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Words Guaranteeing Minimum Image∗

S. W. Margolis† J.-E. Pin‡ M. V. Volkov§

Abstract

Given a positive integer n and a finite alphabet Σ, a word w over
Σ is said to guarantee minimum image if, for every homomorphism
ϕ from the free monoid Σ∗ over Σ into the monoid of all transfor-
mations of an n-element set, the range of the transformation wϕ has
the minimum cardinality among the ranges of all transformations of
the form vϕ where v runs over Σ∗ . Although the existence of words
guaranteeing minimum image is pretty obvious, the problem of their
explicit description is very far from being trivial. Sauer and Stone in
1991 gave a recursive construction for such a word w but the length
of their word was doubly exponential (as a function of n). We first
show that some known results of automata theory immediately lead
to an alternative construction that yields a simpler word that guar-
antees minimum image: it has exponential length, more precisely, its

length is O(|Σ|
1
6 (n3

−n)). Then with some more effort, we find a word
guaranteeing minimum image similar to that of Sauer and Stone but

of length O(|Σ|
1
2 (n2

−n)). On the other hand, we prove that the length
of any word guaranteeing minimum image cannot be less than |Σ|n−1 .

Introduction

Let Q be a set. A transformation of Q is an arbitrary function f whose
domain is Q and whose range (denoted by Im(f)) is a subset of Q . The rank
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rk(f) of the function f is the cardinality of the set Im(f). Transformations
of Q form a monoid under the usual composition of functions; the monoid
is called the full transformation monoid over Q and is denoted by T (Q). If
the set Q is finite with |Q| = n , the monoid T (Q) is also denoted by Tn .

Now let Σ be a finite alphabet and ϕ : Σ∗ → Tn be an arbitrary homo-
morphism of the free monoid Σ∗ over Σ into Tn . A word w ∈ Σ∗ is said to
guarantee minimum image in Tn if the inequality

rk(wϕ) ≤ rk(vϕ) (1)

holds for each word v ∈ Σ∗ and for each homomorphism ϕ : Σ∗ → Tn .
This notion was introduced by Sauer and Stone in [32].

Clearly, words guaranteeing minimum image exists [29, Proposition 2.3].
Indeed, for each homomorphism ϕ : Σ∗ → Tn , there is a word wϕ such that

rk(wϕϕ) ≤ rk(vϕ) (2)

for all v ∈ Σ∗ . Observe that ϕ is uniquely determined by its restriction to
Σ and there are only finitely many mappings between the finite sets Σ and
Tn . Since the composition of transformations cannot increase the size of
image, we can concatenate all words wϕ getting an (apparently very long)
word w satisfying (1).

Words guaranteeing minimum image have been proved to have some
interesting algebraic applications. In [29] they were used to find identities
in full transformation monoids. Recently these words have been applied for
studying the structure of the free profinite semigroup, see [2]. As we will see
below, they also play some natural role in the theory of finite automata. Of
course, for application purposes, the existence statement outlined above is
not sufficient and one seeks an explicit construction.

The construction of words guaranteeing minimum image that is due to
Sauer and Stone [32, Corollary 3.5] makes an elegant use of recursion but
results in non-realistically long words. Even over a two-element alphabet,
it is hardly possible to write down the Sauer–Stone word that guarantees
minimum image, say, in T5 . We discuss the Sauer–Stone construction in
some detail in Section 1 for we want to compare it with the alternative
constructions we present in Sections 2 and 3. Our first approach in Sec-
tion 2 is based on a tight connection between words guaranteeing minimum
image and a black-box version of the famous Černý problem [10] on syn-
chronizing automata. Using this connection we readily obtain words of size

O(|Σ|
1
6 (n3−n)) guaranteeing minimum image in Tn . In Section 3 we follow
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the recursion approach of Sauer and Stone; however, after explicitly isolat-
ing a corresponding combinatorial configuration and carefully analyzing it,
we are able to construct a word guaranteeing minimum image in Tn with

length O(|Σ|
1
2 (n2−n)). In Section 4 we show that, on the other hand, the

length of any word over Σ guaranteeing minimum image in Tn cannot be
less than |Σ|n−1 . Section 5 reports on the results of some computer exper-
iments (performed by I. V. Petrov, a student of the third-named author)
whose aim was to determine shortest words guaranteeing minimum image
in Tn for some small values n and |Σ| .

