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Abstract

Background: The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to

commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be

catalyzed by either of two enzymes: (i) the classical N-acetylglutamate synthase (NAGS, gene argA)

first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also

present in vertebrates, or (ii) the bifunctional version of ornithine acetyltransferase (OAT, gene

argJ) present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising

aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two

marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH) is fused

to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of

NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified

in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain

and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for

patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis.

Results: The argH-A fusion, designated argH(A), and discovered in Moritella was found to be present

in (and confined to) marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most

of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas

haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on

the arg(A) sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X

'fusions' where X stands for a homologue of arg(A), we retrieved a large number of Bacteria and

several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and

Deinococcus radiodurans, the arg(A)-like sequence clusters with argH in an operon-like fashion. In this

group of sequences, we find the short novel NAGS of the type identified in M. tuberculosis. Among

these organisms, at least Thermus, Mycobacterium and Streptomyces species appear to rely on this

short NAGS version for arginine biosynthesis.
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Conclusion: The gene-enzyme relationship for the first committed step of arginine biosynthesis

should now be considered in a new perspective. In addition to bifunctional OAT, nature appears

to implement at least three alternatives for the acetylation of glutamate. It is possible to propose

evolutionary relationships between them starting from the same ancestral N-acetyltransferase

domain. In M. tuberculosis and many other bacteria, this domain evolved as an independent enzyme,

whereas it fused either with a carbamate kinase fold to give the classical NAGS (as in E. coli) or with

argH as in marine gamma proteobacteria. Moreover, there is an urgent need to clarify the current

nomenclature since the same gene name argA has been used to designate structurally different

entities. Clarifying the confusion would help to prevent erroneous genomic annotation.

Background
Until recently the de novo arginine biosynthetic pathway
(Figs. 1A and 1B) was thought to conform to a simple type
of one gene-one enzyme relationship even if it had been
known for a long time that the fifth step, the conversion
of N-α-acetyl-L-ornithine into L-ornithine, could be cata-
lyzed by different enzymes. An ornithine acetyltransferase
(OAT, ArgJ; EC 2.3.1.35) recycles the transfer of the acetyl
group from acetylornithine to glutamate in most organ-
isms (Bacteria, Archaea and Eukaryotes), whereas an
acetylornithinase (AO; ArgE; EC 3.5.1.16) splits the acetyl
group from acetylornithine in enteric and vibrio-like bac-
teria as well as in Xylella fastidiosa, Xanthomonas campestris,
Myxococcus xanthus and, possibly, the crenarchaeon Sul-
folobus solfataricus (see [1] and [2] for reviews).

Three findings concerning the status of acetylated inter-
mediates in arginine synthesis and the enzymes involved
in their genesis have rendered this picture more intricate.
(i) In X. campestris and Bacteroides fragilis, an acetylorni-
thine carbamoyltransferase was found to replace the
canonical ornithine carbamoyltransferase (OTC; ArgF; EC
2.1.3.3) [3,4]; (ii) In Bacillus stearothermophilus, and Ther-
motoga neapolitana, OAT is bifunctional: in addition to
recycling the acetyl group it also synthesizes N-
acetylglutamate directly from acetylCoA and glutamate,
the reaction catalyzed by N-acetylglutamate synthase
(NAGS; ArgA; EC 2.3.1.1) [5]. Since the genomes of their
closely related organisms, B. subtilis and T. maritima
respectively, appear to lack a NAGS, the question arises
whether some organisms use a bifunctional OAT instead
of a NAGS to synthesize acetylglutamate [[5] and refer-
ences therein, [6]]. (iii) Two novel species of marine
gamma proteobacteria belonging to the genus Moritella,
display an unusual gene structure for argininosuccinase
(ArgH; EC 4.3.2.1), the last enzyme of the pathway: argH
gene is extended by a ± 170 codon-long stretch which can
complement E. coli mutants deficient in NAGS [7,8]. This
new gene was called argH(A). The (A) sequence is homol-
ogous to the C-terminal domain of Escherichia coli NAGS:
this domain contains an acetylCoA N-acyltransferase fold
(see [1]) whereas the N-terminal domain of E. coli NAGS
presents striking similarities with the carbamate kinase-

like domain of N-acetylglutamate kinase (NAGK, EC
2.7.2.8., ArgB) [9], the next enzyme in the pathway. The
recent explosion of genomic data has enabled us to find
other organisms endowed with the argH(A) fusion as well
as many instances where a sequence homologous to
arg(A) is not fused to argH. Moreover, as this work was in
progress, a new functional ArgA protein (gene Rv2747)
has been characterized in Mycobacterium tuberculosis [10].
Interestingly, the cognate gene is found to be homologous
to Moritella arg(A). These findings have important impli-
cations regarding the formation of acetylated intermedi-
ates in arginine biosynthesis and the evolution of the
cognate enzymes.

