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Shuffle on positive varieties of languages.

Antonio Cano Gómez∗ and Jean-Éric Pin†

acano@dsic.upv.es, Jean-Eric.Pin@liafa.jussieu.fr

Abstract

We show there is a unique maximal positive variety of languages
which does not contain the language (ab)∗. This variety is the unique
maximal positive variety satisfying the two following conditions: it is
strictly included in the class of rational languages and is closed un-
der the shuffle operation. It is also the largest proper positive variety
closed under length preserving morphisms. The ordered monoids of
the corresponding variety of ordered monoids are characterized as fol-
lows: for every pair (a, b) of mutually inverse elements, and for every
element z of the minimal ideal of the submonoid generated by a and
b, (abzab)ω ≤ ab. In particular this variety is decidable.

1 Introduction

The shuffle product is a standard tool for modeling process algebras [3]. This
motivates the study of “robust” classes of recognizable languages which are
closed under shuffle product. By “robust” classes, we mean classes which
are closed under standard operations, like boolean operations, morphisms
or inverse morphisms, etc. For instance, a complete classification is known
for varieties of languages. Recall that a variety of languages is a class of
recognizable languages closed under the following operations: union, inter-
section, complement, inverse morphisms and residuals. It is easy to see that
the variety of all recognizable languages is closed under shuffle. Finding the
proper varieties (ie. not equal to the variety of all recognizable languages)
closed under shuffle proved to be a much more challenging problem. Ac-
tually, all these varieties are commutative, a very restrictive condition. In
particular, the variety of commutative languages is the largest proper vari-
ety closed under shuffle. This result, first conjectured by Perrot in 1978 [7],
was finally proved by Ésik and Simon in 1998 [6].
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In this paper, we are interested in positive varieties closed under shuffle.
A positive variety is obtained by relaxing the definition of a variety, in the
sense that only positive boolean operations (union and intersection) are
allowed — no complement. Again the positive variety of all recognizable
languages is closed under shuffle, but the question arises to know whether
there is a largest proper positive variety closed under shuffle.

The main result of this paper is a positive solution to this problem.
First we show there is a largest positive variety W which does not contain
the language (ab)∗. Then we show that this variety W is the largest proper
positive variety closed under shuffle. We also characterize the corresponding
variety W of ordered monoids. An ordered monoid (M,≤) belongs to W

if, for every pair (a, b) of mutually inverse elements of M , and for every
element z of the minimal ideal of the submonoid generated by a and b,
(abzab)ω ≤ ab. It follows that the variety W is decidable, and consequently,
there is an algorithm to decide whether or not a given recognizable language
belongs to W.

Another important property of W is proved along the way. We show
that W is the largest proper positive variety closed under length preserving
morphisms. This result is proved by first showing that power monoids form
the algebraic counterpart of length preserving morphisms. This result is
not new, but is adapted here for ordered monoids and positive varieties of
languages.

Our proofs require some classical semigroup theory (Green’s relations,
etc.) but, more surprisingly, make a nontrivial use of profinite techniques,
especially in the detailed study of the variety W. It would be interesting to
know whether this type of arguments can be avoided.

Our paper is organized as follows. Section 2 gives the basic definitions.
Section 3 is devoted to the algebraic study of the variety W. This study
is completed by the examples and counterexamples presented in Section 4.
Power semigroups are introduced in Section 5. They form the main algebraic
tool for the study of the operations on languages considered in Section 6: the
length preserving morphisms and the shuffle operation. Section 7 is devoted
to our main result, and we conclude the paper in Section 8.

2 Preliminaries

We assume that the reader has a basic background in finite semigroup theory
(in particular Green’s relations). All semigroups and monoids considered in
this paper are either free or finite.

In this section we provide the most important concepts and tools used
in this article. Subsections 2.2, 2.4 and 2.6 come from [13, 18]. The reader
is referred to [12, 13, 15, 18, 19, 14] for further information about ordered
semigroups.
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2.1 Semigroups

If S is a semigroup, S1 denotes the monoid equal to S if S has an identity
element and S ∪ {1} otherwise, with s1 = 1s = s for all s ∈ S. An element
e ∈ S is idempotent if e2 = e. The set of idempotents of a semigroup S is
denoted by E(S). Given an element s of a finite semigroup S, sω denotes
the unique idempotent of the subsemigroup of S generated by s.

Two elements a and b of a semigroup are mutually inverse if aba = a
and bab = b.

A relation R on a monoid M is stable on the right (resp. left) if, for
every x, y, z ∈M , x R y implies xz R yz (resp. x R y implies zx R zy). A
relation is stable if it is stable on the right and on the left.

A congruence on a semigroup is a stable equivalence relation. If ∼ is a
congruence on S, there is a well-defined multiplication on the quotient set
S/∼ given by [s][t] = [st] where [s] denotes the ∼-class of s ∈ S.

An ideal of a semigroup S is a subset I ⊆ S such that S1IS1 ⊆ I.
A nonempty ideal I of a subsemigroup S is called minimal if, for every
nonempty ideal J of S, J ⊆ I implies J = I. Every finite semigroup S
admits a unique minimal ideal, denoted by I(S). In particular, if s is an
element of S, the minimal ideal of the subsemigroup generated by s is a
group, with identity sω. There is a unique element t of this group such that
ts = st = sω. This element t is denoted by sω−1.

