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Summary. This paper deals with a coupled system of non-linear elliptic differential
equations arising in electrodeposition modelling process. We show the existence and
uniqueness of the solution. A numerical algorithm to compute an approximation of
the weak solution is described. We introduce a domain decomposition method to
take in account the anisotropy of the solution. We show the domain decomposition
method convergence. A numerical example is presented and commented.

1 Introduction

Electrodeposition of alloys based on the iron group of metals is one of
the most important recent developments in the field of alloy deposition. In
[KAP97], [SP98] Pritzker et al have proposed a model which involves the
one-dimensional steady-state transport of the various species with simulta-
neous homogeneous reactions. The concentration of different species that are
involved satisfies a system of non-linear differential equations. In this paper
we are concerned with a reduced problem arising in one step of an iterative
method solving the whole system. More precisely we consider the following
system:























−dv′′ + b(x)v′ −m(vΦ′)′ = f in (0, δ)
v(δ) = v∗

−dv′(0) −mv(0)Φ′(0) = −γ v(0)
−[p(v)Φ′]′ = q(v) in (0, δ)
Φ(0) = V0, Φ(δ) = 0,

(1)

where v is the concentration, Φ is the potential, f denotes the production
rate, d is the diffusion coefficient, m is the electrical mobility, δ is a fixed
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nonnegative real, v∗, V0, γ are constants, p, q are nonnegative functions and
b(x) = −ax2 is the fluid velocity vector, with a a nonnegative constant.
In section 2 we give a proof of existence and uniqueness of the solution (v, Φ)
of system (1) in C2([0, δ]) × C2([0, δ]).
The numerical solution of the system considered in the electrodeposition are
characterized by stiff variations near the boundary x = 0. In order to take
account of the anisotropy of the solution we introduce in section 3 a gener-
alized version of the two domain decomposition method due to F. Gastaldi,
L. Gastaldi and A. Quarteroni (see [GGQ96]). We give a sketch of the proof
for the convergence in the new case of non constant coefficients and Robin
boundary conditions in x = 0. In section 4 we present and discuss the result
of a numerical example.

2 Existence and Uniqueness Result

Let ε > 0. We introduce the following assumptions:
H01) p ∈ C1(R) and there exist nonnegative constants η0 and η1 such that :
η0 ≤ p ≤ η1.
Let k1 > 0 such that | p(x) − p(y) |≤ k1 | x− y | ∀x, y ∈ [0, v∗ + ε].
H02) There exist two nonnegative constants k2 and η2 such that −η2 ≤ q ≤ η2
and | q(x) − q(y) |≤ k2 | x− y | ∀x, y ∈ [0, v∗ + ε].
H03) The constant d is such that:

i) d > γδ +
2aδ3

3
+
m(V0 + 2η2δ

2)((v∗ + ε)k1 + η1)

η2
0

+
2m(v∗ + ε)k2δ

2

η0
.

ii) d ≥
1

min(v∗, ε)
{‖ f ‖ δ2 + (γδ +

2aδ3

3
+
mV0

η0
+

2mη2δ
2

η0
)(v∗ + ε)}.

Theorem 1. Under assumptions H01-H03 the system (1) has a unique solu-
tion (v, Φ) ∈ C2([0, δ]) × C2([0, δ]).

Proof. Let Π the map defined from C([0, δ]) to C([0, δ]) by Πv = u, where
for x ∈ [0, δ]

u(x) = v∗ +
γ

d
(x− δ)v(0) +

1

d

x
∫

δ

[(bv)(y) −

y
∫

0

(b
′

v)(t)dt−

y
∫

0

f(t)dt]dy

−
m

d

x
∫

δ

{
v(y)

p(v)(y)
[−
V0

δ
+

1

δ

δ
∫

0

t
∫

0

q(v)(s)dsdt −

y
∫

0

q(v)(t)dt]}dy.

(2)

By integration of (1) it follows that a solution of the system is a fixed point
of application Π . We set D = {u ∈ C([0, δ]), 0 ≤ v ≤ v∗ + ε} equipped with
the uniform norm. Using hypotheses H01-H03 we prove that the map Π is a
contraction from D into itself. By Schauder fixed point theorem it comes that
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Π has a unique fixed point v ∈ D and by (2) v ∈ C2([0, δ]). Then (1) has a
unique solution (v, Φ) ∈ C2([0, δ]) × C2([0, δ]). With

Φ(x) = −

x
∫

δ

{
1

p(v)(s)
(
V0

δ
+

1

δ

δ
∫

0

y
∫

0

q(v)(t)dtdy −

s
∫

0

q(v)(y)dy)}ds. (3)

3 Numerical Methods

For convenience we introduce the following new unknowns:

ψ(x) = Φ(x) −
V0

δ
(δ − x) and w(x) = v(x) − v∗ for all x ∈ [0, δ]. (4)

System (1) is then equivalent to the following systems:
{

L1w = F (w,ψ) in (0, δ),
w(δ) = 0, −dw′(0) = G(w,ψ)(0).