Results and Discussion
Occurrence of the argH(A) gene

While studying arginine biosynthetic genes in two vibrio-
like strains (later characterized as novel psychropiezo-
philic Moritella species M. abyssi and M. profunda [8]) we
found most arg genes clustered into a divergent operon-
like structure composed of two wings: a leftward one com-
prising the sole argE gene and a rightward one
argCBFGH(A) where argH is extended by a ± 170-long
codon stretch, in translational continuity. This extension
was shown to complement an E. coli auxotroph deficient
in NAGS [7], demonstrating that it encodes an ArgA-like
activity (EC 2.3.1.1).

We searched for the presence of the argH(A) fusion gene
homologues in completely sequenced microbial
genomes. Blast analyses identified nine bacteria that are
phylogenetically related to Moritella. This is shown in Fig.
3, which combines a simplified and partial version of an
extensive 16S rRNA tree for Alteromonas and Vibrio-like
bacteria [11] with genomic information about the struc-
ture of the arg gene cluster. Most of these organisms dis-
play the divergent pattern characteristic of vibrio-like and
enteric bacteria, which contrasts with the more scattered
pattern encountered in other branches of the gamma pro-
teobacteria [2,7]. There are differences: the shorter version
clusters argE with argCBH, as in E. coli and Yersinia pestis,
whereas the right wing is longer in several other bacteria.
Thus, argCBGH was probably present already in the com-



BMC Genomics 2006, 7:4 http://www.biomedcentral.com/1471-2164/7/4

Page 3 of 12

(page number not for citation purposes)

mon ancestor to clades 1 and 2, and argCBFGH in the
ancestor to clade 2. Note that argE is not clustered with
other arg genes in Shewanella oneidensis and Photobacterium
profundum.

In conclusion:

(i) argH(A) appears to be restricted to this particular
group of marine Bacteria. It is noticeable that V. cholerae,
which is not a marine organism, does not have argH(A)
whereas the three marine Vibrio species do: V. fischeri, V.
vulnificus and V. parahaemolyticus. This pattern suggests
that the presence of argH(A) is the result of orthologous
transfer in diverging lines of descent sharing a common
habitat (the sea), perhaps accompanied by some lateral
transfer among them as discussed below. Fig 3 suggests
that the H(A) fusion occurred in an ancestor common to

clades 1 and 2, but this can not be ascertained without an
extensive search among the numerous members of this
group, in particular among different Idiomarina and Pseu-
doalteromonas species, as well as in the genera branching
early on this tree.

(ii) No correlation appears to exist between the presence
of argH(A) and either psychrophily or piezophily. Indeed
argH(A) was found among mesophiles (V. fischeri, V. vul-
nificus, V. parahaemolyticus), psychrophiles (Colwiella psy-
chrerythraea, Pseudoalteromonas haloplanktis), psychro-
piezophiles (P. profundum, M. abyssi, M. profunda) and
meso-piezophiles (Idiomarina loihiensis). As the cardinal
temperatures and hydrostatic pressures of these closely
related organisms actually overlap, lateral transfer among
them seems feasible even if the reality of the phenomenon
is beyond experimental proof.

The de novo arginine biosynthetic pathwayFigure 1
The de novo arginine biosynthetic pathway. Outline of the pathway; for each step (labeled by a number in a square) the 
following features are indicated: gene name, EC number, enzyme name and its abbreviation. 
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(iii) Sequences homologous to the full E. coli argA gene
were found in several of the organisms harboring the
H(A) fusion but not in I. loihiensis and P. haloplanktis (for
M. abyssi and M. profunda, their genomes have not yet
been sequenced). In I. loihiensis and P. haloplanktis, the (A)
sequence therefore does not appear to be functionally
redundant, which in turn suggests that these organisms,
which can grow in absence of arginine [12,13], depend
exclusively on domain (A) for the first step of arginine
biosynthesis.