1 The Sauer–Stone construction

To build a word guaranteeing minimum image in Tn , Sauer and Stone make
use of an intermediate notion which is also of independent interest. Given a
transformation f of a finite set Q , we denote by df(f) its deficiency, that is,
the difference |Q| − rk(f). For a homomorphism ϕ : Σ∗ → T (Q), we denote
by df(ϕ) the maximum of the deficiencies df(vϕ) where v runs over Σ∗ ; in
other words, df(ϕ) = df(wϕϕ) where wϕ is any word satisfying (2). Now
we say that a word w ∈ Σ∗ witnesses for deficiency k (has property ∆k in
Sauer and Stone’s terminology) provided that, for all homomorphisms

ϕ : Σ∗ → T (Q) where Q is a finite set, df(wϕ) ≥ k whenever df(ϕ) ≥ k .
We note that the cardinality of the set Q is not fixed in this definition;

therefore it is not obvious that a word which witnesses for deficiency k should
exist for every k . On the other hand, it is clear that if Σ = {a1, . . . , at}, then
the product w1 = a1 · · · at witnesses for deficiency 1. (Indeed, if df(ϕ) ≥ 1
for a homomorphism ϕ, then at least one of the letters a1, . . . , at should be
sent to a transformation which is not a permutation whence w1ϕ is not a
permutation as well). Using this observation as the induction basis, Sauer
and Stone then proceed by defining

wk+1 = wk

∏

|v|≤1+3·2k−2

(vwk). (3)

Their main result says that, for each k , the word wk witnesses for deficiency
k [32, Theorem 3.3]. Now the following simple observation applies:

Lemma 1.1. If a word w witnesses for deficiency k for all 0 ≤ k < n ,

then it guarantees minimum image in Tn .

Proof. Take an arbitrary homomorphism ϕ : Σ∗ → Tn and apply it to an
arbitrary word v ∈ Σ∗ thus obtaining a transformation vϕ ∈ Tn . Suppose
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that rk(vϕ) = r . Then 1 ≤ r ≤ n and

df(ϕ) ≥ df(vϕ) = n − r

whence df(wϕ) ≥ n − r as w witnesses for deficiency n − r . Therefore

rk(wϕ) = n − df(wϕ) ≤ n − (n − r) = r = rk(vϕ),

as the definition of a word guaranteeing minimum image requires.

Thus, for any n > 1, the word wn−1 defined via (3) guarantees minimum
image in Tn [32, Corollary 3.5]. Using (3) on can easily calculate that the
growth of ℓ(wk) as a function of k is double exponential; more precisely,
it can be calculated that the leading monomial in the expansion of ℓ(wk)

as a polynomial of t (the size of the alphabet) equals t3·2
k−2+k−2 for all

k ≥ 2. The reader may verify that applying that construction to produce
a word over a 2-letter alphabet guaranteeing minimum image in T5 results
in a word of length 216 248; thus, we were not exaggerating as we said
in the introduction that it would be rather hard to write down this word!
Sauer and Stone have suggested the following open problem: for a given
t-letter alphabet, determine for each positive integer k the length µk(t) of
the shortest word that witnesses for deficiency k . Obviously µ1(t) = t for
any t . Besides that, the only value of the function µk(t) which was known
up to now was µ2(2) = 8—it is shown in [32, Corollary 3.4] that the word
aba2b2ab witnesses for deficiency 2, and it can be checked that no shorter
word does the job. We notice that the word over {a, b} with the same
property obtained via (3) is much longer — its length is 24. This gap is
large enough to suggest that there should be more economic constructions
than (3). We are going to present such constructions in the two next sections.

2 A connection with the generalized

Černý conjecture

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q

denotes the state set, Σ stands for the input alphabet, and δ : Q × Σ → Q

is the transition function defining an action of the letters in Σ on Q . The
action extends in a unique way to an action Q×Σ∗ → Q of the free monoid
Σ∗ over Σ; the latter action is still denoted by δ . The automaton A is
called synchronizing if there exists a word w ∈ Σ∗ whose action resets A ,
that is, leaves the automaton in one particular state no matter which state
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in Q it started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q . Any word w with this
property is said to be a reset word for the automaton. It is rather natural
to ask how long such a word may be. Černý conjectured in [10]—that is,
almost 40 years ago—that for any synchronizing automaton with n states
there exists a reset word of length (n − 1)2 . Although being confirmed in
some special cases (cf. [11,13–15,19,25], to mention a few most representative
papers only), this conjecture still constitutes an open problem.

