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Abstract

Given a strictly increasing sequence s of non-negative integers, filtering
a word a0a1 · · · an by s consists in deleting the letters ai such that i is not
in the set {s0, s1, . . .}. By a natural generalization, denote by L[s], where
L is a language, the set of all words of L filtered by s. The filtering problem
is to characterize the filters s such that, for every regular language L, L[s]
is regular. In this paper, the filtering problem is solved, and a unified
approach is provided to solve similar questions, including the removal
problem considered by Seiferas and McNaughton. Our approach relies on
a detailed study of various residual notions, notably residually ultimately
periodic sequences and residually rational transductions.

1 Introduction

The original motivation of this paper was to solve an automata-theoretic puzzle,
proposed by the fourth author (see also [12]), that we shall refer to as the filtering
problem. Given a strictly increasing sequence s of non-negative integers, filtering
a word a0a1 · · · an by s consists in deleting the letters ai such that i is not in
the set {s0, s1, . . .}. By a natural generalization, denote by L[s], where L is a
language, the set of all words of L filtered by s. The filtering problem is to
characterize the filters s such that, for every regular language L, L[s] is regular.
The problem is non trivial since, for instance, it can be shown that the filters
n2 and n! preserve regular languages, while the filter

(
2n

n

)
does not.

The quest for this problem led us to search for analogous questions in the
literature. Similar puzzles were already investigated in the seminal paper of
Stearns and Hartmanis [19], but the most relevant reference is the paper [17] of
Seiferas and McNaughton, in which the so-called removal problem was solved:
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characterize the subsets S of N
2 such that, for each regular language L, the

language

P (S, L) = {u ∈ A∗ | there exists v ∈ A∗ such that (|u|, |v|) ∈ S and uv ∈ L}

is regular.
The aim of the present paper is to provide a unified approach to solve at the

same time the filtering problem, the removal problem and similar questions. It
turns out that these problems are intimately related to the study of regulators
[6]. A transduction τ from A∗ into B∗ is a regulator if the image under τ of
any regular set is regular. It is continuous if the inverse image under τ of any
regular set is regular. Thus a transduction is continuous if and only if its inverse
is a regulator.

Now, the characterization obtained in [17] for the removal problem states
that, for any regular subset R of N, the set

{x ∈ N | there exists y ∈ R such that (x, y) ∈ S}

has to be regular, which exactly means that the relation S is continuous.
Our characterization for the filtering problem is somewhat similar: a filter s

preserves regular languages if and only if its differential sequence ∂s (defined by
(∂s)n = sn+1 − sn) is continuous. An equivalent, but more explicit, characteri-
sation is the following: for any positive integer t, the two sequences ∂s (mod t)
and min(∂s, t) have to be ultimately periodic.

The emergence of this differential sequence may appear rather surprising to
the reader, but the mystery disappears if, following [13, 14], we observe that
L[s] = τ−1(L) where τ : A∗ → A∗ is the transduction defined by

τ(a0a1 · · ·an) = As0a0A
s1−s0−1a1 · · ·Asn−sn−1−1an(1 ∪ A)sn+1−sn−1

The removal problem can also be interpreted in terms of transductions. It suf-
fices to observe that P (S, L) = σ−1(L), where σ : A∗ → A∗ is the transduction
defined by σ(u) = uAS(|u|).

Once these problems are interpreted in terms of transductions, the tech-
niques of [13, 14] seem to trace an easy road towards their solutions. However,
this approach fails, because the above transductions need not be rational or
even representable (in the sense of [13, 14]).

This failure lead us to a detailed study of transductions by the so-called
residual approach, which roughly consists in approximating an infinite object by
a collection of finite objects. Profinite techniques (see [1]) and p-adic topology
in number theory are good examples of this approach. Another example is
the notion of residually ultimately periodic sequence, introduced in [17] as a
generalization of a similar notion due to Siefkes [18]. Applying these ideas
to transductions, we were lead to the following definitions: a transduction is
residually rational if, when it is composed with any morphism onto a finite
monoid, the resulting transduction is rational. We analyse in some detail these
properties and prove in particular that a transduction is continuous if and only
if it is residually rational. This is the key to our problems, since it is now not
too difficult to see when our transductions τ and σ are residually rational.

To answer a frequently asked question, we also solve the filtering problem
for context-free languages, but the answer is slightly disappointing: only differ-
entially ultimately periodic filters preserve context-free languages.
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Our paper is organized as follows. Section 2 introduces the main definitions
used in the paper: rational and recognizable sets, sequences, relations, trans-
ductions, rational transducers, regulators, etc. The precise formulation of the
filtering problem is given in Section 3. Residual properties are studied at length
in Section 4 and the properties of differential sequences are analyzed in Section
5. The solutions to the filtering problem and the removal problem are given in
Sections 6 and 7. Further properties of residually ultimately periodic sequences
are discussed in Section 8 and the filtering problem for context-free languages
is solved in Section 9. The paper ends with a short conclusion.

Part of the results of this paper were presented in [3].

2 Preliminaries and background

2.1 Sequences

A sequence (sn)n≥0 of elements of a set is ultimately periodic (u.p.) if there
exist two integers m ≥ 0 and r > 0 such that, for each n ≥ m, sn = sn+r.

The (first) differential sequence of an integer sequence (sn)n≥0 is the se-
quence ∂s defined by

(∂s)n = sn+1 − sn

Note that the integration formula sn = s0+
∑

0≤i≤n−1(∂s)i allows one to recover
the original sequence from its differential and s0. A sequence is syndetic if its
differential sequence is bounded.

