted by .

An elements of a semigroups is said to beregular if
and only if there exists an elemenof S, called aninverse
of s such thatsss = s andsss = s.

Given two monoidsM and N, a monoid morphisnis
amapy : M — N satisfyingp(1) = 1 andp(uv) =
o(u)p(v) forallu,vin M. AmonoidM is asubmonoif
a monoidN if there exists an injective morphism from
into N. A monoid N is aquotientof a monoid)M if there
exists a surjective morphism frord onto N. A monoid M

lar numerical predicate symbols. This logic was considereddividesa monoidV if M is a quotient of a submonoid f.

in[2, 10, 12, 25] in connection with circuit complexity.

It is not difficult to see thaFO[< + MoD] = FO[< +
REG. However, the lower levels of the,,-hierarchy differ
for the three signatures. The decidability®f[< + REG
andBX[< 4+ REG was established in [10]. In this paper,
we establish the decidability of the fragmeBis[< +MOD]
andB34[< + MoD], a problem left open in [6]. The situa-
tion is summarized in the table below:

< < + MOD < + REG
» DECIDABLE | DECIDABLE DECIDABLE
113, 27] Newresult | [8, 10, 21]
821 DECIDABLE | DECIDABLE DECIDABLE
[23, 27] New result [10]
FO DECIDABLE | DECIDABLE DECIDABLE
[11, 20] [2, 25] [2, 25]

Theproductof two monoidsM; andMs is the setM; x My
equipped with the produ€t:1, 22)(y1,y2) = (x1y1, Z2y2).

An orderedsemigroup is a semigroup equipped with a
partial order compatible with the operation of the semi-
group. Anorder ideal I of an ordered semigrou(s, <)
is a subset of such thatift € I andy < x theny € I.

Morphisms of ordered semigroups are order-preserving
morphisms of semigroups. The notionsoodiered subsemi-
group, quotient and product are readily adapted from their
unordered version and easily extended to the monoid case.

A relational morphismbetween two monoidd/ and N
is a relationr: M — N which satisfies

(1) foreverys € M, 7(s) # 0,

(2) for everysi, se € M, T(Sl)T(Sg) - 7(8182),

(3) 1 e7(1).

A stampis a morphism from a finitely generated free
monoid onto a finite monoid. A stamp: A* — M is said

Our paper is organized as follows. Section 2 presents they, petrivial if 1/ is the trivial monoid. Arordered stamyis
necessary background to understand our proofs. Our mairy stamp onto an ordered monoid.

decidability results on fragments of first order logic are
proved in Section 3 fok; [< + MoD] and in Section 4 for
BX1[< 4+ moD]. In the last section, we summarize our re-
sults and compare them with other decidability results.

2. The algebraic approach

Letp : A* — M be a stamp and lef = p(A). Then
Z is an element of the monoi® (M) of subsets ofM,
equipped with the producXY = {zy | z € X,y € Y}.
SinceP(M) is finite, Z has an idempotent power. This
justifies the following definition: thestability indexof a
stampyp : A* — M is the least positive integer such
that p(A4%) = p(A%%). The setp(A?) is a subsemigroup

In this section, we survey the algebraic approach to au-of M called thestable semigroup of and the monoid
tomata theory that is needed to state our main results. Wep(A®) U {1} is called thestable monoid op.



2.2 Stampsand languages there exists an integér such that the image of each letter
of Ais a word of B¥. A stampy : A* — M Im-divides
Stamps and ordered stamps can be seen as language rea-stampy : B* — N if there is a pair(f,n) (called an
ognizersin the following way. Lep : A* — M beastamp. [m-division), wheref : A* — B* is anlm-morphism,
A languagel over A* is recognized byhe stampp if there n : N — M is a partial surjective monoid morphism, and
exists a subsef’ of M such thatl = ¢~ 1(F). If M is o =mnowyo f. If fis the identity onAd*, the pair(f,n)

ordered, we requiré’ to be an order ideal af/. By exten- is simply called a division. Ifp and) are ordered stamps,
sion, we say that the (ordered) mondifl recognized. if thatis, if M and NV are ordered monoids,is required to be
there exists a stamp : A* — M recognizingL. order-preserving.