Origin of argH(A)

The data suggest that argH(A) results from a fusion that
occurred between argH and a gene coding for an acetyl-
transferase able to acetylate L-glutamate in the N- posi-
tion. The fusion could have been selected for in an
organism devoid of a canonical NAGS, such as I. loihiensis
and P. haloplanktis, perhaps as the result of gene loss, or it

may reflect a more primordial event. Interestingly, in I.
loihiensis, the genes of the argCBFGH(A) cluster are tightly
coupled, either overlapping by 3 nt (argC and B, argF and
G), separated by 3 nt (argB and F) or by 4 (argG and H).
This arrangement suggests that, at the time the fusion orig-
inated, the capacity to derepress the recruited acetyltrans-
ferase from the rightward promoter of the operon may
have been essential and actually explains why this fusion
took place. In keeping with this hypothesis, the genome of
I. loihiensis and P. haloplanktis do contain a sequence
homologous to the E. coli argR regulatory gene.

Occurrence of arg(A)-like sequences with putative 

function in other organisms

If there were an N-acetyltransferase gene susceptible to
recruitment in a bacterium related to Idiomarina, it would
probably be present in many genomes. In order to test this
hypothesis we employed a two-step strategy. First, we

Reactions involving L-glutamateFigure 2
Reactions involving L-glutamate.  This figure has been drawn using the tools available at Metacyc [37].



BMC Genomics 2006, 7:4 http://www.biomedcentral.com/1471-2164/7/4

Page 5 of 12

(page number not for citation purposes)

screened prokaryotes for the presence of acetyltransferase
genes similar to the arg(A) sequence of M. abyssi (see
Methods). Fourty-four completely sequenced genomes
have homologous genes that were annotated as coding for
either a hypothetical protein or a putative acetyltrans-
ferase. These argX genes were aligned with the arg(A)
sequences and with the homologous acetyltransferase
domain of NAGS. A phylogenetic tree was computed from
this alignment using a maximum likelihood approach
and rooted with the acetyltransferase domain of classical
NAGS enzymes. Fig. 4 shows that the arg(A) sequences
form a monophyletic group which share a common
ancestor with a large group containing the short NAGS
version recently found in M. tuberculosis [10]. This tree
also shows the complex relationships between the differ-

ent paralogous argA-like sequences. For instance, V. para-
haemolyticus contains three related sequences: the fused
arg(A), an argX that is a remote paralogue to this arg(A),
and the classical argA (NAGS). It is not clear what are the
respective roles of these different paralogues in cell metab-
olism.

Furthermore, we fused these arg(A)-like sequences in silico
with argH sequences from the same organism in order to
build so-called argHX sequences. Since argH is in the the
last step of the pathway, and the (A) determinant in the
first one, we focused the search on organisms presumed to
possess the whole pathway and, took into account any
structural and/or functional significance of the associa-
tion of the two determinants. All 26 species found using

Phylogenetic relationships of species harbouring ArgH(A) fusionsFigure 3
Phylogenetic relationships of species harbouring ArgH(A) fusions. A simplified version of the 16S rRNA phylogenetic 
tree of Alteromonas- and Vibrio-like bacteria reconstructed by Ivanova et al.[11] has been drawn and enriched with the following 
information. On the right-hand side, available genomic information concerning arg genes; ppc refers to the gene for phosphoe-
nolpyruvate carboxylase, adjacent to argE in many of these organisms; nd: not determined. On the left-hand side, the putative 
content of the ancestral arg gene clusters are indicated for each deep node of this tree.
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Phylogenetic tree of the arg(A) homologuesFigure 4
Phylogenetic tree of the arg(A) homologues. The sequences have been collected, multiply aligned and used to recon-
struct an evolutionary tree as described in Methods. The tree has been rooted using the acetyltransferase domain of NAGS 
sequences as an outgroup (subtree indicated with yellow color). The two other subtrees corresponding to the Arg(A) and 
ArgX sequences are indicated with pink and blue colors, respectively. Species names are according to SwissProt conventions 
(the detailed list is shown in Table 1).
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this approach form a homogeneous group presenting the
following features: (i) they do not possess a multidomain
homologue of a NAGS protein, (ii) they contain an orni-
thine acetyltransferase (ArgJ) and (iii) they lack an acety-
lornithinase gene (ArgE). Thus, these 26 species should
use an alternative to NAGS in order to acetylate glutamate
and are presumed to recycle the transfer of the acetyl
group from acetylornithine to glutamate. In contrast, the
species retrieved in the first step of the screening, before
implementing the virtual fusion approach, form a wider
and less homogeneous group (Fig. 4), where NAGS and/
or ArgE can be found. This suggests that the virtual fusion
approach identifies a functionally significant group.