The second-named author of the present paper extended Černý’s conjec-
ture in the following way (see [26, 27]). Recall that the transition function
δ : Q×Σ∗ → Q of each DFA A = 〈Q,Σ, δ〉 defines a natural homomorphism
ϕA : Σ∗ → T (Q) via the rule

ϕA : v 7→ vϕA : Q → Q

vϕA : q 7→ δ(q, v)
(4)

Suppose that df(ϕA) ≥ k where 1 ≤ k < |Q| . Then the extended conjecture
was that there exists a word w ∈ Σ∗ of length k2 for which df(wϕA) ≥ k .
(Clearly, the original Černý conjecture corresponds to the case k = |Q|−1.)
It was proved for some partial cases in [26, 27] but recently Kari [18] has
found an automaton K with 6 states for which no word w of length 16
satisfies df(wϕK) ≥ 4 and hence disproved the extended conjecture as it was
formulated in [26, 27]. One can, however, observe that Kari’s automaton is
synchronizing (which means that in fact df(ϕK) = 5) and admits a reset
word of length 25. This suggests that the right generalization of the Černý
conjecture may look as follows: if k is the deficiency of the homomorphism

ϕA associated via (4) with a finite automaton A = 〈Q,Σ, δ〉, then there

exists a word w ∈ Σ∗ of length k2 for which df(wϕA) = k . This new
conjecture (which we will refer to as the generalized Černý conjecture) still
contains the original Černý conjecture as a special case and is consistent
with the current experimental material (including Kari’s example).

For the purpose of the present paper it is important to relate the pro-
posed generalization of the Černý conjecture to our initial problem of con-
structing words that guarantee minimum image in Tn . In fact, the similarity
between the two situations is pretty obvious: in the former case we look for a
shortest word of minimum rank for a specific homomorphism ϕA : Σ∗ → Tn

(where n = |Q|) while in the latter case we are interested in a shortest word
which has minimum rank with respect to every homomorphism from Σ∗ to
Tn . In the language of automata theory, we may alternatively describe this
difference by saying that in the second situation we also look for the shortest
word of minimum rank for a DFA but in contrast with the generalized Černý
conjecture situation, the automaton is a black-box about which we only know
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that it has n states. Thus, from the point of view of automata theory the
notion of a word guaranteeing minimum image appears to be fairly natural
as it fits into the classic framework of Moore’s “Gedanken-experiments” [22].
We notice in passing that, if thinking of a real computational device as a
compound made from a number of finite automata, each with a relatively
small number of states, a reasonable construction for an input signal that
would simultaneously reset all those automata and that could be generated
without analyzing the structure of each particular component of the device
might be of some practical interest. For instance, recent experiments in
biocomputing (see [7, 8]), in which DNA molecules have been used as both
hardware and software for constructing finite automata of nanoscaling size,
have resulted in a ‘soup of automata’, that is, a solution containing 3×1012

copies of a certain DFA per µ l. All these copies can work in parallel on
different inputs, thus ending up in different and unpredictable states. In
contrast to an electronic computer, one cannot reset such a system by just
pressing a button; instead, in order to synchronously bring each automaton
to its “ready-to-restart” state, one could spice the soup with (sufficiently
many copies of) a DNA molecule whose nucleotide sequence encodes a reset
word for the automata. And if a molecular computer is built from several
tubes containing soups with different underlying automata, one can reset it
at once by adding to each tube molecules that encode a word guaranteeing
minimum image in Tn (where n is the maximum number of states of the
automata).

Returning back to the mainstream of the paper, we easily extract from
the connection that we just discussed the following conclusion:

Theorem 2.1. If the generalized Černý conjecture holds true, then, over

each finite alphabet Σ and for each n > 1, there exists a word of length

|Σ|(n−1)2 + n2 − 2n that guarantees minimum image in Tn .

Proof. By a well known result of DeBruijn [12], there is a cyclic sequence
over Σ, of length |Σ|(n−1)2 , such that each word over Σ of length (n − 1)2

appears as a factor of the sequence. Cut this cycle in an arbitrary place and
make it a word u of the same length |Σ|(n−1)2 . Since our cut goes through
exactly (n− 1)2 − 1 factors of length (n− 1)2 , the word u still contains all
but (n − 1)2 − 1 words of length (n − 1)2 as factors. Now take in u the
prefix v of length (n − 1)2 − 1 and put it on the back of u thus obtaining
the word w = uv of length |Σ|(n−1)2 + n2 − 2n . Clearly, this procedure
restores all those factors of length k2 that we have destroyed by cutting the
initial DeBruijn sequence, and therefore, each word over Σ of length (n−1)2