A language is said to beecognizabléf it is recognized f
by some finite monoid. Kleene's theorem asserts that rec- A - B*

ognizable and regular languages coincide.
Given alanguagé over A*, we define theyntactic con-

: 4
gruence~, and thesyntactic preordex , as follows: v

Q) u~gpviffforall x,y € A*, zvy € L < axuy € L, M Ui

Im(yof)S N
(2) u<pwiffforall x,y € A*, xzvy € L = zuy € L.

The monoidA* /~, is thesyntactic monoiaf L and is de- Figure 1. A division diagram.

noted byM (L). It can be ordered with the partial order re- .

lation induced by< ., to form theordered syntactic monoid the product of two stampsp, : A* — ]\:[1 and ¢ :
of L. The natural morphismy,: A* — M (L) is called the A* — M; is the stampp with domaln_A defined by
syntactic (ordered) stamgf L. The syntactic monoid of ¢p(a) = (p1(a),¢2(a)). The range ofp is a submonoid
is the smallest monoid (with respect to the division order of My x M.

on monoids) that recognizds In particular, a language is AN lm-variety of stampss a class of stamps contain-
regular if and only if its syntactic monoid is finite. ing the trivial stamps and closed under-division and fi-

From now on, all semigroups and monoids will be either Nite products. The definition of a variety of ordered stamps
finite or free. is similar. Note that ifV is a variety of finite (ordered)
monoids, then the class of all (ordered) stamps whose range
is in V forms anlm-variety of (ordered) stamps, also de-
noted byV.

We now come to the definition of varieties of languages.
lar languages through the algebraic properties of their syn ~ POSitive Boolean algebrés a set of languages that is

closed under finite union and finite intersection. If it iscals

tactic invariants. For this purpose, Eilenberg originally o
considered classes of finite monoids defined by equations,CIOSeOI under complement, it is calledBaolean algebra

called varieties This gave an appealing framework in Given a languagé and a word, we set
which to study classes of recognizable languages closed un- u'L={veA|welL}
der Boolean operations, quotients, and inverse morphisms. 1 .

However, our classeS; [< +Mob] andBX; [< +MoD] Lu™ ={ve A" |vue L}
are not closed under inverse morphisms and the first one isz class of recognizable languag®sassigns to each finite
not even closed under complement. Still, they are closed un-glphabetA a setV(A*) of recognizable languages df*.
der inverses ofength-multiplyingmorphisms and it is pos- A positive variety of languageis a class of recognizable
sible to adapt Eilenberg’s variety theory to this weaker set |anguaged’ such that for any alphabetsandB,
ting. The price to pay is the shift from the syntactic monoid (1) V(A*) is a positive Boolean algebra,
to the syntactic stamp (fd##3; [< +MoOD]) or to the syntac- if I V(A" anda € Athena—1L. La—! € V(A*
tic ordered stamp (foE,[< + MoOD]). The general frame- ) I € V(4" ) @€ _a yba ~ € ) ( _)'
work for this study is the theory af-varieties, recently in- (3) if i A* — B is amorphismL € V(B") implies
troduced by Straubing [26]. v (L) € V(AY).

We first recall the classical notion of varietiesvAriety A variety of languages a positive variety such that, for
of finite monoidss a class of (finite) monoids closed under €ach alphabet, V(A*) is closed under complement.
division and finite product. Varieties of finite semigroups  Positivelm-varietiesand/m-varietiesof languages are
and of finiteorderedmonoids are defined analogously. defined in the same way by weakening Condition (3) to

We now turn to varieties of stamps. Recall that a mor- (3') if p: A* — B* is anlm-morphism,L € V(B*)
phismf : A* — B* is length-multiplying(im for short) if impliesp~1(L) € V(A*).

2.3 Thevariety approach

The general idea of the variety theory is to classify regu-



Given a variety of finite monoid¥, the class) of all lan- recognized by some stamp, : A* — Z/nZ and hence
guages recognized by a monoidVhis a variety of lan- is a finite union of languages of the for(m™)* A* with
guages. Eilenberg’s theorem [4] asserts that the correspon0 < k < n.

denceV — V is one-to-one and onto.