The different, virtual argHX sequences were further
aligned with their homologues argH(A) and an evolution-
ary tree was reconstructed using a maximum likelihood

approach (Fig 5). Note that the large size of argH (more
than 420 residues) and its relatively high degree of conser-
vation increase the overall similarities between the
argH(A) fusions. This could contribute to the topological
differences between the trees in Figs. 4 and 5. The phylo-
genetic analysis of the fusion approach displays intriguing
aspects:

i. The argH(A) fusions form a monophyletic group
branching close to homologous sequences present in the
genomes of both Thermus and Deinococcus, two phyloge-
netically related organisms. The two groups join at a node
position where the bootstrap value is less than 60 %, but
it is remarkable that the Thermus and Deinococcus
sequences (annotated as homologues of argH and a puta-
tive acetyltransferase gene), are actually adjacent, suggest-
ing that together they play the role of a functional

Phylogenetic tree of the ArgH(A) and ArgHX fusionsFigure 5
Phylogenetic tree of the ArgH(A) and ArgHX fusions. The sequences have been collected, multiply aligned and used to 
reconstruct an evolutionary tree as described in Methods. The grey circles indicate the bootstrap values for the deep nodes 
which are less than 60%. Species names are according to SwissProt conventions (the detailed list is shown in Table 1).
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analogue of argH(A). T. thermophilus argH (which over-
laps argG by 10 nt at the proximal end) and the putative
acetyltransferase gene are separated by only 2 nt, strongly
suggesting that the Thermus arg(A)-like sequence is part of
an argGH(A) operon in the arginine regulon of this organ-
ism [14]. In D. radiodurans the situation is similar but
more complex: no less than three putative acetyltrans-
ferase genes are adjacent to argG (the first one separated
by only 2 nt) while argH is very closely linked to another
three putative acetyltransferase genes; of these three it is
the last one (Q9RWI5_DEIRA Hypothetical protein
DR0683) that is retrieved by our homology search.

ii. The other part of the tree contains various prokaryotic
species including mesophilic Archaea. Clustering with
these Archaea, we note a clade of Actinobacteria including
M. tuberculosis. This is highly significant since the M. tuber-
culosis sequence was shown tocode for an enzyme whose
functional characterization was reported while this paper
was being prepared for publication: it displays acetylgluta-
mate synthetase activity [10] and is required for the
growth of its host as shown by previous high-density
mutagenesis [15].

An essential question is whether any other of these 26
prokaryotes harboring an arg(A)-like sequence actually
depend on it for acetylation of glutamate in vivo. We know
(see above) that the complete sequence of their genome
lacks a classical NAGS. The presumption would be even
stronger if these species possessed a monofunctional OAT,
and were thus unable to acetylate glutamate with acetyl-
CoA [5,16,17]. Currently, T. thermophilus and Streptomyces
coelicolor fulfill this second criterium [ibid, [18]]. The (A)-
like sequence of T. thermophilus moreover appears co-reg-

ulated with the argGH cluster. It is not known whether M.
tuberculosis OAT is monofunctional, but the fact that the
arg(A)-like sequence of this organism was shown to be
essential by transposon-mediated inactivation [15] actu-
ally suggests that it is. Since it is not yet possible to predict
in silico whether a particular OAT is bifunctional [19], bio-
chemical evidence is needed to decide which of the other
microorganisms actually depend on their arg(A)-like
sequence for arginine biosynthesis.

Comparative analysis of putative glutamate N-

acetyltransferases

The polypeptides encoded by the fused arg(A) sequences,
their X homologues and the C-terminal domain of ArgA
(NAGS) belong to the vast superfamily of GNC5-N-acetyl-
transferases (GNAT), all using acetylCoA as common
acetyl donor. Multiple alignment of these three categories
of homologous sequences (Fig. 6) indicates good conser-
vation of the four motifs which were previously identified
by comparing numerous members of this superfamily
[[20,21] and references therein]. Most GNAT acetyltrans-
ferases, including NAGS, proceed by a sequential mecha-
nism, i.e. form a ternary complex of enzyme, acetylCoA
and specific substrate, and not by a ping-pong mechanism
involving the formation of an acetylthioenzyme interme-
diate between acetylCoA and an active cysteine [21,22]. In
keeping with these observations, there is no strictly con-
served cysteine among the sequences reported in Fig.6.
More accurate prediction of catalytic residues is difficult
without a NAGS 3D-structure, in particular as regards the
glutamate binding site. The fact that Moritella arg(A) com-
plements an NAGS-inactivated mutant of E. coli [7] and
that pure M. tuberculosis ArgA acetylates glutamate in vitro
[10] confirms that such a site is present in these proteins