The next proposition, which applies in particular to minimal ideals, is
a particular case of [10, Chapter 2, Proposition 1.2]. For the convenience
of the reader, we give a self-contained proof. Recall that if J and K are
subsets of a semigroup S, then K−1J = {s ∈ S1 | Ks ∩ J 6= ∅} and
JK−1 = {s ∈ S1 | sK ∩ J 6= ∅}.

Proposition 2.1 Let J be a J -class of a semigroup S which is also a semi-
group. Then J−1J = JJ−1 and this set is a submonoid of S1 in which J is
the minimal ideal.

Proof. Let s ∈ J−1J . By definition, there exists an element t ∈ J such
that ts ∈ J . Since J is a semigroup, it follows that tst and (tst)ω are ele-
ments of J . Furthermore, since two conjugate idempotents are J -equivalent,
the idempotent (stt)ω is also in J . But since (stt)ω = st(tst)ω−1t and
t(tst)ω−1t ∈ J , one has s ∈ JJ−1. It follows that J−1J is contained
in JJ−1 and a dual argument would show the opposite inclusion. Thus
J−1J = JJ−1.

Let now s1, s2 ∈ J−1J . Then t1s1 ∈ J for some t1 ∈ J , and since J−1J =
JJ−1, s2t2 ∈ J for some t2 ∈ J . Therefore t1s1s2t2 and hence (t1s1s2t2)

ω

are in J . By conjugacy, (s1s2t2t1)
ω ∈ J and since t2t1(s1s2t2t1)

ω−1 =
t2(t1s1s2t2)

ω−1t1 ∈ J , s1s2 ∈ JJ−1. Therefore JJ−1 is a semigroup and
since it clearly contains 1, it is a submonoid of S1.
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We claim that J is an ideal of JJ−1. Let s ∈ J−1J and let u ∈ J . By
definition, there exists an element t ∈ J such that ts ∈ J . It follows tsu ∈ J
and thus su ∈ J−1J . Symmetrically, since J−1J = JJ−1, there exits r ∈ J
such that sr ∈ J . It follows usr ∈ J , and thus us ∈ JJ−1, which proves the
claim. Since J is a simple semigroup, it is necessarily equal to the minimal
ideal of JJ−1.

2.2 Ordered monoids

An ordered monoid is a monoid equipped with a stable partial order relation.
For instance, U−

1 denotes the ordered monoid {0, 1}, consisting of an identity
1 and a zero 0, ordered by 1 ≤ 0.

A congruence on an ordered monoid (M,≤) is a stable quasi-order which
is coarser than ≤. In particular, the order relation ≤ is itself a congruence.
If � is a congruence on M , then the equivalence relation ∼ associated with
� is a monoid congruence on M . Furthermore, there is a well-defined stable
order on the quotient set M/∼, given by [s] ≤ [t] if and only if s � t. Thus
(M/∼,≤) is an ordered monoid, also denoted by M/�.

The product of a family (Mi)i∈I of ordered monoids is the ordered
monoid defined on the set

∏
i∈I Mi. The multiplication and the order rela-

tion are defined componentwise.
A morphism from an ordered monoid (M,≤) into an ordered monoid

(N,≤) is a function ϕ : M → N such that ϕ(1) = 1, ϕ(s1s2) = ϕ(s1)ϕ(s2)
and such that s1 ≤ s2 implies ϕ(s1) ≤ ϕ(s2). Ordered submonoids and
quotients are defined in the usual way. Complete definitions can be found in
[18]. We just mention a special case of one of the so-called “homomorphism
theorems”. It is stated here in a negative form which is more suitable for
our purpose (see the proof of Theorem 3.6).

Proposition 2.2 Let ≤1 and ≤2 two order relations on a monoid M . If,
for all x, y ∈ M , x 6≤2 y implies x 6≤1 y, then (M,≤2) is a quotient of
(M,≤1).

Ordered monoids are a generalization of monoids. Taking the equality
as a stable order relation, we obtain the same definitions as above for the
unordered case.

An order ideal I of an ordered monoid (M,≤) is a subset of M such that
if x ∈ I and y ≤ x then y ∈ I. Given an element s of M , the set

↓s = {t ∈M | t ≤ s}

is an order ideal, called the order ideal generated by s. More generally, if X
is a subset of M , the order ideal generated by X is the set

↓X =
⋃

s∈X

↓s
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A filter F of an ordered monoid (M,≤) is a subset of M such that if x ∈ F
and x ≤ y then y ∈ F . Note that a set is a filter if and only if its complement
is an order ideal. Given an element s of M , the set

↑s = {t ∈M | s ≤ t}

is a filter, called the filter generated by s. More generally, if X is a subset
of M , the filter generated by X is the set

↑X =
⋃

s∈X

↑s

2.3 Rees quotient

Let M be a monoid and let I be an ideal of M . The Rees quotient of M by
I, denoted by M/I, is the monoid defined on the set (M \ I) ∪ {0} by the
multiplication (temporarily denoted by s· t) defined as follows

s· t =

{
st if s, t and st are in M \ I

0 otherwise

The natural morphism π from M onto M/I is defined by

π(s) =

{
s if s ∈M \ I

0 otherwise

If M is an ordered monoid, it is not always possible to order the Rees
quotient M/I in such a way that the natural morphism π : M → M/I be
a morphism of ordered monoids. The next proposition gives some sufficient
conditions that make possible the construction of such an order.