appears as a factor in w . We note that there is an efficient procedure that,
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given Σ and n , builds DeBruijn’s sequences so, if necessary, the word w

may be explicitly written down.
Now suppose that the generalized Černý conjecture holds true. Then for

any homomorphism ϕ : Σ∗ → Tn with df(ϕ) = k ≤ n − 1 there exists a
word wϕ ∈ Σ∗ of length k2 such that df(wϕϕ) = k . Clearly, the word wϕ

can be extended to a word of length n − 1 and, by the above construction
of the word w , wϕ must appear as a factor in w . Hence df(wϕ) = k and
thus w guarantees minimum image in Tn .

It should be mentioned that the natural idea used in the above proof (of
“gluing together” individual reset words in order to produce a “universal”
reset word) first appeared in a paper by Ito and Duske [17].

Thus, we see that the validity of the generalized Černý conjecture would
have as an immediate consequence an easy construction for words guaran-
teeing minimum image, and obviously the construction obtained this way
would be (asymptotically) more economic than that by Sauer and Stone. We
note that the conjecture has been proved to hold for k = 1, 2, 3 (see [26]);
thus, for n = 2, 3, 4, the construction from Theorem 2.1 certainly works.
However in the general case the conjecture is open. Therefore it appears to
be reasonable to look for a slightly weaker, but non-conditional construc-
tion. We provide such a construction utilizing a result by the second-named
author [28]. This result which is based on a combinatorial theorem conjec-
tured by the second-named author and then proved by Frankl [16] yields the
best approximation to the size of the shortest reset word known so far.

Proposition 2.2. Suppose that the DFA A = (Q,Σ, δ) is such that the

deficiency of the homomorphism ϕA : Σ∗ → T (Q) defined via (4) is no less

than k where 3 ≤ k < |Q|. Then there exists a word w ∈ Σ∗ of length
1

6
k(k + 1)(k + 2) − 1 verifying df(wϕA) ≥ k .

Perhaps, it is a good place to note that for k = |Q|−1 (the case that, we
recall, corresponds to the original Černý conjecture), a result analogous to
Proposition 2.2 has been rediscovered in the paper [21] whose authors were
(and, as is their recent publications [30,31] shows, still are) unaware of [28]
and [16].

It should be clear that combining the reasoning from the proof of Theo-
rem 2.1 with Proposition 2.2 leads to the following result:

Theorem 2.3. Over each finite alphabet Σ and for each n > 3, there exists

a word of length |Σ|
1
6 (n3−n)−1 +

1

6
(n3 − n) − 2 that guarantees minimum

image in Tn .
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Obviously, the construction of Theorem 2.3 is asymptotically (that is, for
sufficiently large values of n) more economic than the Sauer-Stone construc-
tion. Still, the length of the resulting words is exponential as a function of
k . Can we do essentially better by finding some words of polynomial length
doing the same job? We answer this question in the negative in Section 4.
Another natural question concerns the behavior of the constructions for
small values of n and for small sizes of the alphabet Σ. Here the Sauer-
Stone construction is often better as the following table shows. In the table,
t denotes the size of the alphabet Σ and we omit some of the summands in
the second column to fit into the page.

Table 1: The Sauer-Stone construction vs. Theorems 2.1 and 2.3
The length of the word from:

n the Sauer-Stone construction Thm 2.1 Thm 2.3
2 t t

3 t3 + 3t2 + 2t t4 + 3
4 t7 + 4t6 + 6t5 + 10t4 + 9t3 + 7t2 + 3t t9 + 8 t9 + 8
5 t14 + 5t13 + 11t12 + 21t11 + 30t10 + 37t9 + · · · + 4t t16 + 15 t19 + 18
6 t27 + 6t26 + 17t25 + 38t24 + 68t23 + 105t22 + · · · + 5t t25 + 24 t34 + 33
7 t52 + 7t51 + 24t50 + 62t49 + 130t48 + · · · + 6t t36 + 35 t55 + 54
8 t101 + 8t100 + 32t99 + 94t98 + 224t97 + · · · + 7t t49 + 48 t83 + 82

Using the values collected in this table, one can easily calculate that, for
any t > 2, the Sauer-Stone construction produces shorter words than the
construction based on the generalized Černý conjecture for n = 3, 4, 5 and
does better than the construction based on Proposition 2.2 for n = 4, 5, 6, 7.
The case t = 2 deserves some special attention. Here the following table,
in which all words are meant to be over a two-letter alphabet, collects the
necessary information:

Table 2: The Sauer-Stone construction vs. Theorems 2.1 and 2.3
in the case of a two-letter alphabet

The length of the word from:
n the Sauer-Stone construction Theorem 2.1 Theorem 2.3
2 2 2
3 24 19
4 842 520 520
5 216 248 65 551 524 306
6 3 542 987 594 33 554 456 17 179 869 217
7 237 765 870 667 058 360 68 719 476 771 36 028 797 018 964 022

We see that, over a two-letter alphabet, the construction based on the
generalized Černý conjecture always produces shorter word than the Sauer-
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Stone construction. However, for n = 5 and n = 6 the Sauer-Stone con-
struction is more economic than the one arising from Theorem 2.3. More-
over, we recall that Sauer and Stone have found a word of length 8 that
witnesses for deficiency 2. Though this is not explicitly mentioned in [32], it
is pretty obvious that starting a recursion analogous to (3) with that word,
one obtains a sequence of words over a two-letter alphabet such that the
(n−1)th member of the sequence guarantees minimum image in Tn for each
n ≥ 2 and is shorter than the word wn−1 arising from (3). A straightforward
calculation shows that this produces words guaranteeing minimum image of
length 346 for T4 , of length 89 768 for T5 , of length 1 470 865 754 for T6 , of
length 98 708 129 987 190 440 for T7 , etc. Comparing the data in Table 2
with these figures, we observe that the Sauer-Stone construction modified
this way yields shorter words than the constructions from Theorem 2.1 and
Theorem 2.3 for n = 3, 4 and respectively n = 4, 5, 6.

Yet, having in mind the benchmark we mentioned in the Introduction,
that is, of producing, over a two-letter alphabet, a word of reasonable size
that guarantees minimum image in T5 , we can be satisfied with neither a
word of length 89 768 nor even a (still hypothetical!) word of length 65 551.
A more important motivation for further efforts is provided by the crucial
question: must any “simultaneous” Černý word that resets all synchronizing
automata with n states consist of all “individual” Černý words (one for each
synchronizing automaton) somehow put together? In the next section we
will answer this question by exhibiting a better construction than the one
which we got almost for free from the automata-theoretical approach. The
behavior of this construction for small deficiencies/alphabet sizes will be
also better than that of any of the constructions above.

3 Improving the Sauer-Stone construction

Given a transformation f : Q → Q , we denote by Ker(f) its kernel, that is,
the partition of the set Q into rk(f) classes such that x, y ∈ Q belongs to
the same class of the partition if and only if xf = yf . By a cross-section of
a partition π of Q we mean any subset of Q having a singleton intersection
with each π -class. We need an obvious and well known lemma:

Lemma 3.1. Let f, g : Q → Q be two transformations of rank r . Then the

product fg has rank r if and only if Im(f) is a cross-section of Ker(g).

We use the following notational convention. For any sequence a1, . . . , am

of (not necessarily distinct) letters, the expression ai · · · aj denotes:
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– the word of length j − i + 1 such that the letter in position p (where
p ∈ {1, . . . , j − i + 1}) is ai+p−1 provided that i ≤ j ;
– the empty word otherwise.
By an r -set (r -partition) we mean a set with r elements (respectively, a
partition of a set into r parts).

Let ϕ : Σ∗ → T (Q) be a homomorphism, w ∈ Σ∗ a word with rk(wϕ) =
r . Suppose that there exists a word v ∈ Σ∗ such that rk(wvwϕ) < r and let
u = a1a2 · · · am be a shortest word with this property. Setting for 0 ≤ i < m

πi = Ker((am−i+1 · · · amw)ϕ),

Ci = Im((wa1 · · · ai)ϕ),

we have the following proposition:

Proposition 3.2.

(1) π0 , π1 , . . . , πm−1 are pairwise distinct r -partitions of Q.

(2) C0 , C1 , . . . , Cm−1 are pairwise distinct r -subsets of Q.

(3) If i + j < m, Ci is a cross-section of πj .

(4) If i + j = m, Ci is not a cross-section of πj .