If S is an infinite subset of N, the enumerating sequence of S is the unique
strictly increasing sequence (sn)n≥0 such that

S = {sn | n ≥ 0}

The differential sequence of this sequence is simply called the differential se-
quence of S. A set is syndetic if its enumerating sequence is syndetic.

The characteristic sequence of a subset S of N is the sequence cn defined by

cn =

{

1 if n ∈ S

0 otherwise

The following elementary result is folklore.

Proposition 2.1 Let S be a set of non negative integers. The following condi-
tions are equivalent:

(1) S is a regular subset of N,

(2) S is a finite union of arithmetic progressions,

(3) the characteristic sequence of S is ultimately periodic.

If S is infinite, these conditions are also equivalent to the following conditions

(4) the differential sequence of S is ultimately periodic.

Example 2.1 Let S = {1, 3, 4, 9, 11} ∪ {7 + 5n | n ≥ 0} ∪ {8 + 5n | n ≥
0} = {1, 3, 4, 7, 8, 9, 11, 12, 13, 17, 18, 22, 23, 27, 28, . . .}. Then S is a finite union
of arithmetic progressions. Its characteristic sequence

0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .
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and its differential sequence

2, 1, 3, 1, 1, 2, 1, 1, 4, 1, 4, 1, 4, . . .

are ultimately periodic.

2.2 Rational and recognizable sets

Given a multiplicative monoid M , the subsets of M form a semiring P(M)
under union as addition and subset multiplication defined by

XY = {xy | x ∈ X and y ∈ Y }

Recall that the rational (or regular) subsets of a monoid M form the smallest
subset R of P(M) containing the finite subsets of M and closed under finite
union, product, and star (where X∗ is the submonoid generated by X). The set
of rational subsets of M is denoted by Rat(M). It is a subsemiring of P(M).
Rational subsets are closed under rational operations (union, product and star)
and under morphisms. This means that if ϕ : M → N is a monoid morphism,
X ∈ Rat(M) implies ϕ(X) ∈ Rat(N).

Recall that a subset P of a monoid M is recognizable if there exists a finite
monoid F and a monoid morphism ϕ : M → F such that P = ϕ−1(ϕ(P )). The
set of recognizable subsets of M is denoted by Rec(M). It is also a subsemiring
of P(M). Recognizable subsets are closed under boolean operations, quotients
and inverse morphisms.

Let us briefly remind some important results about recognizable and rational
sets.

Theorem 2.2 (Kleene) For every finite alphabet A, Rec(A∗) = Rat(A∗).

Theorem 2.3 (McKnight) Let M be a finite monoid. the following conditions
are equivalent:

(1) M is finitely generated,

(2) Every recognizable subset of M is rational,

(3) The set M is a rational subset of M .

Theorem 2.4 The intersection of a rational set and of a recognizable set is
rational.

Theorem 2.5 (Mezei) Let M1, . . . , Mn be monoids. A subset of M1×· · ·×Mn is
recognizable if and only if it is a finite union of subsets of the form R1×· · ·×Rn,
where Ri ∈ Rec(Mi).

2.3 Relations

Given two sets E and F , a relation on E and F is a subset of E × F . The
inverse of a relation S on E and F is the relation S−1 on F × E defined by

(y, x) ∈ S−1 if and only if (x, y) ∈ S
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A relation S on E and F can also be considered as a function from E into P(F ),
the set of subsets of F , by setting, for each x ∈ E,

S(x) = {y ∈ F | (x, y) ∈ S}

It can also be viewed as a function from P(E) into P(F ) by setting, for each
subset X of E:

S(X) =
⋃

x∈X

S(x) = {y ∈ F | there exists x ∈ X such that (x, y) ∈ S}

Dually, S−1 can be viewed as a function from P(F ) into P(E) defined, for each
subset Y of F , by

S−1(Y ) = {x ∈ E | S(x) ∩ Y 6= ∅}
When this dynamical point of view is adopted, we say that S is a relation from
E into F and we use the notation S : E → F .

2.4 Transductions

Relations between monoids are often called transductions. Transductions were
intensively studied in connection with context-free languages [2]. In this paper,
we shall mainly consider transductions from a finitely generated free monoid A∗

into an arbitrary monoid M . A transduction τ : A∗ → M is rational if it is a
rational subset of A∗ × M .

Let us first recall a standard, but non trivial property of rational transduc-
tions (it is proved for instance right after Proposition III.4.3 in [2], p. 67).

Proposition 2.6 Let τ : A∗ → M be a rational transduction. If R is a rational
subset of A∗, then τ(R) is a rational subset of A∗.

2.5 Continuous transductions and Regulators

A transduction τ : A∗ → M is called continuous1 if, for each recognizable subset
R of M , τ−1(R) is regular. Continuous transductions were called recognizability
preserving in [3].

It follows from Proposition 2.6 that every rational transduction is continu-
ous. Representable transductions, introduced in [13, 14] are other examples of
continuous transductions. A characterisation of continuous transductions will
be given in Section 4.

Following Conway [6], we say that a transduction τ : A∗ → B∗ is a regulator
if, for each regular language R of A∗, τ(R) is regular. It follows immediately
from the definition that τ is a regulator if and only if its inverse is continuous.
In particular, every rational transduction from A∗ into B∗ is a regulator.

2.6 Rational transducers

Let A be a finite alphabet. The Kleene-Schützenberger theorem [2] states that
a transduction τ : A∗ → M is rational if and only if it can be realized by a
rational transducer.