Proposition 2.3 Let (M,≤) be an ordered monoid and let I be an ideal of
M . Assume that no relations of the form t1 ≤ s ≤ t2 hold with s ∈ M \ I
and t1, t2 ∈ I. Define a relation � on M/I as follows. If s1, s2 ∈ M \ I,
then s1 � s2 if s1 ≤ s2 or if s1 ≤ t1 and t2 ≤ s2 for some elements t1, t2 ∈ I.
If s ∈ M \ I, s � 0 (resp. 0 � s) if s ≤ t (resp. t ≤ s) for some t ∈ I.
Finally, 0 � 0. Then � is a stable order relation and (M/I,�) is a quotient
of (M,≤).

Proof. Let us show that the relation � is an order relation. It is clearly
reflexive by construction. If s1 � s2 and s2 � s1, with s1, s2 ∈ M \ I,
three cases may apparently arise, but two of them are not compatible with
the hypothesis. More precisely, if s1 ≤ t1 and t2 ≤ s2 for some elements
t1, t2 ∈ I, the relation s2 ≤ s1 does not hold, for otherwise t2 ≤ s1 ≤ t1,
a contradiction. Similarly, if s2 ≤ t3 and t4 ≤ s2 for some t3, t4 ∈ I, one
gets t2 ≤ s2 ≤ t3 with a new contradiction. Thus, the only possible case is
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s1 ≤ s2 and s2 ≤ s1, and hence s1 = s2. Finally, if s � 0 � s, for some
s ∈ M \ I, there must exist two elements t1, t2 of I such that t2 ≤ s ≤ t1,
with a new contradiction. Thus � is antisymmetric.

We finally prove that � is transitive. Suppose that s1 � s2 and s2 � s3.
If s1 = 0, then t1 ≤ s2 for some element t1 ∈ I. If s2 ≤ t2 for some t2 ∈ I,
the condition of the theorem is violated. Therefore s2 ≤ s3, whence t1 ≤ s3
and 0 � s3. The case s3 = 0 is similar. Suppose that s2 = 0. Then s1 ≤ t1
and t3 ≤ s3 for some t1, t3 ∈ I and thus s1 � s3. Suppose finally that
s1, s2, s3 ∈ M \ I. If s1 � s2 and s2 � s3, then we have s1 ≤ s3 and hence
s1 � s3. If s1 ≤ t1 and t2 ≤ s2 for some t1, t2 ∈ I, then necessarily s2 ≤ s3
by the same argument as before. Thus the relation t2 ≤ s3 holds, and gives
s1 � s3.

Let us show that � is right stable. If s � 0, then s ≤ t for some t ∈ I.
Therefore su ≤ tu with tu ∈ I and su ≤ 0. If s1 � s2, then either s1 ≤ s2
and hence s1u ≤ s2u, whence s1u � s2u, or s1 ≤ t ≤ s2 for some t ∈ I and
thus s1u ≤ tu ≤ s2u, whence s1u � s2u. A similar argument would show
that � is left stable.

Let us show that π is a morphism of ordered monoids. If s ≤ t and
s, t ∈ M \ I, then π(s) = s � t = π(t). If s ∈ M \ I and t ∈ I, then
π(s) = s � 0 = π(t). If s ∈ I and t ∈ M \ I, then π(s) = 0 � t = π(t).
Finally, if s, t ∈ I, then π(s) = π(t) = 0.

2.4 Syntactic ordered monoids

A language L of A∗ is recognized by an ordered monoid (M,≤) if and only
if there exist an order ideal I of M and a monoid morphism η from A∗ into
M such that L = η−1(I).

Let A∗ be a free monoid. Given a language P of A∗ we define the
syntactic congruence ∼P and the syntactic preorder ≤P as follows:

(1) u ∼P v if and only if for all x, y ∈ A∗, xvy ∈ P ⇔ xuy ∈ P ,

(2) u ≤P v if and only if for all x, y ∈ A∗, xvy ∈ P ⇒ xuy ∈ P .

The monoid A∗/∼P is called the syntactic monoid of P , and is denoted by
M(P ). The monoid A∗/∼P , ordered with the stable order relation induced
by ≤P is called the ordered syntactic monoid of P . The syntactic (ordered)
monoid of a rational language is finite.

Two ordered monoids play an important role in the sequel. First U−
1 ,

the ordered syntactic monoid of the language a∗ on the alphabet {a, b}, and
B1−

2 , the ordered syntactic monoid of the language (ab)∗ on the alphabet
{a, b}.

Example 2.1 The structure of the ordered syntactic monoid B1−
2 of the

language L1 = (ab)∗ on the alphabet A = {a, b} is given in Figure 2.1.
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∗1

∗ab

∗bab

a

∗0

∗ab a b ∗ba

∗0

∗1

Figure 2.1: J -classes and order of B1−
2 .

2.5 Profinite monoids

We briefly recall the definition of a free profinite monoid. More details can
be found in [1, 2]. Let A be a finite alphabet. A monoid M separates two
words u and v of the free monoid A∗ if there exists a morphism ϕ from A∗

onto M such that ϕ(u) 6= ϕ(v). We set

r(u, v) = min
{
|M | M is a monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is an ultrametric on A∗. For the metric d, the closer are two words,
the larger is the monoid needed to separate them.