Similarly, if V is a variety of finite ordered monoids, the Example2.7 Given a variety of finite semigroup¥, a
classV of all languages recognized by an ordered monoid stamp is said to be gquasiV stampif its stable subsemi-
in V is a positive variety of languages. It is proved in [15] group belongs td/. It is stated in [26] that the quasi-
that the correspondente— V is one-to-one and onto. stamps form arim-variety, denoted bdV. It was proved

Finally, given anim-variety of (ordered) stampg, the  in [2] that FO[< + moD] is the Im-variety of languages
classV of all languages recognized by a stampunis a corresponding tQA.

(positive)lm-variety of languages. It is proved in [26] that
the correspondendé — V is one-to-one and onto. 2.5 ldentities

2.4 Examples Both varieties of finite monoids anéin-varieties of
stamps have equational characterizations [19, 9, 16]. The

Example 2.1 The trivial variety of monoids$ consists only same result holds for their ordered counterparts. The forma

of one monoid, the trivial monoid. The corresponding va- definition of identities requires the introduction of pratn

riety of languaged is defined, for every alphabet, by topologies. Here we consider a simpler notion, illustrated
T(A*) = {0, A*}. ’ ' with a few basic examples, which implies the resuilt.

We start by recalling an elementary fact about finite
semigroups. Letr be an element of a finite semigroup
S. SinceS is finite, there exist integersp > 0 such that
2P = 2%, The subsemigroup o§ generated by is rep-
resented below.

Example 2.2 A semigroups islocally trivial if eSe = {e}
for each idempotentof .S. The class ofocally trivial semi-
groups form a variety of semigroups, denoted by

i+1 i+2
Example 2.3 Let us denote by ™ the class of all finite or- _ _x "
dered monoid$M/, <) such that, for al: € M, z < 1. 2 z? CattP =gt
One can show that* is a variety of ordered monoids and
that a language belongs ot (A*) if and only if itis a finite

4
4

1+p—1
union of languages of the form*a; A* - - - a;, A*, where r
k > 0anday,...,a are letters ofd. Further, itis shown |t js easy to see that the semigro{ip, ...z} is a
in [13] that7 " is equal to the clask; [<]. cyclic groupG(z), whose identity ise, the unique idem-
_ _ S potent power oft.
Example 2.4 A monoid M is J-trivial if division is a par- An w-termon an alphabet is built from the letters o

tial order onM, that is, if the conditionsizv = y and  using the usual concatenation product and two unary oper-
syt = z imply z = y. The class of7 -trivial monoids form ators:z — z* andz — ¢~ . Thus, ifA = {a, b, c}, abe,
a variety, denoted by. Simon’s theorem [22] states that and((ab”~'c)“ab)* are examples ab-terms.

J(A*) is the Boolean algebra generated by the languages Let » : A* — M be a stamp. The image(t) of an

of the formA*a, A* - - - ay A*, wherek > 0 anday, .. ., ak w-termt is defined recursively as follows. ifis a letter,
are letters ofd. It follows from [27] that7 is also equalto  then(t) is already defined. If andt’ arew-terms, then
the class3%, [<]. o(tt) = pt)pt'). If t = u®, theny(t) is the unique

idempotent power of(u). Finally if t = u~~1, theny(t)
Example 2.5 A monoid M is aperiodicif there exists an is the inverse of(u)“¢(u) in the cyclic groupG (¢ (u)).
integern such that, for every € M, 2" = z"*+!. The class Let u, v be twow-terms on a finite alphabé?. A stamp
of aperiodic monoids form a variety denoted By The ¢ A* — M is said tosatisfy them-identityu = v if, for
results of Schiitzenberger [20] and McNaughton and Paperieverylm-morphismf: B* — A*, ¢ o f(u) = po f(v). If
[11] show that the corresponding variety of languages is the M is ordered, we say that satisfies thém-identityu < v
class of star-free languages, or in logical terms, the classif, for every lm-morphismf: B* — A*, po f(u) < po

FO[<]. f(v).