1We chose this terminology for the following reason: a map from A∗ into B∗ is continuous
in our sense if and only if it is continuous for the profinite topology [1] on A∗ and B∗.
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Roughly speaking, a rational transducer is a non-deterministic automaton
with output in Rat(M). More precisely, it is a 6-tuple T = (Q, A, M, I, F, E)
where Q is a finite set of states, A is the input alphabet, M is the output monoid,
I = (Iq)q∈Q and F = (Fq)q∈Q are arrays of elements of Rat(M), called respec-
tively the initial and final outputs. The set of transitions E is a finite subset
of Q × A × Rat(M) × Q. Intuitively, a transition (p, a, R, q) is interpreted as
follows: if a is an input letter, the automaton moves from state p to state q and
produces the output R.

It is convenient to represent a transition (p, a, R, q) as an edge p
a|R−→ q.

Initial (resp. final) outputs are represented by incoming (resp. outcoming)
arrows, which are omitted if the corresponding input (resp. output) is empty.
An other standard convention is to simply denote by m the singleton {m}, for
any m ∈ M . The label to the arrow represents the output, but might be omitted
if it is equal to the identity of M .

Example 2.2 Let T = (Q, A, M, I, E, F ) be the transducer defined by Q =
{1, 2}, A = {a, b}, M = {a, b}∗, I = (a∗b∗, ∅), F = (a∗, b∗) and

E = {(1, a, {1}, 1), (1, a, {b}, 2), (1, b, {ab}, 2), (2, a, ba∗, 2), (2, b, {ba}, 1)}

It is represented in Figure 1

1 2a∗b∗

a∗ b∗

a|1

a|b
b|ab

a|ba∗

b|ba

Figure 1: A transducer.

A path is a sequence of consecutive transitions:

q0
a1|R1−→ q1

a2|R2−→ q2 · · · qn−1
an|Rn−→ qn

The (input) label of the path is the word a1a2 · · · an. Its output is the set
Iq0

R1R2 · · ·RnFqn
. The transduction realized by T maps each word u of A∗

onto the union of the outputs of all paths of input label u. For instance, if τ
is the transduction realized by the transducer of Example 2.2, there are three
paths of input label ab

1
a|1−→ 1

b|ab−→ 2 1
a|b−→ 2

b|ba−→ 1 2
a|ba∗

−→ 2
b|ba−→ 1

Since I2 = ∅, it follows that τ(ab) = (a∗b∗)(1)(ab)(b∗) ∪ (a∗b∗)(b)(ba)(a∗).

3 The removal and the filtering problems

A filter is a finite or infinite strictly increasing sequence of non-negative integers.
If u = u0u1u2 · · · is an infinite word (the ui are letters), we set

u[s] = us0
us1

· · ·
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Similarly, if u = u0u1u2 · · ·un is a finite word, we set

u[s] = us0
us1

· · ·usk

where k is the largest integer such that sk ≤ n < sk+1. Thus, for instance, if s
is the sequence of squares, abracadabra[s] = abcr.

By extension, if L is a language (resp. a set of infinite words), we set

L[s] = {u[s] | u ∈ L}
A filter s preserves regularity if, for every regular language L, the language
L[s] is regular. The filtering problem is to characterize the regularity-preserving
filters.

The removal and the filtering problems are instances of a more general ques-
tion: find out whether a given operator on languages preserves regular lan-
guages. The main idea of [13, 14] to solve this kind of problem is to write a
n-ary operator Ω on languages as the inverse of some transduction τ : A∗ →
A∗ × · · · × A∗, in such a way that, for all languages L1, . . . , Ln of A∗,

Ω(L1, . . . , Ln) = τ−1(L1 × · · · × Ln)

and then to show that τ is a continuous.
Let us try this idea on the removal and the filtering problems. As a first

step, we have to express P (S, L) and L[s] as the inverse image of L under a
suitable transduction.

We first consider the removal problem. Given a subset S of N
2, we claim

that P (S, L) = σ−1
S (L), where σS : A∗ → A∗ is the removal transduction of S

defined by σS(u) = uAS(|u|). Indeed, we have

σ−1
S (L) = {u ∈ A∗ | uAS(|u|) ∩ L 6= ∅}

= {u ∈ A∗ | there exists v ∈ A∗ such that (|u|, |v|) ∈ S and uv ∈ L}
= P (S, L)

Let us now turn to the filtering problem. Let s be a filter. Then L[s] = τ−1
s (L)

where τs : A∗ → A∗ is the filtering transduction of s defined by

τs(a0a1 · · · an) = As0a0A
s1−s0−1a1 · · ·Asn−sn−1−1an(1 ∪ A)sn+1−sn−1

Observe that (1∪A)k = 1∪A∪A2∪ . . .∪Ak . It remains to find out when σS and
τs are continuous. To show the continuity of a given transduction τ : A∗ → M ,
a standard technique is to prove that τ is rational or at least representable
[13, 14].

Unfortunately, except for some special values of S and s, neither σS nor τs

is a rational or even a representable transduction and the methods of [13, 14]
cannot be applied directly. To overcome this difficulty, we first need to introduce
our second major tool, the residual properties.

4 Residual properties

4.1 Residually rational transductions

A transduction τ : A∗ → M is residually rational if, for any morphism ϕ : M →
F , where F is a finite monoid, the transduction ϕ ◦ τ : A∗ → F is rational. The
next proposition gives a useful characterisation of these transductions.
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Proposition 4.1 A transduction τ : A∗ → M is residually rational if and only
if it is continuous.

Proof. Suppose that τ is residually rational and let R ∈ Rec(M). By definition,
there exists a morphism ϕ from M onto a finite monoid F and a subset P of F
such that R = ϕ−1(P ).