As a metric space, A∗ admits a completion, denoted by Â∗. For instance,
it can be shown that, for each x ∈ Â∗, the sequence (xn!)n≥0 is a Cauchy

sequence. It converges to an idempotent element of Â∗, denoted by xω. The
product on A∗ is uniformly continuous. Since A∗ is dense in Â∗ by definition,
the product can be extended by continuity to Â∗. The resulting monoid is
called the free profinite monoid on A. This is a topological compact monoid
which admits a unique minimal ideal.

Every monoid morphism from A∗ into a finite monoid M (considered as
a discrete metric space), can be extended by continuity to a morphism from

Â∗ into M . In particular, the image of xω under any morphism ϕ : Â∗ →M
into a finite monoid M is the unique idempotent of the subsemigroup of
M generated by ϕ(x). This fully justifies the natural formulas ϕ(xω) =
(ϕ(x))ω and ϕ(xω−1) = (ϕ(x))ω−1, which are, in practice, the only thing to
remember.
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2.6 Varieties

A variety of finite (ordered) monoids, or pseudovariety, is a class of finite
monoids closed under taking submonoids, quotients and finite direct prod-
ucts. Varieties of (ordered) monoids will be denoted by boldface capital
letters (e.g. V, W).

Let u, v ∈ Â∗. A finite ordered monoid M satisfies the identity u ≤ v
(resp. u = v) if and only if, for each morphism ϕ : Â∗ → M , ϕ(u) ≤ ϕ(v)
(resp. ϕ(u) = ϕ(v)). Given a set E of identities, it is easy to see that the
class of finite ordered monoids satisfying all the identities of E form a variety
of finite ordered monoids, denoted by [[E]].

Reiterman’s theorem [21] shows that every variety of finite monoids can
be defined by a set of identities. Pin and Weil [17] have extended this result
to varieties of finite ordered monoids.

For instance the variety Com of finite commutative monoids is defined
by the identity xy = yx. The variety J−

1
= [[xy = yx, x2 = x, 1 ≤ x]]

is generated by the ordered monoid U−
1 . It is the variety of semilattices

ordered by x ≤ y if and only if xy = y.
A positive variety of languages is a class of recognizable languages V such
that:

(1) for every alphabet A, V(A∗) is a positive boolean algebra (closed under
union and intersection),

(2) if ϕ : A∗ → B∗ is a morphism of semigroups, L ∈ V(B∗) implies that
ϕ−1(L) ∈ V(A∗),

(3) if L ∈ V(A∗) and if a ∈ A, then a−1L and La−1 are in V(A∗).

A variety of languages is a positive variety closed under complement.
Given two positive varieties of languages V and W, we write V ⊆ W if,

for each alphabet A, V(A∗) ⊆ W(A∗).
There is a one to one correspondence between varieties of finite monoids

(resp. varieties of finite ordered monoids) and varieties of recognizable lan-
guages (resp. positive varieties of recognizable languages) [5, 12].

For instance, the positive variety of languages corresponding to Com

is the variety Com of all commutative languages. Recall that a language
L is commutative if a1a2 · · · an ∈ L implies aσ(1)aσ(2) · · · aσ(n) ∈ L for each
permutation σ of {1, 2, . . . , n}. Other descriptions of Com can be found in
[5, 11].

The positive variety of languages J −
1 corresponding to J−

1
is defined

as follows: for each alphabet A, J −
1 (A∗) is the positive boolean algebra

generated by the languages of the form B∗ where B ⊆ A.
As a preparation to our main theorem, we prove a technical result on

varieties containing the language (ab)∗. A finite language F of A∗ is said to
be multilinear if, for each letter of A,

∑
u∈F |u|a ≤ 1. Thus, for instance, the

language {ab, cde} is multilinear, but the language {ab, cae} is not, because
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the letter a occurs twice: once in ab and another time in cae.

Proposition 2.4 A positive variety containing the language (ab)∗ contains
all the languages of the form L∗, where L is a multilinear language.

Proof. Let a and b be distinct letters, and let V be a positive variety such
that V({a, b}∗) contains the language (ab)∗. Then B1−

2 belongs to the variety
V corresponding to V and since U−

1 is a quotient of B1−
2 (obtained by

identifying a, b, ab, ba and 0), U−
1 also belongs to V. It follows that V

contains J−
1
, and thus V contains J −

1 . In particular, for each alphabet A,
V(A∗) contains the languages of the form B∗, where B is a subset of A.

Let {a1, . . . , an} be a set of pairwise distinct letters and let A be an
alphabet containing them. We first show that the language (a1 · · · an)∗ is in
V(A∗). Indeed, if B is a subset of A, denote by πB the projection of A onto
B defined by

πB(a) =

{
a if a ∈ B

1 if a ∈ A \ B

Let us show that

(a1 · · · an)∗ = {a1, . . . , an}
∗ ∩

(⋂

i<j

π−1
{ai,aj}

(aiaj)
∗
)

(1)

Let K be the right hand side of (1). It is clear that (a1 · · · an)∗ is contained in
K. Let x = a1 · · · an and let u ∈ K. We claim that u is a prefix of xr for some
r > 0. If not, let u = xpa1 · · · akaiv, with p ≥ 0, 0 ≤ k < n and i 6= k + 1.
Then, if i ≤ k, then π{ai,ak+1}(u) contains two consecutive occurrences of ai,
a contradiction. If now i > k + 1, π{ak+1,ai}(u) = (ak+1ai)

paiπ{ak+1,ai}(v)
and thus ak+1 has to be the first letter of v. But then π{ak+1,ai}(u) =
(ak+1ai)

paiak+1π{ak+1,ai}(v) /∈ (ak+1ai)
∗, a contradiction again. Hence u is

a prefix of xr for a certain r > 0. Symmetrically, u is a suffix of some xs.
Since x is multilinear, this implies that u ∈ x∗. Thus (1) holds.