A monoid (ordered monoid)/ satisfies the identity =
Example2.6 Let MOD be the class of all stampg : v (u < v) if for every morphismp: B* — M, p(u) =
A* — M such thatM is a cyclic group ang(a) = ¢(b) o) (p(u) < pv)).
for all lettersa,b in A. ThenMOD is anlm-variety of An Im-variety V satisfies a giverm-identity if every

stamps. For each alphahét a language oMod(A*) is stamp inV satisfies this identity. The class of all stamps



satisfying a given set ofm-identities is anim-variety of L(v) is a finite union of modular simple languages.

stamps. Similarly the class of all (ordered) monoids sat-

isfying a given set of identities is an variety of (ordered)

monoids. The concatenation hierarchy of star-free languages men-
By extension, we say that a languadesatisfies a  tionedin the introduction is defined by alternating two type

monoid identity {m-identity) if its syntactic monoid (or-  of operations: the Boolean operations and the polynomial

dered monoid, stamp, ordered stamp) satisfies this identity closure, that we now define. Given a class of languabes

we denote by P¢L) the polynomial closuref £, which is
Example 2.8 As anlm-variety of stampsMOD is defined  the class of languages that are finite unions of languages

by the single identity“ 1y = 1. of the form LoayLias - - - ap Ly, whereLg,...,Ly € L
The variety of finite aperiodic monoids is defined by ~ anday, ..., a; are letters. We also denote BPol(L) the
the identityz = z<*1. Boolean closure of POL).
The variety of finite ordered monoids™ is defined by It is shown in [13] that®, [<] is equal to PdlZ) where
the identityz < 1. The variety of finite monoidis defined 7 is the trivial variety of languages. The next proposition
by the two identities” = z* ! and(zy)~ = (yx)“. shows thab:; [< + MOD] is equal to PqMod).

Proposition 3.2 A language belongs to RoWod) if and

3. Expressive power of 21[< T MOD] only if it is a finite union of modular simple languages.

We first give a simple combinatorial description of the Proof. First, Po[Mod) clearly contains the modular sim-

languages definable B [< 4+ MOD]. ple languages. Conversely, any language of Ptdd)(A*)

Let us call modular simplea language of the form can be written as a finite union of languages of the form
(AN * a1 (AN *ag(AD)* - - ap(A?)*, whered > 0,k > 0 L = LoaiLias - - ar Ly, wherea, .. ., a;, are letters and
andai,as,...,a; € A. Lo, ..., Ly € Mod(A*). Thus each; is a finite union of

languages of the forrd™:)* A%, with 0 < k < n;. Letd
Proposition 3.1 Alanguage is definable B, [<+MoD] if be the least common multiple of the. Settingr; = d/n;,

and only if it is a finite union of modular simple languages. we observe thatA™ )* = Up<j<,, (A%)* A*":. Applying
. . . . the distributivity of concatenation over union, we may as-
Proof. The languaggA®)*a;(A%)"as(A%)" - a)(A%) sume that alL; are of the form{ A4)* A*. But(A%)* A* can

can be defined by thg; -formula be written awalagvvvakeA"(Ad)*al(Ad)*aQ o ap(AY*L 1t
follows that any language of RoMod)(A*) is a finite
Jzy ... Fag (21 <. <) A(ariz A A agag) union of modular simple languagesz

A(MODE 2 AMODY 3 A+ - - AMODY_ | 2, AMODY_, m) S .
Our decidability result fok4 [< + MoD] relies on an al-

This shows that any finite union of modular simple lan- gebraic characterization of the polynomial closure [14, 17
guages is definable i&;[< + mMoDp]. To prove the re-  However, the formulation of this general result requires us
sult in the opposite direction, considedia-formulay = to introduce Mal'cev products of varieties and we prefer
dxy ... Jzg o(z1,...,2,). We may assume that is here a simpler formulation.