Since τ is residually rational, ϕ ◦ τ is a rational subset of A∗ × F . Now F is
finite, and thus P is a recognizable subset of F . By Mezei’s theorem, A∗×P is a
recognizable subset of A∗×F and by Theorem 2.4, the set S = (ϕ◦τ)∩(A∗×P )
is a rational subset of A∗×F . Since S =

⋃

x∈P τ−1(ϕ−1(x))×{x}, the projection
of S on A∗ is τ−1(R). Since rational subsets are closed under morphisms, τ−1(R)
is a rational subset of A∗.

Conversely, suppose that, for every R ∈ Rec(M), τ−1(R) ∈ Rat(A∗). We
claim that τ is residually rational. Let F be a finite monoid and let ϕ : M → F
be a morphism. Then

ϕ ◦ τ =
⋃

x∈F

τ−1(ϕ−1(x)) × {x}

Now, for each x ∈ F , ϕ−1(x) is a recognizable subset of M and thus τ−1(ϕ−1(x))
is rational. Since {x} is a rational subset of F , τ−1(ϕ−1(x)) × {x} is a rational
subset of A∗ × F and thus ϕ ◦ τ is rational.

A consequence of Proposition 4.1 is the following.

Corollary 4.2 Every rational transduction is residually rational.

Proof. It follows from Propositions 4.1 and 2.6, applied to τ−1.

The representable transductions, introduced in [13, 14], are other examples
of residually rational transductions.

4.2 Residually ultimately periodic sequences

Let M be a monoid. A sequence (sn)n≥0 of elements of M is residually ultimately
periodic (r.u.p.) if, for each monoid morphism ϕ from M into a finite monoid
F , the sequence ϕ(sn) is ultimately periodic.

We are mainly interested in the case where M is the additive monoid N of
non negative integers. The following connexion with regulators was established
in [9, 11, 17, 21].

Proposition 4.3 A sequence (sn)n≥0 of non negative integers is residually ul-
timately periodic if and only if the function n → sn is continuous.

The finite quotients of N are the multiplicative cyclic monoids

Nt,p = {1, x, x2, . . . , xt+p−1}

presented by the relation xt+p = xt. In other words, Nt,p is the quotient of N

by the monoid congruence ≡t,p defined as follows:

x ≡t,p y if and only if

{

x = y if x < t or y < t

x ≡ y (mod p) otherwise
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The structure of Nt,p is represented in Figure 2.

•1 •x •x
2

. . . . . .

&%
'$

xt+p = xt

•

xt+1

• xt+2

•

xt+p−1
•

Figure 2: The monoid Nt,p.

It is well-known that the subsemigroup {xt, . . . , xt+p−1} is isomorphic to the
cyclic group Z/pZ and in particular, contains an idempotent.

The two special cases t = 0 and p = 1 are worth a separate treatment. For
t = 0, the congruence ≡t,p is simply the congruence modulo p. For p = 1,
the congruence ≡t,1, called the congruence threshold t, is defined by x ≡t,1 y if
and only if min(x, t) = min(y, t). Thus threshold counting can be viewed as a
formalisation of children counting: zero, one, two, three, . . . , many.

A sequence s of non-negative integers is said to be ultimately periodic modulo
p if, for each monoid morphism ϕ : N → Z/pZ, the sequence un = ϕ(sn) is
ultimately periodic. It is equivalent to state that there exist two integers m ≥ 0
and r > 0 such that, for each n ≥ m, un ≡ un+r (mod p). A sequence is said to
be cyclically ultimately periodic (c.u.p.) if it is ultimately periodic modulo p for
every p > 0. These sequences are called ultimately periodic reducible in [17, 18].

Example 4.1 The sequences n2 and n! are both cyclically ultimately periodic.
Indeed, for every p > 0, and for every n ≥ p, (n + p)2 ≡ n2 (mod p) and n! ≡ 0
(mod p).

Example 4.2 It is shown in [18] that the sequence b√nc is not cyclically ulti-
mately periodic. Indeed, this sequence is constant on any interval [n2, (n + 1)2[
and thus cannot be ultimately periodic modulo p (for any p).

Example 4.3 The Catalan numbers cn are defined by cn = 1
n+1

(
2n
n

)
, for n ≥ 0.

The sequence of Catalan numbers is not cyclically ultimately periodic. Indeed,
let ν2(m) by the highest power of 2 that divides m. Then it is well-known that
ν2(

(
2n

n

)
) = 2β(n), where β(n) is the number of 1’s in the binary expansion of n.

It follows that ν2(
(
2n

n

)
) = 2 if and only if n is a power of 2, and

(
2n

n

)
is divisible

by 4 otherwise.

Similarly, a sequence s of non-negative integers is said to be ultimately pe-
riodic threshold t if, for each monoid morphism ϕ : N → Nt,1, the sequence
un = ϕ(sn) is ultimately periodic. It is equivalent to state that there exist two
integers m ≥ 0 and r > 0 such that, for each n ≥ m, min(un, t) = min(un+r, t).

Example 4.4 For each integer n ≥ 0, denote by β(n) the number of 1’s in the
binary expansion of n. The first values are

n 0 1 2 3 4 5 6 7 8 9 · · ·
β(n) 0 1 1 2 1 2 2 3 1 1 · · ·

Of course, β(n) = 1 if and only if n is a power of 2, and so the sequence β(n) is
not ultimately periodic with threshold t for any t > 1.
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Proposition 4.4 A sequence of non negative integers is residually ultimately
periodic if and only if it is cyclically ultimately periodic and ultimately periodic
threshold t for all t ≥ 0.