Proof. Let i < m . If πi has less than r classes, then

rk((wam−i+1 · · · amw)ϕ) < r,

a contradiction with the choice of u . Similarly, the set Ci should consist of r

elements. Thus, both (wa1 · · · ai)ϕ, for 0 ≤ i ≤ m−1, and (aj+1 · · · amw)ϕ,
for 1 ≤ j ≤ m , are transformations of rank r . If i < j and the set Ci is
not a cross-section of the partition πm−j , then by Lemma 3.1, the product

(wa1 · · · ai)ϕ(aj+1 · · · amw)ϕ = (wa1 · · · aiaj+1 · · · amw)ϕ

has rank < r , again a contradiction with the choice of u . Furthermore, by
the same lemma, Ci cannot be a cross-section of πm−i since rk(wuwϕ) < r .
In particular, if i < j , the set Cm−j is a cross-section for πi but not for
πj . Therefore the partitions πi and πj are different provided that i 6= j .
Similarly, all the sets Ci for 0 ≤ i ≤ m − 1 are different.

It is Proposition 3.2 that allows us to improve the Sauer-Stone construc-
tion. If we mimic the strategy of [32] and want to create a sequence of words
witnessing for deficiency k by induction on k , then on each step, we may
assume that we have some word w of deficiency k and we seek a bound
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to the length of the shortest word v verifying df(wvwϕ) < k for a given
homomorphism ϕ of deficiency > k . Proposition 3.2 shows that the length
of such a minimum word is tightly related to the size of a specific combi-
natorial configuration involving r -subsets of an n-set and its r -partitions.
According to a well-known method in combinatorics, we now convert this
combinatorial problem into a problem of linear algebra. (The second-named
author’s paper [24] was probably the first where an analogous approach was
applied to Černý type problems. However, as the referee of the present
paper pointed out, linear algebra methods were used in treating of certain
problems of a similar flavor even before the Černý conjecture was formu-
lated, see, e.g., the paper by Perles, Rabin and Shamir [23] on so-called
definite automata.) Among notions from linear algebra we use, the notion
of the rank of a system of vectors will appear. This should not cause any
confusion for the notion of the rank of a transformation used before will not
occur in our proof.

Let Q = {1, · · · , n}. We identify each subset C ⊆ Q with its character-
istic vector in R

n , defined by

Ci =

{

1 if i ∈ C,

0 otherwise.

The notation |C| , originally used to denote the number of elements of C ,
extends naturally to a linear form on R

n defined by

|C| =
∑

1≤i≤n

Ci

Finally, denoting by C ·D the scalar product
∑

1≤i≤n CiDi , we observe that

C · D = |C ∩ D|

Therefore a subset C of Q is a cross-section of the partition {D1, . . . ,Dr}
if and only if C · Di = 1 for 1 ≤ i ≤ r .

With these notations in hand, Proposition 3.2 leads to the following
result.

Proposition 3.3. The relation m ≤ n − r + 1 holds.

Proof. We first prove that the vectors C0 , C1 , . . . , Cm−1 are linearly inde-
pendent. Otherwise one of the Cj ’s is a linear combination of the preceding
vectors C0 , C1 , . . . , Cj−1 , say

Cj =
∑

0≤i≤j−1

λiCi
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It follows, since the map C → |C| is linear,

r = |Cj| =
∑

0≤i≤j−1

λi|Ci| = r
∑

0≤i≤j−1

λi

whence
∑

0≤i≤j−1 λi = 1. Consider the partition πm−j = {D1,D2, . . . ,Dr}.
Since each of the sets C0, C1, . . . , Cj−1 is a cross-section of this partition,
we obtain, for each s = 1, . . . , r ,

Cj · Ds =
( ∑

0≤i≤j−1

λiCi

)

· Ds =
∑

0≤i≤j−1

λi(Ci · Ds) =
∑

0≤i≤j−1

λi = 1

whence Cj also is a cross-section of πm−j , a contradiction.
Let π0 = {B1, . . . , Br}. Since the Bi ’s are pairwise disjoint and non-

empty, their characteristic vectors are linearly independent. Furthermore,
since C0 , C1 , . . . , Cm−1 are cross-sections of π0 , the relation Ci · Bj = 1
holds for 0 ≤ i ≤ m − 1 and 1 ≤ j ≤ r . It follows in particular that

Ci · (Bj − Bk) = 0 for 1 ≤ j, k ≤ r (5)

Now the vectors Bj − Bk for 1 ≤ j, k ≤ r generate a vector space of
dimension r − 1 and relation (5) shows that each Ci is orthogonal to this
space. It follows that the rank of the family {Ci}0≤i≤m−1 is at most n−r+1
whence m ≤ n − r + 1.