Now, (ab)∗ ∈ V({a, b}∗), and thus the language (aiaj)
∗ is in V({ai, aj}

∗).
Since a positive variety is closed under intersection and inverse morphisms,
Formula (1) shows that (a1 · · · an)∗ ∈ V(A∗).

Let now L = {u1, u2, . . . , un} be a multilinear language of A∗. For
1 ≤ i ≤ n, let Ci be the set of letters occurring in ui, let C =

⋃
1≤i≤nCi and

let πi : A∗ → C∗
i be the morphism defined by

πi(a) =

{
a if a ∈ Ci

ui otherwise

We claim that
L∗ = C∗ ∩

( ⋂

1≤i≤n

π−1
i (u∗i )

)
(2)
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Let R be the right hand side of (2). We first observe that

πi(L) = {u
|u1|
i , . . . , u

|ui−1|
i , ui, u

|ui+1|
i , . . . , u

|un|
i }

and thus πi(L
∗) ⊂ u∗i . It follows that L∗ is a subset of R. Let now v ∈ R,

and let us show that v ∈ L∗. First observe that, for 1 ≤ i ≤ n,

πi(v) ∈ u∗i (3)

Since, by a result of [4], L∗ is a local language, it can be expressed as follows

L∗ = {1} ∪
(
(PA∗ ∩A∗S) \ A∗NA∗

)

where P (resp. S) is the set of first (resp. last) letters of the words of L,
N = A2 \ F and F is the set of factors of length 2 of the words of L∗.
Suppose that v is nonempty, and let a be its first letter. If a ∈ Ci, then
πi(a) = a, and thus the first letter of πi(v) is a. It follows from (3) that a is
the first letter of ui, and thus belongs to P . A similar argument would show
that the last letter of v belongs to S. Consider now two consecutive letters
a and b of v. If a and b belong to the same alphabet Ci, then πi(ab) = ab
is a factor of πi(v) and thus, by (3), a factor of u2

i . Thus ab ∈ F in this
case. Suppose now that a ∈ Ci and b ∈ Cj for some i 6= j. Then again
πi(ab) = aui is a factor of u2

i and thus a is the last letter of ui. A similar
argument would show that b is the first letter of uj and thus ab is a factor of
uiuj and hence belongs to F . It follows that v belongs to L∗, which proves
the claim.

We have seen that if ui is multilinear, then u∗i ∈ V(A∗). It follows now
from (2) that L∗ ∈ V(A∗).

3 The variety W

This section is devoted to the algebraic study of a variety of ordered monoids
which plays a central role in this article. Indeed, we shall see in Section 7
that the corresponding positive variety of languages is the largest proper
positive variety closed under shuffle. This variety is denoted by W and is
defined as follows: a monoid M belongs to W if and only if, for any pair
(a, b) of mutually inverse elements of M , and any element z of the minimal
ideal of the submonoid generated by a and b, (abzab)ω ≤ ab.

It is not easy to see directly from the definition of W that it is a variety
of ordered monoids. To overcome this difficulty, we shall give an equiva-
lent definition of W, that relies on an apparently weaker condition on the
minimal ideal.

Let us denote by F̂ the free profinite monoid generated by x and y.
Given an element ρ of F̂ , and two elements u, v of a monoid M , we denote
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by ρ(u, v) the image of ρ under the morphism from F̂ into M which maps
x onto u and y onto v. For instance, if M = F̂ , ρ = (xy)ωx, u = yx and
v = xyωx, then ρ(u, v) = (yxxyωx)ωyx.

Consider, for each element ρ of F̂ , the variety

Wρ = [[((xy)ωρ((xy)ω−1x, y(xy)ω)(xy)ω)ω ≤ (xy)ω]]

The next proposition gives a simple characterization of these varieties.

Proposition 3.1 An ordered monoid (M,≤) belongs to Wρ if and only if,
for any pair (a, b) of mutually inverse elements of M , (abρ(a, b)ab)ω ≤ ab.

Proof. Let (M,≤) ∈ Wρ and let (a, b) be a pair of mutually inverse ele-
ments of M . Then ab is idempotent, (ab)ω−1a = a, and b(ab)ω = b. There-
fore, the identity defining Wρ yields (abρ(a, b)ab)ω ≤ ab.

Conversely, suppose that, for any pair (a, b) of mutually inverse elements
of M , (abρ(a, b)ab)ω ≤ ab. Let u and v be two elements of M . Then
a = (uv)ω−1u and b = v(uv)ω are mutually inverse and satisfy ab = (uv)ω.
Therefore, the relation ((uv)ωρ((uv)ω−1u, v(uv)ω)(uv)ω)ω ≤ (uv)ω holds in
M , and hence M ∈ Wρ.

The definition of Wρ is quite similar to that of W, but the condition
(abzab)ω ≤ ab, which was imposed on any element z of the minimal ideal, is
now restricted to only one element, namely ρ(a, b). In particular, it is clear
that if ρ is an element of the minimal ideal of F̂ , then W ⊆ Wρ. The main
result of this section states that this inclusion is actually an equality.

Theorem 3.2 For any element ρ of the minimal ideal of F̂ , Wρ = W.