in disjunctive normal form. Negations of atomic formu-

las can be eliminated by replacingz = y) by (z < Proposition 3.3 A language belongs to RoMod) if and
YV < 2),-( <yby@=1yVy < ), only if its ordered syntactic stamp satisfies the following
—(MoD? z) by Vs.-MOD? z and—(azx) by Vi, (bz). Fur- property: there exists a positive integersuch that the or-
ther, by the Chinese remainder theorem, conjunctions ofdered monoids((A™)*) satisfies the identity < 1.

atomic formulas of the forrmopdo m A A\, _, ., MODZ: z;

can be replaced by disjunctions of formulas of the form
Mob? m A A, i, MOD? z;, whered = lem(d;). Al-
together,?) is equivalent to a disjunction of formulas of
the form3z; ... Jzg (11 < ... < zp) A(agzg A -+ A
apzk)A(MODY x1A---AMOD! z,AMOD! m) defining the
language (A%)* A%ta; (A%)* A%2ay(AY)* -+ ap(A?)*AS
where, forl <i<k,s1+s2+---+s; =r; (mod d)and

7t +s = r (mod d). Finally, observing thatA?)* A" = Proof. By Proposition 3.3, it suffices to show that if
[(AT)*(Uaeaa)]” (A%)*, it suffices to use the distributivity — ((A™)*) satisfies the identity < 1 for somen > 0, then
of concatenation over union to conclude that the languagey((A®)*) satisfies the same identity. But singgA®) =

Unfortunately, Proposition 3.3 does not provide a decidabi
ity criterion for Po[Mod). The next result fixes this prob-
lem.

Theorem 3.4 A language belongs to RoWod) if and only
if the stable ordered monoid of its ordered syntactic stamp
satisfies the identity < 1.



©(A™), p((A%)*) = p((A™)*). It follows thaty((A®%)*) The wreath producl o K of two monoidsN and K is
is a submonoid ofp((A™)*) and thus satisfies the identity ~defined on the se¥V* x K by the following product:

r<1. 0O
(f1,k1)(f2, ko) = (f, k1k2), with f(k) = f1(k) fa(kk1)

This definition can be extended to varieties of stamps as fol-
lows. LetV, W be twolm-varieties of stamps. AV, W)-
product stamp is a stamp: A* — M such that:
(1) M is a submonoid of a wreath produsto K, where
N andK are finite monoids.

Theorem 3.4 gives a decidable condition for testing
membership in PdMod). But since we know that
Pol(Mod) is a positivelm-variety of languages, it is inter-
esting to find the identities defining the corresponding-vari
ety of ordered stamps.

Theorem 3.5 Alanguage belongs to RoMod) if and only (2) Letw : N o K — K be the canonical projection
if its ordered syntactic stamp satisfies the-identities morphism. Then the stampo ¢ : A* — 7(M) isin
¥ 1y < 1andyz*~! < 1. W.

(3) Forain A, we canwritep(a) = (f., Top(a)) where
faisin NX, We now treatk’ x A as a finite alphabet
and we define astamp: (K x A)* — Im(®) C N
by ®(k,a) = f.(k). We required to be inV.
We defineV x W to be the class of all stamps that divide a
(V,W)-product stamp. The clads«W is called thevreath
productof the im-varieties of stamp¥ andW. It can be
shown [3] thatV x W is anl/m-variety of stamps contain-
ing W. The wreath product is an associative operation on
Im-varieties of stamps which extends the classical wreath
product on Eilenberg’s varieties.

Proof. Let L be a regular language;: A* — M its or-
dered syntactic stamp, its stable monoid anglits stability
index.

First assume thdt belongs to PdiMod). Letz andy be
two words inA* of equal length and let = z (s~ D« g1y,
The length ofu is a multiple ofs and thusp(u) belongs to
S. By Theorem 3.45 satisfies the identity < 1 and hence
o(u) < 1. Butp(u) = o(z*~ty) and thusp(z*~1y) < 1.
This proves thap satisfies thém-identitiesz* 1y < 1. A
symmetrical argument works for the second identity.