Conserved motifs in putative glutamate N-acetyltransferasesFigure 6
Conserved motifs in putative glutamate N-acetyltransferases. The homologues to the (A) domain of ArgH(A) of M. 
abyssi and belonging to six ArgH(A), three ArgHX and two ArgA proteins have been multiply aligned and edited in BioEdit soft-
ware [32]. A consensus sequence has been computed. Very strongly conserved residues(letters) and moderately conserved 
ones (stars) are indicated. The four motifs containing the residues identified by comparative analysis of N-acetyltransferases 
which use acetylCoA as donor of the acetyl group [20] and references therein] are underlined by thick lines and numbered. 
Species names are according to SwissProt conventions.

ARHA_VIBVU  DIGLFAVSEHQ~~~GLVTGCASLYIY~DSGLAEIRSLGIEAGWQRQGQGTAVVQYLIDKAKDMAIKKLFVLTRAP~EFFLKQNFVQTSKSLLPEKVLKDCDQCPRQHACDEVA

ARHA_PHOPR  DIGSFAVAEHH~~~GVVTGCASLYVY~DSGLAEIRSLGIEAGWQEQGQGKAIVEYLIEKAGQMAIKKVFVLTRLP~EFFMKQGFIPTSKSLLPEKVMKDCDRCPRQHACDEVA

ARHA_MORAB  AVGTFAVTEKH~~~NQVTGCASIYVY~DTGLAELRSLGIEPGYQGGGQGKAVVEYMLRKAEQMAIQKVFVLTRVP~EFFMKLGFRSTSKSMLPEKVLKDCDMCPRQHACDEVA

ARHA_COLPS  DIQNFVVAELD~~~GNVVGTASLYIY~QTGLAEIRSVVVQDDAQKQGQGEALVQYLLEFANQMELEQIIVLTYIP~QYFEQLGFNVIDKNSLADNIIEDSEPSPHKDPADEVA

ARHA_IDILO  SINEFAVTEVD~~~GKVMGCASLYIY~TTGLAEIRSLGVHPHTEVRGQGRMLVSYLLKKARLLQLNRVIVLTRVP~DFFEQQGFSHCSKDSLPEKVMKDCELCPRLANCDELA

ARHA_PSEHA  SINEFAVTEIN~~~GKVSGCASLYIY~DTGLAEIRSLGIDPQSAVSGQGRQLVEHLLAKAKKLALNRVIVLTRVP~DFFEKQRFSFCTKESLPEKVMKDCELCLRKENCDEVA

HX_THETH    NIRDFWVLEDED~~GQIVGTVALHVL~WRDLAEIRGLAVHPTRQGQGLGRWLVLGAEREARDLGLPRVFAWTLQV~NFFRALGYRVTSREALPPKVWSECNACPFYENCREIA

HX_MYCTU    AVQEFWVAEHPDLYGKVVGCGALHVL~WSDLGEIRTVAVDPAMTGHGIGHAIVDRLLQVARDLQLQRVFVLTFET~EFFARHGFTEIEGTPVTAEVFDEMCRSYDIGVAEFLD

HX_BACCE    YLQCLYVMK~EE~~GKIVGVAGLHVL~GEDLAEVRSLVVSHTYAGKGIGRMLVNHVINEAAKIKVSRVISLTYET~KFFQKCGFDFVNREALPEKVWIDCRHCPKVDYCDEVA

ARGA_ECOLI  EIDKFTIIQRD~~~NTTIACAALYPFPEEKIGEMACVAVHPDYRSSSRGEVLLERIAAQAKQSGLSKLFVLTTRSIHWFQERGFTPVDIDLLPESKKQLYNYQRKSKVLMADL

ARGA_VIBVU  EVERFTIIEKD~~~GLIIGCAALYPYIDEHMAEMACVAIHPDYRDGNRGLLLLNYMKHRSKSIGIEQIFVLTTHSVHWFREQGFYEIGVDSLPMAKKSLYNYQRRSKILALPL

                F * *     * * G** L* *    **E****** *     * G  **      A       ***LT     *F   *F       L****  **  **    *** * 

Motif 1 Motif 2 Motif 3 Motif 4
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even though their sequence corresponds only to the C-ter-
minal domain of classical NAGS. It is possible that the
short version of NAGS has to be associated with another
protein in order to bind glutamate efficiently, which
makes attempts at site prediction premature without fur-
ther empirical testing.