Proof. Let (un)n≥0 be a sequence which is ultimately periodic modulo p for
all p > 0 and ultimately periodic threshold t for all t ≥ 0. Let ϕ : N → Nt,p be
a morphism and let vn = ϕ(un). Denote by e the identity of the cyclic group
G = {xt, . . . , xt+p−1}. Then the map α : Nt,p → G defined by α(s) = se is a
monoid morphism. Similarly, the map β : Nt,p → Nt,1 defined by

β(xk) =

{

xk if k < t

xt otherwise

is a monoid morphism. Note that if x and y are two elements of Nt,p such that
α(x) = α(y) and β(x) = β(y), then x = y. Now, by assumption, the sequences
α(vn) and β(vn) are ultimately periodic. That is, there exist integers s, t, p, q
such that, for all n ≥ s, α(vn+p) = α(vn) and, for all n ≥ t, β(vn+q) = β(vn).
It follows that for all n ≥ max(s, t), α(vn+pq) = α(vn) and β(vn+pq) = β(vn)
and thus vn+pq = vn. Therefore vn is ultimately periodic.

The next proposition gives a very simple criterion to generate sequences that
are ultimately periodic threshold t for all t.

Proposition 4.5 A sequence (un)n≥0 of integers such that limn→∞ un = +∞
is ultimately periodic threshold t for all t ≥ 0.

Proof. Let t ≥ 0. Since limn→∞ un = ∞, there exists an integer n0 such that,
for all n ≥ n0, un ≥ t. It follows that min(un, t) is ultimately equal to t.

Example 4.5 The sequences n2 and n! are residually ultimately periodic. In-
deed, we have already seen they are cyclically ultimately periodic. Since they
both tend to infinity, Proposition 4.5 shows they are ultimately periodic thresh-
old t for each t ≥ 0 and Proposition 4.4 can be applied.

The sequence
(
2n

n

)
is ultimately periodic threshold t for all t, but is not

cyclically ultimately periodic (see Example 4.3).
Let us mention a last example, first given in [5]. Let bn be a non-ultimately

periodic sequence of 0 and 1. The sequence un = (
∑

0≤i≤n bi)! is residually
ultimately periodic. It follows that the sequence ∂u is cyclically ultimately
periodic. However, it is not residually ultimately periodic since min((∂u)n, 1) =
bn.

The class of cyclically ultimately periodic functions has been studied by
Siefkes [18], who gave in particular a recursion scheme for producing such func-
tions. The class of residually ultimately periodic sequences was also thoroughly
studied [5, 9, 11, 17, 21]. Their properties are summarized in the next proposi-
tion.

Theorem 4.6 [21, 5] Let (un)n≥0 and (vn)n≥0 be r.u.p. sequences. Then the
following sequences are also r.u.p.:

10



(1) (composition) uvn
,

(2) (sum) un + vn,

(3) (product) unvn,

(4) (difference) un − vn provided that un ≥ vn and lim
n→∞

(un − vn) = +∞,

(5) (exponentiation) uvn
n ,

(6) (generalized sum)
∑

0≤i≤vn
ui,

(7) (generalized product)
∏

0≤i≤vn
ui.

In particular, the sequences nk and kn (for a fixed k), are residually ultimately
periodic.

The sequence 222
.. .2

(exponential stack of 2’s of height n) is also considered
in [17]. It is also a r.u.p. sequence, according to the following result.

Proposition 4.7 Let k be a positive integer. Then the sequence un defined by
u0 = 1 and un+1 = kun is r.u.p.

Proof. Since un tends to infinity, it suffices, by Proposition 4.5, to show that
un is cyclically ultimately periodic. But this follows from the recursion scheme
given in [18].

The existence of non recursive, r.u.p. sequences was established in [17]: if
ϕ : N → N is a strictly increasing, non recursive function, then the sequence
un = n!ϕ(n) is non recursive but is residually ultimately periodic. The proof is
similar to that of Example 4.5.

5 Differential sequences

An integer sequence is called differentially residually ultimately periodic (d.r.u.p.
in abbreviated form), if its differential sequence is residually ultimately periodic.

What are the connections between d.r.u.p. sequences and r.u.p. sequences?
First, the following result holds:

Proposition 5.1 [5, Corollary 28] Every d.r.u.p. sequence is r.u.p.

Example 4.5 shows that the two notions are not equivalent. However, if only
cyclic counting were used, it would make no difference:

Proposition 5.2 Let p be a positive number. A sequence is ultimately periodic
modulo p if and only if its differential sequence is ultimately periodic modulo p.

Proof. Let s = (sn)n≥0 be an integer sequence. If it is ultimately periodic
modulo p, then there exist integers t and q such that, for each n ≥ t, sn+q ≡ sn

(mod p). It follows that sn+q+1 − sn+q ≡ sn+1 − sn (mod p), showing that the
differential sequence of s is ultimately periodic modulo p.

Suppose now that ∂s is ultimately periodic modulo p. Then the proof of
[5, Lemma 27] shows that the sequence sn =

∑

0≤i≤n−1(∂s)i is also ultimately
periodic modulo p.

11



There is a special case for which the notions of r.u.p. and d.r.u.p. sequences
are equivalent. Indeed, if the differential sequence is bounded, Proposition 2.1
can be completed as follows.

Lemma 5.3 If a syndetic sequence is residually ultimately periodic, then its
differential sequence is ultimately periodic.

Proof. Let s be a syndetic sequence and let p be an upper bound for ∂s. If
s is r.u.p., Proposition 5.2 shows that ∂s is ultimately periodic modulo p. But
since p is an upper bound for ∂s, ∂s is actually ultimately periodic.