The proof relies on several lemmas. The first one gives a factorization of
the elements of the minimal ideal of F̂ . Its statement requires an auxiliary
notation. We denote by ˜ the automorphism of F̂ defined by x̃ = y and
ỹ = x. For instance x̃yy = yxx.

Lemma 3.3 Let ρ be an element of the minimal ideal of F̂ . Then either
ρ or ρ̃ can be factorized as ρ′′x2ρ′, where ρ′ belongs to the closure of the
language (yx)∗{1, y}.

Proof. Since ρ is in the minimal ideal of F̂ , ρ ≤J x2 and thus ρ is the
limit of a sequence of words of the form rn = r′′nx

2r′n. Furthermore, we
may assume that the occurrence of x2 defined by the context (r′′n, r

′
n) is the

right-most occurrence of x2 in rn. Let I be the subset of N consisting of
all indices n such that y2 is not a factor of r′n. If I is infinite, we simply
consider the subsequence (rn)n∈I . Then r′n contains no factor x2 nor y2

and its first letter cannot be x. In other words, r ′n ∈ (yx)∗{1, y}. Since F̂
is compact, one can extract a subsequence from rn such that r′′n converges
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to some element ρ′′ and r′n converges to some element ρ′. By the choice
of r′n, ρ′ belongs to the closure of the language (yx)∗{1, y}, and since the
multiplication is uniformly continuous, ρ = ρ′′x2ρ′.

If I is finite, for n large enough, each r ′n can be written as r′n = sny
2s′n,

where the context (sn, s
′
n) defines the right-most occurrence of y2 in r′n.

Setting s′′n = r′′nx
2sn, we obtain rn = s′′ny

2s′n, with s′n ∈ (xy)∗{1, x}. It
follows that r̃n = s̃′′nx

2s̃′n, where s̃′n ∈ (yx)∗{1, y}, and we conclude as in the
previous case.

Let M be an ordered semigroup of Wρ and let (a, b) be a pair of mutually
inverse elements of M . Let N be the ordered subsemigroup of M generated
by a and b. Set e = (abρ(a, b)ab)ω and f = (baρ(b, a)ba)ω . We first observe
that abe = e = eab and baf = f = fba since ab and ba are idempotent. Two
other relations require a separate proof.

Lemma 3.4 The relations e = (afb)ω and f = (bea)ω hold in N .

Proof. Let I be the minimal ideal of N . Since ρ is an element of the
minimal ideal of F̂ , ρ(a, b) ∈ I and thus e and f are in I. Since M ∈ Wρ

and N is an ordered subsemigroup of M , Proposition 3.1 shows that the
relations e ≤ ab and f ≤ ba hold in N . From the relation e ≤ ab follows
bea ≤ baba = ba and since ba is idempotent, the relation (bea)ω ≤ ba holds
in N . By multiplying both sides on the right (resp. on the left) by f , we
obtain the relations (bea)ωf ≤ baf = f and f(bea)ω ≤ fba = f . It follows
(bea)ωff(bea)ω ≤ ff , that is

(bea)ωf(bea)ω ≤ f (4)

Now, since f and (bea)ω are idempotent elements of I, ((bea)ωf(bea)ω)ω =
(bea)ω and hence

(bea)ω ≤ f (5)

Similarly, by multiplying both sides of the relation f ≤ ba by (bea)ω on the
left (resp. right), we obtain f(bea)ω ≤ (bea)ω and (bea)ωf ≤ (bea)ω, whence
f(bea)ωf = f(bea)ω(bea)ωf ≤ (bea)ω and by taking the ω-power on both
sides

f = (f(bea)ωf)ω ≤ (bea)ω (6)

Relations (5) and (6) together give f = (bea)ω . It follows that (afb)ω =
(a(bea)ωb)ω = e.

It follows f ≤L ea and thus ea L f since ea and f are both in I.

Lemma 3.5 The element e (resp. f) belongs to the left ideal Na2b (resp.
Na2).
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Proof. It follows immediately from Lemma 3.4 that the two conditions
e ∈ Na2b and f ∈ Na2 are equivalent.

Lemma 3.3 leads to the consideration of two cases. First assume that ρ =
ρ′′x2ρ′, where ρ′ belongs to the closure L̄ of the language L = (yx)∗{1, y}.
Let π : F̂ → N be the continuous morphism defined by π(x) = a and π(y) =
b. By a standard result of topology, π(L̄) ⊆ π(L), and since the closure of
π(L) is computed in the discrete monoid N , it reduces to (ba)∗{1, b} =
{1, b, ba}. It follows that

abρ(a, b)ab = abρ′′(a, b)a2ρ′(a, b)ab ∈ Na2{1, b, ba}ab

= Na3b ∪Na2b ∪Na2ba2b ⊆ Na2b

Thus e = (abρ(a, b)ab)ω ∈ Na2b.
Next assume that ρ̃ = ρ′′x2ρ′ (or, equivalently, ρ = ρ̃′′y2ρ̃′), where ρ′ ∈ L̄.