Conversely, assume that satisfies thelm-identities e ) o
2“1y < 1andyz®~! < 1. We claim thatn < 1 for The wreath product principle [6, 3] gives a description

allm € S. The relation is trivial ifm = 1. If m # 1, then  ©f languages recognized by a stampvok W. It is based
m € p(A®) = T. Sincel’? = T, it follows from [14, Chap on similar results for varieties of monoids [24, 18]. We only
1, Proposition 1.12] thaty = wuewv for someu, e,v € T give here a simplified version for the cage= MOD.

with ¢ idempotent. Thus there existy, - € A® such that ' OF €ac >0, let B, = Z/nZ x Aandoy : A* — By
o(y) = u, p(z) = e andy(z) = v. Sincelz| = |y| = |2, be the sequential function defined by setting:

one hasp(yz*~!) < 1andp(z*~'z) < 1. It follows that ceag) = (0 Las) - (k—1
ue < 1 andev < 1, whencem = uev = ueev < 1. This on(ar---ak) = (0,a1)(1, a2) - ).

proves the claim and shows, by Theorem 3.4, fhiaélongs Theorem 4.2 LetV be anim-variety of stamps and léf

to PolMod). o be thelm-variety of languages associated wkh« MOD.
Then for every alphabet, /(A*) is the smallest positive

The results of this section should be compared with the Boolean algebra containing{od(A*) and the languages
characterization of the class; [< + REG| which can be ¢ o formo—1(V), wheren > 0 andV’ is in V(B).

derived from the two papers [8, 21].

Proof. The general Wreath Product Principle on stamps
4. Expressive power of le[< + MOD] (WPP for short) [3] makes use of slightly more involved
sequential functions that we shall introduce now. Given a
stampy : A* — M and an element: in M, we define the

In this section we give several characterizations of the ; . .
g sequential functiop,,, : A* — (M x A)* by setting:

classBX;[< + MoD]. Let us start with an immediate con-
sequence of Proposition 3.1:

pm(al .. .an) —

Proposition 4.1 Alanguage is definable ifX; [< +MoD] (m, a1)(me(ar),az) - - (me(ar - apn-1),an)
if and only if it is a Boolean combination of modular simple

languages. A sequential functiorp is said to beassociated withp if

p = pm forsomem in M. The WPP states that( A*) is the

Our second characterization is based on properties of thesmallest positive Boolean algebra containintyd(A*) and
wreath product. The non-specialist reader can skip the tech the languages of the forpr1 (1), wherep is a sequential
nical definitions given below, admit Theorem 4.2 and jump function associated with a stamp: A* — M in MOD
directly to Theorem 4.3. andV isinV((M x A)*).



Notice first that, ifo : A* — M is in MOD then

a Boolean algebra, any Boolean combination of modular

M is a finite cyclic group, and one can thus assume thatsimple languages ol* isinZ/(A*). O

M = 7Z/nZ for some positive integer. We denote this
group additively. Further, sincg is surjective, there ex-
ists a generatok of Z/nZ such thatp(A) = {k}. Thus
@ is isomorphic to the stamp,, : A* — Z/nZ, defined
by 7, (A) = {1}. Thereford{(A*) is the smallest positive
Boolean algebra containingtod(A*) and the languages of
the formp=1(V'), wherep is a sequential function associ-
ated with some stamyp,, andV is in V(B;}:).

Now, letV be a language iw(B};) and letp;, : A* —
B! be the sequential function associated with and an
elementk in Z/nZ. Define thelm-morphismfy: B} —
B by fi(z,a) = (v + k,a), and letV’ = f,-'(V). Then
V'is in V(B;) andp, (V) = o, 1(V'). Therefore, it is
sufficient to consider sequential functions of the farm
which concludes the proofo

We now arrive at our second characterization of
BX4[< + MoD].

Theorem 4.3 A language is a Boolean combination of

It follows from Proposition 4.1 and Theorem 4.3 that
deciding whether a given regular language is definable in
BX,[< + mob] amounts to showing that the Im-variety
J « MOD is decidable. The proof requires us to introduce
derived categories [28]. In this paper, categories areetikew
as generalizations of monoids since a one-object category i
in fact a monoid.