Putting everything together, we obtain

Proposition 5.4 Let s be a syndetic sequence of non-negative integers. The
following conditions are equivalent:

(1) s is residually ultimately periodic,

(2) ∂s is residually ultimately periodic,

(3) ∂s is ultimately periodic.

Proof. Proposition 5.1 shows that (2) implies (1). Furthermore (3) implies (2)
is trivial. Finally, Lemma 5.3 shows that (1) implies (3).

Proposition 5.5 Let S be an infinite syndetic subset of N. The following con-
ditions are equivalent:

(1) S is regular,

(2) the enumerating sequence of S is residually ultimately periodic,

(3) the differential sequence of S is residually ultimately periodic,

(4) the differential sequence of S is ultimately periodic.

Proof. The last three conditions are equivalent by Proposition 5.4 and the
equivalence of (1) and (4) follows from Proposition 2.1.

The class of d.r.u.p. sequences was thoroughly studied in [5].

Theorem 5.6 [5, Theorem 22] Let (un)n≥0 and (vn)n≥0 be differential residu-
ally ultimately periodic sequences. Then the following sequences are also differ-
ential residually ultimately periodic:

(1) (sum) un + vn,

(2) (product) unvn,

(3) (difference) un− vn provided that un ≥ vn and lim
n→∞

(∂u)n − (∂v)n = +∞,

(4) (exponentiation) uvn
n ,

(5) (generalized sum)
∑

0≤i≤vn
ui,

(6) (generalized product)
∏

0≤i≤vn
ui.

12



6 A solution to the filtering problem

In this section, we solve completely the filtering problem. Let us start by giving
a necessary condition to be a regularity-preserving filter.

Proposition 6.1 Every regularity-preserving filter is differentially residually
ultimately periodic.

Proof. Let s be a regularity-preserving filter. By Proposition 4.4 and 5.2, it
suffices to prove the following properties:

(1) for each p > 0, s is ultimately periodic modulo p,

(2) for each t ≥ 0, ∂s is ultimately periodic threshold t.

(1) Let p be a positive integer and let A = {0, 1, ...(p − 1)}. Let u = u0u1 · · ·
be the infinite word whose i-th letter ui is equal to si modulo p. At this stage,
we shall need two elementary properties of ω-rational sets. The first one states
that an infinite word u is ultimately periodic if and only if the ω-language {u}
is ω-rational. The second one states that, if L is a regular language of A∗, the
set of infinite words

−→
L = {u ∈ Aω | u has infinitely many prefixes in L}

is ω-rational.
We claim that u is ultimately periodic. Define L as the set of prefixes of the

infinite word (0123 · · · (p− 1))ω. Then L[s] is the set of prefixes of u. Since L is

regular, L[s] is regular, and thus the set
−→
L[s] is ω-rational. But this set reduces

to {u}, which proves the claim. Therefore, the sequence (sn)n≥0 is ultimately
periodic modulo p.
(2) The proof is quite similar to that of (1), but is slightly more technical. Let
t be a non negative integer and let B = {0, 1, . . . , t} ∪ {a}, where a is a special
symbol. Let d = d0d1 · · · be the infinite word whose i-th letter di is equal to
si+1 − si − 1 threshold t. Let us prove that d is ultimately periodic. Consider
the regular prefix code

P = {0, 1a, 2a2, 3a3, . . . , tat, a}

Then P ∗[s] is regular, and so is the language R = P ∗[s] ∩ {0, 1, . . . , t}∗. We
claim that, for each n > 0, the word pn = d0d1 · · · dn−1 is the maximal word of
R of length n in the lexicographic order induced by the natural order 0 < 1 <
. . . < t. First, pn = u[s], where u = as0d0a

s1−s0−1d1 · · · dn−1a
sn−sn−1−1 and

thus pn ∈ R. Next, let p′n = d′0d
′
1 · · · d′n−1 be another word of R of length n.

Then p′n = u′[s] for some word u′ ∈ P ∗. Suppose that p′n comes after pn in the
lexicographic order. We may assume that, for some index i ≤ n − 1, d0 = d′0,
d1 = d′1, . . . , di−1 = d′i−1 and di < d′i. Since u′ ∈ P ∗, the letter d′

i, which occurs
in position si in u′, is followed by at least d′

i letters a. Now d′
i > di, whence

di < t and di = si+1 − si − 1. It follows in particular that in u′, the letter in
position si+1 is an a, a contradiction, since u′[s] contains no occurrence of a.
This proves the claim.

Let now A be a finite deterministic trim automaton recognizing R. It follows
from the claim that in order to read d in A, starting from the initial state, it
suffices to choose, in each state q, the unique transition with maximal label in the
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1 2 3 . . . t

t + 1

t + 2

t + 3

t + n − 3

t + n − 2

t + n − 1
Sd0 Sd1 Sd2

Sdt

Sdt+1

Sdt+2

Sdt+3

Sdt+n−3

Sdt+n−2

Sdt+n−1

a | Rd0 ā a | Rd1 ā a | Rdt−1 ā

a | Rdt ā

a | Rdt+1 ā a | Rdt+2 ā

a | Rdt+n−3 āa | Rdt+n−2 ā

a | Rdt+n−1 ā

.
.
.

.
.
.

Figure 3: A transducer realizing γs.

lexicographic order. It follows at once that d is ultimately periodic. Therefore,
the sequence (∂s) − 1 is ultimately periodic threshold t, and so is (∂s).

We now show that the converse to Proposition 6.1 is true.

Proposition 6.2 Let s be a differentially residually ultimately periodic sequence.
Then the filtering transduction τs is residually rational.