Observing that L = (yx)∗y ∪ (yx)∗, we consider successively two subcases

(a) ρ′ ∈ (yx)∗y

(b) ρ′ ∈ (yx)∗

We claim that in case (a), ρ′(b, a) = a. Indeed, π((xy)∗x) = (ab)∗a = {a},
and thus ρ′(b, a) ∈ π((xy)∗x) ⊆ π((xy)∗x) = {a}. It follows that

abρ(a, b)ab = abρ′′(b, a)b2ρ′(b, a)ab ∈ Nb2a2b ⊆ Na2b

and again e = (abρ(a, b)ab)ω ∈ Na2b. In case (b), we have, by a similar
argument, ρ′(a, b) ∈ {1, ba}, whence

baρ(b, a)ba = baρ′′(a, b)a2ρ′(a, b)ba ∈ Na2{1, ba}ba = Na2

It follows that f = (baρ(b, a)ba)ω ∈ Na2.

We can now conclude the proof of Theorem 3.2 by showing that M ∈ W.
We claim that e = (eaab)ω . By Lemma 3.5, there exists an element w of N
such that e = waab. The relation e ≤ ab gives on one hand (ew)e(aab) ≤
(ew)ab(aab), that is eweaab ≤ e and on the other hand (ea)e ≤ (ea)ab, that
is eae ≤ eaab. Taking the ω-power on both sides of these relations gives

(eweaab)ω ≤ e and (eae)ω ≤ (eaab)ω (7)

But since I is a simple semigroup containing e, (eweaab)ω = (eaab)ω and
(eae)ω = e. Thus (7) reduces to (eaab)ω ≤ e and e ≤ (eaab)ω, which proves
the claim.

It follows that e H eaab, and hence ea L eaaba = eaa. Now since ea L f
by Lemma 3.4, we have

eaa L ea L f

A similar argument can be used to obtain the relations fbb L fb L e,
bbe R be R f and aaf R af R e. Therefore, by Green’s lemma, the union
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of the L-class Le of e and the L-class Lf of f is stable under right and left
multiplication by a and b. More precisely, the right multiplication by a maps
Le onto Lf and Lf onto itself and the right multiplication by b maps Lf

onto Le and Le onto itself. A similar argument would show that the union
of the R-classes of e and f is invariant under left multiplication by a and b.
Since a and b generate N , it follows that the minimal ideal I is equal to the
union of the H classes of e, ea, be and f , as represented in Figure 3.1.

∗e ∗ea

∗f∗be

a
a

b
b

Figure 3.1: The elements a and b acting by right multiplication on I.

Finally, let z be an element of I. By the previous results, abzab H e and
thus (abzab)ω = e ≤ ab. Thus M ∈ W.

The next proposition shows that W is the largest variety of ordered
monoids not containing B1−

2 .

Theorem 3.6 Every variety of ordered monoids not containing B1−
2 is con-

tained in W.

Proof. First, B1−
2 /∈ W, since the relation 0 ≤ ab does not hold in B1−

2 .
Let (M,≤) be an ordered monoid not in W. Let (u1, v1), . . . , (un, vn)

be the list of pairs of mutually inverse elements of M and let N be the
ordered submonoid of M × · · · ×M︸ ︷︷ ︸

n times

generated by u = (u1, . . . , un) and v =

(v1, . . . , vn). Note that uv is an idempotent of N . The rest of the proof
consists in proving that B1−

2 divides N × N . As a first step, we exhibit a
J -class of N which is not a semigroup.

Suppose that s ≤ uv for some s ∈ I(N). Let ρ be an element of the
minimal ideal of F̂ such that, in N , ρ(u, v) = s. Then, in M , the relations
ρ(ui, vi) ≤ uivi hold for 1 ≤ i ≤ r, and hence the relation

(abρ(a, b)ab)ω ≤ (ab)ω

holds for any pair (a, b) of mutually inverse elements of M . It follows by
Proposition 3.1 that M ∈ Wρ, and thus, by Theorem 3.2, M ∈ W, a
contradiction. Thus, for each element s ∈ I(N), s 6≤ uv. Therefore the set

S = {s ∈ N | s ≤ uv}
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is a nonempty subsemigroup of N disjoint from I(N). Let h be an idempo-
tent of I(S) and let J be the J -class of h in N .

Lemma 3.7 The J -class J is not a semigroup.

Proof. By definition of S, h ≤ uv and thus (uv)h(uv) ≤ uv. Therefore
(uv)h(uv) ∈ S, and since (uv)h(uv) ≤J h and h ∈ I(S), (uv)h(uv) J h in
S, and thus also in N . It follows that, in N , the relations vh L h R hu hold,
showing that u ∈ J−1J and v ∈ JJ−1. In particular, if J is a semigroup,
Proposition 2.1 shows that the set J−1J = JJ−1 is a submonoid of N
whose minimal ideal is J . This submonoid contains u and v and therefore,
is equal to N . It follows J = I(N), a contradiction, since S does not meet
I(N).

Since J is not a semigroup, one can find two idempotents e, f in J such
that ef /∈ J . Since e J f , there exist two elements a, b ∈ J such that
e = ab, f = ba, aba = a and bab = b, as pictured in Figure 3.2, in which a
star denotes the presence of an idempotent. Note that b is not idempotent,
otherwise ef = abba = aba = a ∈ J . However it is possible that h = e or
h = f , and that a is idempotent.

∗ ∗e a

b ∗f

∗h

Figure 3.2: The elements e, f and h in J .

Let R be the submonoid of N × N generated by x = (a, b) and y = (b, a).
Then xyx = x, yxy = y, xy = (e, f) and yx = (f, e). Thus xy and yx
are idempotents. Suppose that x or y is idempotent. Then a and b are
idempotent, and thus ef = a and fe = b are in J , a contradiction. Thus
neither x nor y are idempotent.