Let C, D be two categories. Mivisionof categories :

C — D is given by a mapping : Obj(C) — Obj(D)
and for each paifu, v) of objects ofC, by a relationr :
C(u,v) — D(7(u), 7(v)) such that
(1) 7(x)7(y) C 7(xy) for any consecutive arrows y,
(2) 7(z) # 0 for any arrowz,

(3) 17.(“) S T(lu),
(4) 7(z) n7(y) # 0 impliesz = y for any coterminal
arrowsz, y of C.
If V is variety of monoids, we denote by the class of
all categories that divide a monoid Vh(regarded as a one-

modular simple languages if and only if its syntactic stamp ©bject category). By transitivity of division of categasie

belongs to the Im-variety « MOD.

Proof. LetU/ be thelm-variety of languages correspond-
ing toJ x MOD. We first show that each languagelofis

a Boolean combination of modular simple languages. By

Proposition 3.2, it suffices to show thétis contained in
BPol(Mod).

Let A be an alphabet. According to Theorem 4.2,

U(A*) is the smallest positive Boolean algebra containing

Mod(A*) and the languages of the forag, }(V), where
n > 0 andV belongs to7 (B;). SinceMaod is contained
in Pol(Mod), it remains to prove that all languages of the
form o, }(V) are inBPol(Mod). Further, sincer,, ! com-

mutes with Boolean operations, we may assume by Simo”'striples(

theorem [22] thaV/ is equal toB}: b, B}; - - - b, B}, for some
bi,...,by € By. Settingb; = (r;, a;), we observe that
(V)= (A")"A"a (A")*A%ay - - - (A")* A’ra, AT,

-1

On

with s; =7, — (r;—1 + 1) mod n, fori = 2-- - p. SinceA*
and all languages of the forf1™)* A7 are in Mod(A*),
o~ 1(V) belongs to P@IMod(A*)).

We now prove that any Boolean combination of modular
simple languages is 1. A simple computation shows that
if

I = (Ad)*al(Ad)*ag(Ad)* . ak(Ad)*
is a modular simple language df, then
L=o; (BB} ---b.B) N (A%)* AF

with b; = (i—1,a;) for1 <i < k. SinceBb: B} - - - b, B},
isin J(By), L belongs ta{(A*). Finally, sincel/(A*) is

gV is always closed under division.

Lety : A* — M be a stamp. For each integerletr,, :
A* — Z/nZ be the stamp defined by, (u) = |u| mod n
and lety,, be the relational morphism,, = 7, o 1.

N

o, 7nZ

M

Let C, () be the category whose objects are elements
of Z/nZ and whose arrows from objetto object; are the
i,m, j) wherej — i € @, (m). Its composition rule
is given by(l, ml,j)(j, ma, ]{) = (i, mima, ]{)

The next result is a special instance of the derived cate-
gory theorem due to Tilson [28], but two modifications oc-
cur. First, Tilson’s original definition of the derived cate
gory was different from ours, but this more complex defini-
tion is not required for relational morphisms onto a group.
Second, Tilson’s proof needs to be adapted to the context of
stamps. Altogether, we obtain the following result:

Theorem 4.4 A stampy isinJ « MOD if and only if there
exists a positive integer such that”,, () is in gJ.

We shall now improve Theorem 4.4 by giving an explicit
bound on the integet. First, it was shown by Knast that
a category belongs t@J if and only if, for each of its sub-
graphs of the form given in Figure 2, one has

(1)

(mam2)” (mamy)® = (mima)“mima(mzmy)®



(iamlaj)

(i7m31j)

Figure 2. A Knast subgraph.
We now state our new characterization.

Theorem 4.5 Lety be a stamp of stability index Theny
belongs tal * MOD if and only if Cs () is in gJ.

Proof. First, if Cs(¢p) is in gJ, theny belongs tal «x MOD
by Theorem 4.4.

Now assume thap: A* — M belongs toJ * MOD.
Then, by Theorem 4.4, there exists a positive integer
such thatC,,(p) is in gJ. We prove thatCs(y) is in gJ

Therefore|z1| = |z3| = —|z2| = —|x4| = k mod n, and
Cr(¢) contains the subgraph pictured in Figure 3.