Proposition 3.3 yields

Corollary 3.4. Let k be a positive integer, ϕ : Σ∗ → T (Q) a homomor-

phism of deficiency > k . Then for any word w ∈ Σ∗ with df(wϕ) = k there

exists a word v of length ≤ k + 1 such that df(wvwϕ) > k .

Now suppose that Σ = {a1, . . . , at} and let u1 = a1 · · · at and

uk+1 = uk

∏

ℓ(v)≤k+1

(vuk). (6)

Theorem 3.5. For any positive integer k , the word uk defined via (6)
witnesses for deficiency k .

Proof. By induction on k . The case k = 1 is obvious (see the reasoning in
the second paragraph of Section 1). Suppose that uk witnesses for deficiency
k and take any homomorphism ϕ : Σ∗ → T (Q) of deficiency > k . We have
to verify that df(uk+1ϕ) > k . If already df(ukϕ) > k , we have nothing to
prove. If df(ukϕ) = k , then by Corollary 3.4 there exists a word v of length
≤ k + 1 such that df(ukvukϕ) > k . Since by (6) the word ukvuk appears
as a factor in uk+1 , we also have df(uk+1ϕ) > k , as required.
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From Theorem 3.5 and Lemma 1.1 we obtain

Corollary 3.6. For each n > 1, the word un−1 guarantees minimum image

in Tn .

A comparison between the definitions (3) and (6) shows that the word
uk is shorter than the Sauer-Stone word wk (on the same alphabet) for
each k ≥ 3. In fact, the leading monomial in the expansion of ℓ(uk) as a

polynomial of t = |Σ| equals t
1
2 (k2−k) ; this means that asymptotically the

construction (6) is better than not only the construction from Theorem 2.3
but also the construction from Theorem 2.1 which, we recall, depends on
the generalized Černý conjecture. The following table exhibits some data
about the size of words arising from (6) for small n and/or t . The data in
the last column refer to a slight modification for the construction in the case
when the alphabet consists of two letters; the modification is similar to the
modification of the Sauer-Stone construction discussed in the second to last
paragraph of Section 2. Namely, we can make the word aba2b2ab play the
role of u2 and proceed by (6) for k ≥ 3.

Table 3: The length of the words defined via (6)

n |Σ| = t |Σ| = 2 u2 = aba2b2ab

2 t 2
3 t3+3t2+2 24 8
4 t6+4t5+6t4+9t3+7t2+3t 394 154
5 t10+5t9+11t8+20t7+27t6+29t5+ · · ·+4t 12 312 4872
6 t15+6t14+17t13+37t12+64t11+ · · ·+5t 775 914 307 194
7 t21+7t20+24t19+61t18+125t17+ · · ·+6t 98 541 720 39 014 280
8 t28+8t27+32t26+93t25+218t24+ · · ·+7t 25 128 140 138 9 948 642 938

Viewing the data in Table 3 against the corresponding data in Tables 1
and 2 shows that the gain provided by the new construction is quite essential
even for small deficiencies and alphabet sizes. As for our “benchmark”, that
is, a word over two letters that guarantees minimum image in T5 , Table 3
indicates that there is such a word of length 4872. Yet too lengthy to be
written down here, the word appears to be much closer to what may be called
“a word of reasonable length” for its size is already well comparable with
the size of the semigroup T5 itself (which is 3125). In the rest of the paper
we discuss to what extent the achieved results may be further improved.
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4 A lower bound

Now we seek a lower bound for the length of a word guaranteeing mini-
mum image in Tn . For this aim, we recall the construction of the minimal
automaton of a language of the form Σ∗wΣ∗ , where w ∈ Σ∗ . This con-
struction can be readily obtained from the well-known construction of the
minimal automaton of Σ∗w , which is used, for instance, in pattern matching
algorithms (implicitly in [20], and explicitly in [1, 6, 9]).

Given two words u and v words of Σ∗ , we denote by overlap(u, v) the
longest word z ∈ Σ∗ such that u = u′z , v = zv′ for some u′, v′ ∈ A∗ . In
other terms, overlap(u, v) is the longest suffix of u which is at the same
time a prefix of v .

u
︷ ︸︸ ︷

u′ z v′

︸ ︷︷ ︸

v
Figure 1: z = overlap(u, v)

Given a word w = a1 · · · am ∈ Σ∗ , the minimal automaton of Σ∗wΣ∗ is
A(w) = 〈Q,Σ, δ〉 with the set of states Q = {a1 · · · ai | 0 ≤ i ≤ m},
that is, the set of all prefixes of the word w , and the transition function
δ : Q × Σ → Q defined as follows: for all a ∈ Σ

δ(a1 · · · am, a) = a1 · · · am,

δ(a1 · · · ai, a) = overlap(a1 · · · aia,w) for 0 ≤ i < m.