Conclusion
The discovery of a novel type of biosynthetic arg locus,
coding for a classical argininosuccinase ArgH fused with a
putative N-acetyltransferase able to complement an argA
deficiency was extended by genomic analysis to a group of
phylogenetically and ecologically related marine gamma
proteobacteria. The case of I. loihiensis [12] and P. halo-
planktis [23] is particularly significant from the functional
point of view since the cognate genomes do not appear to
contain a genuine argA sequence and the organisms are
nevertheless arginine-independent, indicating that they
depend on Arg(A) for arginine biosynthesis. Note there is
widespread occurrence of sequences homologous to
arg(A) in organisms lacking a classical NAGS (Fig. 5),
including instances (Thermus and Deinococcus) where the
sequence is adjacent-to, and coexpressed with argH. More-
over T. thermophilus and S. coelicolor which do not possess

an OAT able to acetylate glutamate with acetylCoA, most
probably depend on their arg(A) homologue for arginine
biosynthesis.

The gene-enzyme relationship for the first committed step
of arginine biosynthesis must now be considered in a new
perspective. Several alternatives can be recognized:

i. The classical NAGS originally found in E. coli and Pseu-
domonas has two domains: an N-terminal one, with a car-
bamate kinase fold, displays extensive similarity with
acetylglutamate kinase (NAGK), while the C-terminal one
contains an N-acetyltransferase fold. This classical NAGS
may occur in organisms with an acetylornithinase (ArgE)
or an ornithine acetyltransferase (ArgJ), two situations
epitomized by E. coli and P. aeruginosa. In P. aeruginosa,
where ArgJ only recycles the acetylgroup from acetylorni-
thine, NAGS fulfils an anaplerotic, but essential function,
priming arginine biosynthesis with the acetyl group from
acetyl-CoA [1,2].

ii. In B. stearothermophilus and T. neapolitana the ArgJ
(OAT) protein is bifunctional: not only does it recycle the
acetyl group, but it also catalyzes the first step (EC

Evolution of glutamate acetylation from a primordial N- acetyltransferaseFigure 7
Evolution of glutamate acetylation from a primordial N- acetyltransferase. The recruitment of a primordial N-
acetyltransferase for L-glutamate acetylation in the first step of arginine biosynthesis has been made according to at least three 
different evolutionary ways. The events of gene duplication and gene fusion that allowed evolution toward either the two-
domain N-acetylglutamate synthase (EC 2.3.1.1) or the bifunctional argH(A) fusion are schematized. This scheme does not 
specify whether the argH(A) fusion arose in an organism originally devoid of NAGS or in an organism having lost NAGS. The 
yellow domains in contemporary proteins (bottom line) are bearing the ArgA activity (EC 2.3.1.1). The contemporary proteins 
that have been experimentally studied are indicated between brackets.
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monofunctional NAGS

Primordial amino acid N-acetyltransferase
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bifunctional ArgH(A) 
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two-domain

monofunctional NAGS

N-acetylglutamate 

kinase NAGK
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2.3.1.1). Early data concerning expression of B. subtilis
genes in E. coli [24], reinterpreted after sequencing of the
cognate DNA show that this bacterium also has a bifunc-
tional OAT. In principle, such organisms do not need a
NAGS, an assumption corroborated by the actual lack of a
NAGS gene in the genomes of their close relatives, B. sub-
tilis and T. maritima. It is worth noting that bifunctional
OAT does not show recognizable similarity with NAGS
despite the fact that they catalyze the same reaction [5,19].

iii. In eukaryotes, reaction EC 2.3.1.1 is carried out by dif-
ferent kinds of multidomain proteins that are not homol-
ogous. In fungi, NAGS activity actually requires
association of NAGS with NAGK [25,26] but contrary to
what occurs in prokaryotes, there is no significant similar-
ity between NAGS and NAGK (the carbamate kinase fold).
On the other hand, mammalian NAGS is similar to the
bimodular E. coli NAGS: it possesses a carbamate kinase
fold and is able to complement an argA mutant of E. coli
[27].

iv. The discovery of the in vivo active Moritella arg(A)
sequence fused to the argH gene, and the detection of sev-
eral homologous argH(A) sequences among marine Pro-
teobacteria including species devoid of NAGS (I. loihiensis,
P. haloplanktis) indicates that reaction EC 2.3.1.1 can be
catalyzed by a short version of NAGS corresponding to the
C-terminal domain of the bimodular NAGS. Furthermore,
a number of previously uncharacterized acetyltransferases
from different prokaryotes are homologous to this shorter
version and the recent biochemical characterization of
one of them in M. tuberculosis strongly suggests that many
organisms rely on this monodomain form of NAGS to
synthesize acetylglutamate.