(5)

and
{

−[p(w + v∗)ψ′]′ = q(w + v∗) in (0, δ)
ψ(0) = 0, ψ(δ) = 0,

(6)

where:














L1w = −dw′′ + B0(x)w
′, B0(x) = b(x) +m

V0

δ
x ∈ (0, δ).

F (w,ψ) = m[(w + v∗)ψ′]′ + f x ∈ (0, δ).

G(w,ψ) = [m(ψ′(0) −
V0

δ
) − γ](w(0) + v∗) x ∈ (0, δ).

(7)

The iterative method considered to solve this coupled problem first solves the
equation (5) for a given potential ψn and then using the same algorithm solves
equation (6) for a given concentration wn.

Let w0 be the solution of (5) with F = 0 and then for any n ∈ N , wn+1 is
the solution of the linear system:

{

L1w = F (wn, ψ) in (0, δ),
w(δ) = 0, −dw′(0) = G(wn, ψ)(0).

(8)

The existence and uniqueness of a solution of problem (8) is trivial in
C2([0, δ]).

3.1 Iterative Method to Solve the Equation (8)

Let c ∈ (0, δ) be fixed. To solve equation (8) using the iterative domain de-
composition method we decompose the set (0, δ) in two non-overlapping sub-
domains, Ω1 = (0, c) and Ω2 = (c, δ). In the subdomain Ω1 we consider a finer
mesh structure than in Ω2.
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Let n ∈ N , A and B two reals parameters such that AB ≤ 0, A 6= B.

Given w1,0 = w2,0 = wn and λ0 = d(w2,0)
′(c) − (

1

2
B0(c) + A)w2,0(c), for

each k ≥ 0 we have to solve











L1w1,k+1 = F (wn, ψ) in H1(0, c),
−d(w1,k+1)

′(0) = G(wn, ψ)(0),

d(w1,k+1)
′(c) − (

1

2
B0(c) +A)w1,k+1(c) = λk,

(9)

and then






















L1w2,k+1 = F (wn, ψ) in H1(c, δ),
w2,k+1(δ) = 0,

d(w2,k+1)
′(c) − (

1

2
B0(c) +B)w2,k+1(c) =

d(w1,k+1)
′(c) − (

1

2
B0(c) +B)w1,k+1(c),

(10)

with

λk+1 = d(w2,k+1)
′(c) − (

1

2
B0(c) +A)w2,k+1(c). (11)

Thanks to the Lax-Milgram Theorem we can able to prove the:

Proposition 1. If A ≤ 0, then the problem (9) has a unique solution w1,k+1 ∈
C2([0, c]) and if B ≥ 0, then the problem (10) has a unique solution w2,k+1 ∈
C2([c, δ]).

We will now give a sketch of the proof of convergence of the subdomain decom-
position algorithm (9) and (10) applied to the solution of the linear problem
(8) taking in account an anisotropic advective field and non constant absorp-
tion terms.

Proposition 2. Let c ∈ (0, δ) such that 2d >| B0(c) + A + B |. Then the
sequence (w1,k, w2,k) converge to (v, v) in C(0, c) × C(0, c).

Proof. Let us define the errors ej,k = v − wj,k; j = 1, 2, and study their
behavior as k grows. We can prove the following inequality:

‖ e1,k+1 ‖∞≤ γ0 ‖ e1,k ‖∞ and ‖ e2,k+1 ‖∞≤ γ0 ‖ e2,k ‖∞, (12)

with γ0 > 0. Conditions A < B and 2d >| B0(c) +A+B | imply that γ2
0 < 1

which finish the proof.

4 Numerical Result

The algorithm introduced in the previous section has been implemented nu-
merically for one example of problem (1) with δ = 11341 ∗ 10−9, c =
δ/10, m = 52133 ∗ 10−12, d = 68 ∗ 10−11, γ = 0.05, v∗ = 1, V0 = −0.85 and
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a = 660.45, p = 1 +
1

x2 + x+ 1
, q =

1

| x | +1
and

10δ

m+ x
.

This is a nonlinear system with nondifferentiable second member. The numer-
ical concentration was plotted in figure 1.
We remark that the variation rate of v is very strong near the boundary 0.
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Fig. 1. Numerical concentration solution for f = 10 ∗ δ/(m + x)

This property justifies the use of the domain decomposition method and the
choice of the fictitious boundary c near 0.
The algorithm (9)-(10) converges with N1 = 70 finite element at the sub-
domain [0, c] and N2 = 50 finite element at the sub-domain [c, δ]. We stop
when the error is of order 10−19.
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