(iv (P(.Tl),j)

(iv (p(x3)7j)

Figure 3. A subgraph of”,, ().

SinceC,, () is in gJ, it satisfies Knast's equation, that is,

P(r172)  p(2374)" = Q(T172)  (T174)P(T374)",

which finally yields Equation (1). Therefor€s(y) is in
gd.
We now treat the case wheke= 0. If u; = ug = u3z =
ug = 1, Equation (1) holds trivially. Else, ifi; = us = 1

by showing that it satisfies Knast's equation. Consider a pyt y4u, £ 1, we setr; = 2o = 1 and sincdvs|, [va| >

Knast subgraph of’; (¢), with the notation in Figure 2. Set
k = j —i. There exist words,;, us, usz, uq in A* such that
o(u;) =m; forl <i <4and

[u1] = Jus| = —|uz| = —|ua| = k mod s.

Since M is a finite monoid, there exists an integeisuch
that, for allz € M, z* is idempotent. Further we can as-
sume thatv is greater thar. Now setting

v1 = (wu2)?ur, v2 = up(uqug)??
v3 = (ugua)®us, v4 = ug(ugug) "
we still have|v| = |vs| = —|va| = —|vg| = k mod s.

Further(p(v1), ¢(v2)) and(¢(vs), p(v4)) are pairs of mu-
tually inverse elements o¥/. If & # 0, then for each;,
|v;| > s and one can find an integey such that

lvil =pis+k, pi >0, fori=1,3
lvi| =pis—k, p; >1, fori=24

By definition of s, we havep(A*) = ¢(A2%*) and hence

p(APiTR) = p(AmPisth) fori=1,3
p(APsR) = p(Amwisk) fori=2,4

Thus, there exist words:, x2, 23,24 in A* such that
o(vi) = p(x;) for1 <i <4 and

{|xz| =np;s+k, fori=1,3

|xi| = np;s — k, fori=24

s, we can takers, z4 as above. Then, it is still true that
|z1] = |z3] = —|z2] = —|z4] = 0 mod n and thatC,,(¢)
contains the subgraph pictured in Figure 3, which gives the
result. The argument is symmetricakif = v, = 1. In all
remaining cases, the wordg have length greater or equal
to s and the proof of the case # 0 carries over. O

Corollary 4.6 Given a regular languagé, one can effec-
tively decide whethek is definable in5%, [< + MOD].

Proof. It suffices to compute the syntactic stamploand
its stability indexs and check whether the derived category
Cs (i) satisfies Knast's identity (1).0

5. Summary

We proved the decidability of the two classEs[< +
MoD] andBX4[< + MoD]. In algebraic terms, our results
can be summarized as follows:

< [ <+ wmoD < + REG
>, | JT | IT«MOD | J" xLI xMOD
Bx:|J JxMOD J*xLI xMOD
FO | A AxMOD | AxMOD

However, there are subtle differences between these two
new results, as well as important features that distinguish



them from the older results listed in the fourth column of
the table. Indeed, given a stampone can decide whether
o belongs to the varieties of the fourth column by verify-
ing that their stable (ordered) monoid satisfies certaimzon

[8] Christian GlaRer. Polylog-time reductions decrease
dot-depth. INSTACS 2005volume 3404 ofLect.
Notes Comp. Sgipages 170-181. Springer, Berlin,
2005.

tions. This is due to the properties that the variedies L1,

J % LI and A satisfy the conditio’’V « LI = V. It was
observed both in [6] and in [12] that for varieties satisfyin
this condition, the decidability of andV «MOD are equiv-
alent. The variety of ordered monoid$ does not satisfy
this condition, but it is docal varietyin the sense of Tilson
[28]: this still suffices to get the decidability df + MOD.
The hardest case &+ MOD: the varietyJ is known to be
nonlocal and Knast identities are required to get the decid-[11]
ability.

It would be interesting to obtain a purely model theoretic
proof of our results.
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