Perhaps this monodomain Arg(A)-like sequence is a pri-
mordial enzyme originally recruited from an ancient pool
of N-acetyltransferases (see Fig. 7 for a possible evolution-
ary scheme). The classical, two-domain NAGS may have
arisen under selection for an efficient glutamate-binding
site as the result of a fusion between this protein and an
N-terminal domain which is also found in NAGK. It must
be noted that the monodomain M. tuberculosis NAGS has
a considerably higher Km for glutamate than the E. coli
two-domain one [10]. Association with NAGK, perhaps
by providing an efficient glutamate-binding site, may alle-
viate this kinetic shortcoming. This association may have
preceded the advent of the classical NAGS by fusion of the
two domains into a single protein (see Fig. 7). In organ-
isms with an argH(A) fusion, physical association
between ArgH and Arg(A) might enhance Arg(A) activity
or stability and perhaps render the enzyme sensitive to
arginine as a feedback inhibitor, since arginine is a prod-
uct of the reaction catalyzed by ArgH. At any rate, a capital
effect of the fusion is probably to have brought arg(A)
under regulated expression by arginine. The presence of a
classical NAGS (gene argA) along with the argH(A)
sequence in some organisms (vibrio-like, enterics) having
an AO (ArgE) but no OAT (ArgJ) could be explained by
the fact that such organisms are unable to recycle the
acetyl group and therefore require a larger flow of
acetylglutamate. This hypothesis can be tested by compar-
ing such organisms with Idiomarina and Pseudoalteromonas
(where argA-encoded NAGS is absent) for growth and
glutamate acetylation kinetics.

Table 1: Full names of in alphabetical order species used in 

phylogenetic studies

Abbreviation Complete species namea

AGRTU Agrobacterium tumefaciens

AQUAE Aquifex aeolicus

ARTSP Arthrobacter species

BACCE Bacillus cereus

BACHA Bacillus halodurans

BACTH Bacillus thuringiensis

CHLLI Chlorobium limicola

CHLTE Chlorobium tepidum

DEHET Dehalococcoides ethenogenes

DEIGE Deinococcus geothermalis

DEIRA Deinococcus radiodurans

DESHA Desulfitobacterium hafniense

DESPS Desulfotalea psychrophila

DESVH Desulfovibrio vulgaris

DESAC Desulfuromonas acetoxidans

GEOKA Geobacillus kaustophilus

GEOME Geobacter metallireducens

GEOSL Geobacter sulfurreducens

HALMA Haloarcula marismortui

HELHE Helicobacter hepaticus

KINRA Kineococcus radiotolerans

LEIXY Leifsonia xyli

LEPIN Leptospira interrogans

METBU Methanococcoides burtonii

METAC Methanosarcina acetivorans

METBA Methanosarcina barkeri

METMA Methanosarcina mazei

MYCLE Mycobacterium leprae

MYCPA Mycobacterium paratuberculosis

MYCTU Mycobacterium tuberculosis

NOCFA Nocardia farcinica

ALCEU Alcaligenes eutrophus

RHIME Sinorhizobium meliloti

PIRBA Pirellula baltica

SOLUS Solibacter usitatus

STRAV Streptomyces avermitilis

STRCO Streptomyces coelicolor

SYMTH Symbiobacterium thermophilum

THEFU Thermobifida fusca

THETH Thermus thermophilus

VIBPA Vibrio parahaemolyticus

WOLSU Wolinella succinogenes

a Names of species used in the alignment of ArgHX sequences are 
listed as found in the phylogenetic tree shown on Figs. 3 and 4.
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Due to a lack of biochemical evidence for OAT, we do not
know which of the two isoforms, mono or bifunctional, is
the more widespread and possibly the primordial one.
One possibility is that an arginine pathway using a bifunc-
tional OAT and devoid of NAGS is the most ancestral ver-
sion of the biosynthesis and that the various forms of
NAGS we have been discussing appeared under selection
after a mutation transformed a bifunctional OAT into a
monofunctional enzyme. The acetylornithinase found in
enteric and vibrio- like bacteria may have emerged after
loss of such an OAT (7).