The initial state is the empty word, the unique final state is the word w .
The following picture illustrates this construction by showing the au-

tomaton A(a2bab) over the alphabet {a, b}.

1 a a2 a2b a2ba a2bab

a, bb a

a a b a b

b
a

b

Figure 2: The automaton A(a2bab)

Proposition 4.1. The automaton A(w) is synchronizing and u ∈ Σ∗ is a

reset word for A(w) if and only if the word w is a factor of u.

14



Proof. Since the final state is a sink, any reset word u for A(w) necessarily
sends every state to the final state. In particular, it sends the initial state
to the final state and thus it is accepted by A(w). Therefore w is a factor
of u .

Conversely, if w is a factor of u , and x is a state, then w is a factor of
xu . Therefore the word xu is accepted by A(w) whence δ(x, u) = w . Thus
u is a reset word.

Theorem 4.2. Any word over a finite alphabet Σ guaranteeing minimum

image in Tn contains every word over Σ of length n−1 as a factor and has

length at least |Σ|n−1 + n − 2.

Proof. Take an arbitrary word v ∈ Σ∗ of length n− 1 and consider the au-
tomaton A(v) = 〈Q,Σ, δ〉 . By Proposition 4.1, the homomorphism ϕA(v) :
Σ∗ → T (Q) = Tn verifies rk(vϕA(v)) = 1. Now take any word w ∈ Σ∗

that guarantees minimum image in Tn ; by the definition, it should satisfy
rk(wϕA(v)) ≤ rk(vϕA(v)) whence rk(wϕA(v)) = 1. Thus, w should be a reset
word for automaton A(v). By Proposition 4.1, w then has the word v as a
factor.

Since there are |Σ|n−1 different words over Σ of length n− 1 and since
a word of length m ≥ n − 1 has m − n + 2 factors of length n − 1, any
word over Σ containing every word over Σ of length n − 1 as a factor has
the length at least |Σ|n−1 + n − 2. (This bound is, in fact, exact — see the
reasoning with the DeBruijn sequences in the first paragraph of the proof of
Theorem 2.1.)

5 Numerical results

In the previous sections we have established some lower and some upper
bounds for the minimum length of a word guaranteeing minimum image
in Tn . Obviously, the gap between these bounds is rather wide. Which
direction should one go next: increasing the lower bound or decreasing the
upper one? In order to obtain at least a rough answer to this question we
tried to explicitly construct shortest words guaranteeing minimum image
in T3 over 3 letters and respectively in T4 over 2 letters. To this aim
I. V. Petrov, a student of the third-named author, has implemented an
exhaustive search algorithm in Visual C++ 6.0. Here is a brief account of
the results obtained by Petrov’s program; their more detailed description is
published in [5].
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It turns out that the minimum length of a word over 3 letters guaran-
teeing minimum image in T3 is equal to 20. Up to renaming of the letters
there exists 22 such words; the word

aba2cacb2cbabcba2c2b

is the first in their alphabetical list. Observe that the lower bound from
Theorem 4.2 is 32 + 3 − 2 = 10 while the upper bound from Corollary 3.6
is 33 + 3 · 32 + 2 = 56. We see that the real value is much closer to the
lower theoretical bound. In fact, words constructed via Corollary 3.6 have
a stronger property than that of guaranteeing minimum image in T3 : they
witness for deficiency 2. Using the algorithm from [3, 4] that recognizes
the latter property we have checked that none of the shortest words over 3
letters guaranteeing minimum image in T3 witness for deficiency 2. In fact,
the minimum length of a word over 3 letters that witnesses for deficiency 2
is 21; thus, in the notation introduced in Section 1, µ2(3) = 21.

The minimum length of a word over 2 letters guaranteeing minimum
image in T4 is equal to 33. Surprisingly enough, it turns out that (up to
renaming of the letters) there is a unique such word, namely

ab2aba3b2a2babab2a2b3aba2ba2b2a.

The lower bound from Theorem 4.2 is 23 + 4− 2 = 10 while the theoretical
upper bound presented in Table 3 is 154. Again we see that the lower
bound is much closer to the real value. We may conclude that the results of
computer experiments clearly indicate that there should exist more efficient
constructions for words guaranteeing minimum image than those presently
known.
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