Proof. Let d be the sequence defined by d0 = s0 and dn = sn − sn−1 − 1 for
n > 0. Since s is differentially residually ultimately periodic, d is residually
ultimately periodic. Let α be a morphism from A∗ into a finite monoid F and
γs = α ◦ τs. Setting R = α(A), S = 1∪R and ā = α(a) for each a ∈ A, one has

γs(a0a1 · · · an) = Rd0 ā0R
d1 ā1 · · ·Rdn ānSdn+1

Finally, let ϕ : N → P(F ) be the monoid morphism defined by ϕ(n) = Rn. Since
P(F ) is finite and dn is residually ultimately periodic, the sequence ϕ(dn) = Rdn

is ultimately periodic. Therefore, there exist two integers t ≥ 0 and p > 0 such
that, for all n ≥ t, Rdn+p = Rdn . It follows that the transduction γs can be
realized by the transducer T represented in Figure 3, in which a stands for a
generic letter of A.

Formally, T = (Q, A,P(F ), I, F, E) with Q = {1, . . . , t + n − 1}, I1 = {1}
and Iq = ∅ for q 6= 1, Fq = Sq−1 for q ∈ Q, and the transitions are of the
form (p, a, Rp−1ā, p + 1), with a ∈ A and p ∈ Q (p + 1 is of course calculated
modulo ≡t,p). Therefore γs is rational and thus τs is residually rational.

Putting Proposition 6.1 and Proposition 6.2 together, we obtain the charac-
terization announced in the introduction.

Theorem 6.3 A filter preserves recognizability if and only if it is differentially
residually ultimately periodic.
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7 A solution to the removal problem

A solution to the removal problem was given in [17]. In this section, we only
give a proof of the fact that if the relation S is continuous, then the transduction
σS is also continuous. In view of Proposition 4.1, it is equivalent to prove the
following result.

Proposition 7.1 Let S be a continuous relation on N. The removal transduc-
tion σS is residually rational.

Proof. Let α be a morphism from A∗ into a finite monoid F . Let βS = α ◦ σS

and R = α(A). Since the monoid P(F ) is finite, the sequence (Rn)n≥0 is
ultimately periodic. Therefore, there exist two integers r ≥ 0 and q > 0 such
that, for all n ≥ r, Rn = Rn+q. Consider the following subsets of N:

K0 = {0} K1 = {1} . . . Kr−1 = {r − 1}
Kr = {r, r + q, r + 2q, . . .}

Kr+1 = {r + 1, r + q + 1, r + 2q + 1, . . .}
...

Kr+q−1 = {r + q − 1, r + 2q − 1, r + 3q − 1, . . .}

The sets Ki, for i ∈ {0, 1, . . . , r+q−1} are regular and since S is continuous, each
set S−1(Ki) is also regular. By Proposition 2.1, there exist two integers ti ≥ 0
and pi > 0 such that, for all n ≥ ti, n ∈ S−1(Ki) if and only if n+pi ∈ S−1(Ki).
Setting

t = max
0≤i≤r+q−1

ti and p = lcm
0≤i≤r+q−1

pi,

we conclude that, for all n ≥ t and for 0 ≤ i ≤ r + q − 1, n ∈ S−1(Ki) if and
only if n + p ∈ S−1(Ki), or equivalently

S(n) ∩ Ki 6= ∅ ⇐⇒ S(n + p) ∩ Ki 6= ∅

It follows that the sequence Rn of P(F ) defined by Rn = RS(n) is ultimately
periodic of threshold t and period p, that is, Rn = Rn+p for all n ≥ t. Conse-
quently, the transduction βS can be realized by the transducer represented in
Figure 4, in which a stands for a generic letter of A. Therefore βS is rational
and σS is residually rational.
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. . .

R0 R1 R2

Rt

Rt+1

Rt+2

Rt+3

Rt+n−3

Rt+n−2

Rt+n−1

a | a a | a a | a

a | a

a | a a | a

a | aa | a

a | a

.
.
.

.
.
.

Figure 4: A transducer realizing βS .

8 Further properties of d.r.u.p. sequences

In this section, we come back to the filtering problem. Filters were defined
as strictly increasing sequences, but we could have as well used subsets of N.
Indeed, if S is an infinite subset of N, it suffices to set L[S] = L[s] where s is
the enumerating sequence of S.

In this setting, the question arises to characterize the filters S such that, for
every regular language L, both L[S] and L[N \S] are regular. By Theorem 6.3,
the sequences defined by S and its complement should be d.r.u.p. This implies
that S is regular, according to the following slightly more general result.

Proposition 8.1 Let S and S ′ be two infinite subsets of N such that S ∪ S ′

and S ∩ S′ are regular. If the enumerating sequence of S is d.r.u.p. and if the
enumerating sequence of S ′ is r.u.p., then S and S′ are regular.

Proof. Let s (resp. s′) be the enumerating sequence of S (resp. S ′). First
assume that S′ is syndetic. By Proposition 5.5, S ′ is regular. Now

S =
(

(S ∪ S′) \ S′
)

∪ (S ∩ S′)

and since regular sets are closed under boolean operations, S is regular.
Assume now that S′ is not syndetic. Since S∪S′ is an infinite regular subset

of N, it contains an arithmetic sequence, say un = a + rn, for some a ≥ 0 and
r > 0. Since s is d.r.u.p., the sequence ∂s, counted threshold r, is ultimately
periodic. Therefore, there exist n0 and p such that, for all n ≥ n0

min((∂s)n, r) = min((∂s)n+p, r) (1)

Since S′ is not syndetic, one can find a gap of size p in S ′. In other words, there
is an interval I = [b, b + pr] such that I ∩ S ′ = ∅. Without loss of generality, we
may assume that b ≥ a and b ≥ sn0

. Now, at least pr elements of the sequence
un are in I . These elements belong to S ∪ S ′, and even to S, since I and S ′ are
disjoint. Therefore |I ∩ S| ≥ p. Since S contains all the elements a + nr which
are in I , ∂s is bounded by r on I . It follows now from (1) that ∂s is ultimately
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periodic. It follows by Proposition 5.5 that S is regular. We conclude that S ′

is regular by the same argument as in the syndetic case, the role of S and S ′

being swapped.