The alternatives emphasized in the present survey do not
appear to exhaust the variety of solutions implemented in
nature for the N-acetylation of glutamate. Archaea such as
M. jannaschii have a monofunctional OAT [5] but no
homologues of either mono- or two-domain ArgA could
be revealed by our investigations. It is therefore possible
that in such organisms the reaction EC 2.3.1.1 is carried
out by yet another protein. In this respect, organisms such
as Xanthomonas appear rather puzzling. In the entirely
sequenced genomes of the three available species, a gene
encoding a short protein similar to an acetyltransferase
has been annotated argA. However, although this gene is
clearly inside the arg cluster (between argC and argB) it
does not appear as homologous to any of the known
mono- or two-domain ArgA proteins and it is absent from
the closely related Xylella species. It might therefore repre-
sent a new acetylglutamate synthetase or been incorrectly
annotated.

In conclusion, our concept of the gene-enzyme relation-
ships in arginine biosynthesis is undergoing a drastic revi-
sion among prokaryotes. Far from being universal, the
patterns of acetylation of the intermediates may differ in
phyla and even within the same phylum. The basic
acetylation strategy that segregates arginine and proline
precursors in different pathways is not brought into ques-
tion, but the identity and the origin of the enzymes
responsible for glutamate acetylation appears to betray
extensive "natural tinkering" [28]. Further phylogenetic
analysis and the structural characterization of the cognate
proteins will hopefully shed some light on the evolution
of this crucial metabolic step.

Methods
Identifying all sequences homologous to the Arg(A) domain

In a first step, the M. abyssi sequence [7] was used as a
query to collect the ArgH(A) homologous sequences from
the last version (September 2005) of Uniprot (SwissProt
and TREMBL) using the Blast facilities of the ExPaSy server
[29] and the following criteria : ranking among the best E-
values and aligning along the full length (around 620 aa)
of the query. Note that several of the found homologues
have been incorrectly annotated as "bifunctional protein

ArgH" (V. parahaemolyticus), "argininosuccinate lyase" (I.
loihiensis, V. vulnificus YJ016), "amino-acid acetyltrans-
ferase" (V. fischeri), N-acetylglutamate synthase (V. vulnifi-
cus CMCP6). These ArgH(A) sequences were immediately
followed in the Blast outfile by the whole set of ArgH pro-
teins (around 450 residues long). Preliminary sequence
data was obtained from [30] in the case of Aeromonas
hydrophila.

In a second step, the sequence of the domain (A) of the
ArgH(A) protein of M. abyssi (KAVGTFAVTEKHNQVT-
GCASIYVYDTGLAELRSLGIEPGYQGGGQGKAVVEYMLR
KAEQMAIQKVFVLTRVPEFFMKLGFRSTSKSMLPEKVLKD
CDMCPRQHACDEVALEFKLNVVGQTINLKAEKLAS) was
further used do detect (A) homologues. We first identified
a list of short (150–180 residues) proteins generally anno-
tated as putative acetyltransferases and, in a second, more
distant wave, the acetyltransferase domain of the canoni-
cal ArgA (NAGS) such as that of E. coli.

Reconstructing phylogenetic trees

All the (A) homologous sequences were multiply aligned
using ClustalX [31]. The arg(A)-like sequences were virtu-
ally fused in silico with argH sequences from the same
organism in order to build so-called argHX sequences. The
ArgH(A) and ArgHX sequences were further mutiply
aligned. Both automatic alignments were manually
improved using the BioEdit software [32], saved in
PHYLIP format and further used to reconstruct phyloge-
netic trees applying a two-step maximum likelihood
approach as follows. After computing a BIONJ [33] dis-
tance tree using the Dayhoff model of evolution [34], pro-
gram Phyml [35] was employed to refine this initial
distance tree and to optimize its topology using a discrete-
gamma model to accommodate rate variation among
sites. The shape parameter alpha of the gamma distribu-
tion was estimated as described in [36] and found to be
3.74, the proportion of invariant sites being 0.065. The
confidence limits for each node were further estimated
using the non-parametric bootstrap approach of the
Phyml program with 100 computed data sets.
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