The following counter-example shows that the conclusion of Proposition 8.1
no longer holds if S′ is only assumed to be residually ultimately periodic. Define
a partition {S, S′} of N as follows. Both sets consist of blocks of consecutive
integers, obtained by distributing the integers between n! and (n + 1)! into n
blocks of length n!, which are then alternatively allocated to S and S ′. Thus
we have, with a concise notation,

S = {0, 2, 3, 6− 11, 18− 23, 48− 71, 96− 119, . . .}
S′ = {1, 4, 5, 12− 17, 24− 47, 72− 95, 120− 239, . . .}

More precisely, given a positive integer m, there is a unique triple of integers
(n, k, r) with n > 0 and k > 0 such that

m = kn! + r, 1 ≤ k ≤ n and 0 ≤ r < n!

We use this decomposition of m to define S and S ′ formally

S = {0} ∪ {kn! + r | 1 ≤ k ≤ n, 0 ≤ r < n! and bn/2c ≡ k (mod 2)}
S′ = {kn! + r | 1 ≤ k ≤ n, 0 ≤ r < n! and bn/2c 6≡ k (mod 2)}

Now, neither S nor S′ is ultimately periodic, but the sequences defined by S
and S′ are both residually ultimately periodic.

We let a last statement as an exercise to the reader.

Proposition 8.2 Let S1, . . . , Sn be infinite subsets of N such that the sets
⋃

1≤i≤n Si and Si ∩ Sj , for i 6= j, are regular. If, for each i, the enumerat-
ing sequence of Si is d.r.u.p., then the sets Si are all regular.

9 Filters and context-free languages

We characterised the filters preserving regular languages. What about filters
preserving context-free languages? The answer is simple:

Theorem 9.1 A filter s preserves context-free languages if and only if its dif-
ferential sequence is ultimately periodic.

Proof. Let s = (s0, s1, . . .) be an infinite filter that preserves context-free lan-
guages. Consider the context-free language L over the alphabet {a, b, c, d} given
by

L = {andu | n ≥ 1, u ∈ {b, c}∗, |u|b = n} ,

and define M by M = L[s] ∩ a+d{b, c}∗. We claim that

M = {andv | n ≥ 1, v ∈ {b, c}∗, 0 ≤ |v|b ≤ sn − 1}, .

Indeed, a word in M has the form w = andv for some n ≥ 1 and v ∈ {b, c}∗. A
word x in L such that w = x[s] has the form

x = asn−1dy
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with y ∈ {b, c}∗ and |y|b = sn − 1. It follows that 0 ≤ |v|b ≤ sn − 1 and, by
choosing the word y in an appropriate way, any value between 0 and sn − 1 can
be obtained for |v|b. Consider the projection ϕ : {a, b, c, d}∗ → {a, b}∗. Then

N = ϕ(M) = {anbm | 0 ≤ m ≤ sn − 1}, .

Since s preserves context-free languages, the language L[s], and consequently
also M and N are context-free. Because N is a context-free bounded language
over two letters, this is equivalent to the condition that the set

H = {(n, m) | 0 ≤ m ≤ sn − 1}

is semi-linear or, equivalently, is a rational subset of the free commutative
monoid N

2 (see e.g. [7, 15]).
Rational subset of N

2 are closed under complementation, so the set H ′ =
(H + {(0, 1)}) \ H = {(n, sn) | n ≥ 0} is rational. Also, rational subsets of N

2

have unambiguous representations, that is H ′ is the finite disjoint union of sets
of the form (p0, q0) +

∑h

i=1(pi, qi)N, and in our case even with h = 1. Indeed,
otherwise there are elements (p0, q0) + p2(p1, q1) and (p0, q0) + p1(p2, q2) in H ′

and p2(p1, q1) = p1(p2, q2) contradicting the unambiguity.
It follows that H ′ is a finite disjoint union of sets of the form (p0, q0)+(p, q)N.

Let P be the lcm of the integers p in these expressions. Then n 7→ sn is a linear
affine function on each arithmetic progression mod P .

10 Conclusion

We solved the filtering and the removal problems by using the new concept of
residually rational transduction. There are several advantages to this approach.

First, it can be applied to solve most of the automata-theoretic puzzles pro-
posed in the literature [8, 9, 10, 11, 13, 14, 16, 17, 19]. Next, this approach
leads to explicit computations. For instance, given a sequence s and a finite au-
tomaton recognizing a language L, one can compute an automaton recognizing
L[s]. More generally, given an operator on languages Ω, it permits to compute
a monoid recognizing Ω(L1, . . . , Ln), given the syntactic monoids of L1, . . . , Ln.
This is a powerful tool for the study of operators on varieties of recognizable
languages.

It is easy to create more sophisticated examples, and we do not resist to the
temptation to add our own puzzle: show that if L is a recognizable language of
A∗, the set

{u ∈ A∗ | u222
. . .2

︸ ︷︷ ︸
|u| times

∈ L}

is recognizable. The solution follows from the results of this paper.
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