We claim that B1−
2 is a quotient of R. The monoid R is the disjoint

union of the singleton {1}, the J -class D = {x, y, xy, yx} and the ideal
I = {r ∈ R | r <J x}. As a monoid, R/I is isomorphic to B1

2 . We now
carefully analyse the forbidden relations among the elements of R.

Lemma 3.8 None of the following relations hold in R:

(a) 1 ≤ x, 1 ≤ y,

(b) r ≤ s for some r ∈ I, s ∈ D ∪ {1}.

(c) r ≤ s for some r ∈ D and s ∈ R \ {r, 0},
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Proof. Let us first observe that x and y are not ≤-comparable. Indeed, if
for instance y ≤ x, then (b, a) ≤ (a, b), whence a = b, a contradiction.

If the relation 1 ≤ x holds, then y ≤ xy ≤ xyx = x, and hence y ≤ x, a
forbidden relation. By a similar argument, the relations 1 ≤ y, x ≤ 1 and
y ≤ 1 cannot hold. In particular, this proves (a).

Suppose that (b) holds with s = xy. Then rx ≤ xyx = x. Similarly, if
r ≤ yx then xr ≤ xyx = x and if r ≤ y, then xrx ≤ xyx = x. Therefore,
the only remaining case is r ≤ x, with r ∈ I. Setting r = (r1, r2), we obtain
r1 ≤ a and r2 ≤ b. It follows that r1r2 ≤ (ab)ω = e. Since e J h, h = ced
for some elements c, d ∈ N . Therefore cr1r2d ≤ ced = h ≤ uv and thus
cr1r2d ∈ S. But since r ∈ I, either r1 <J a or r2 <J b. In both cases, it
implies cr1r2d <J h, a contradiction, since h ∈ I(S).

We now show that each of the remaining relations of type (c) implies a
forbidden relation of type (b). If xy ≤ 1 (resp. yx ≤ 1), then x2y ≤ x (resp.
yx2 ≤ x), a type (b) relation. Similarly, if r ≤ 1 with r ∈ I, then rx ≤ x.
Finally, if r ≤ s for some r ∈ D and s ∈ D \ {r}, let s̄ be the inverse of s in
D (that is, if s = x, s̄ = y, if s = y, s̄ = x and if s = xy or s = yx, s̄ = s).
Then s̄rs̄ ≤ s̄ss̄ = s̄ and since s 6= r, s̄rs̄ ∈ I. Thus the relation s̄rs̄ ≤ s̄ is
of type (b).

In particular, no relation of the form t ≤ s hold with t ∈ I and s ∈
D ∪ {1}. It follows, by Proposition 2.3, that (B1

2 ,�) is a quotient of R,
where the order relation � is defined as follows. If s1, s2 ∈ D ∪ {1}, then
s1 � s2 if s1 ≤ s2. If s ∈ D ∪ {1}, s � 0 if s ≤ t for some t ∈ I. Finally,
0 � 0. It remains now to apply Proposition 2.2 to conclude that B1−

2 is a
quotient of (B1

2 ,�). It follows that B1−
2 divides N ×N .

Denote by DS the variety of ordered monoids whose regular D-classes
are subsemigroups. This variety contains in particular the variety of com-
mutative monoids. Since the ordered monoid B1−

2 does not belong to DS,
the following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.9 The variety W contains the variety DS.

4 Some examples and counterexamples

It is tempting to try to simplify the definition of W, either by relaxing or by
strengthening the defining condition of W. This section presents the Hall
of Fame of these failed attempts.

The first natural attempt is to require that, for each pair (a, b) of mu-
tually inverse elements, there exists an idempotent e in the minimal ideal
of the submonoid generated by a and b such that abeab ≤ ab. However,
the monoid M of Example 4.1 satisfies this condition (and even a stronger
condition), but does not belong to W.
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Example 4.1 Let (M,≤) be the ordered monoid presented by the relations
a3 = a2, b3 = b2, aba = a, bab = b, ba2b2 = a2b2 and a2b2 ≤ ab. There are 21
elements in M , and its J -class structure is represented in Figure 4.1 below.

∗1

∗ab a

b ∗ba

∗a2 ∗a2b

∗ba2 ba2b

∗b2 ∗b2a

∗ab2 ab2a

b2a2 b2a2b

ab2a2 ab2a2b

∗a2b2 ∗a2b2a ∗a2b2a2 ∗a2b2a2b

Figure 4.1: The J -class structure of M .

The order relation is defined as follows

a2b2 < b, ab, b2, a2b, ab2, ba2b, b2a2b, ab2a2b, a2b2a2b

a2b2a < a, a2, ba, ba2, b2a, ab2a, b2a2, ab2a2, a2b2a2

a2b2a2 < a2, ba2, b2a2, ab2a2

a2b2a2b < a2b, ba2b, b2a2b, ab2a2b

This monoid (without order) is also the transition monoid of the automaton
represented in Figure 4.2. However, it is not possible to choose the final
states of this automaton in such a way that (M,≤) is the ordered syntactic
monoid of this automaton.
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a

b

a

b

ab a

b
a

b

a

b

a

b

a
b

a

b

a

b

a

b

a

b

Figure 4.2: An automaton for M .

One can verify that, for each pair (x, y) of elements of M , there exists an
idempotent e in the minimal ideal of the submonoid ofM generated by x and
y such that e ≤ (xy)ω. However, (M,≤) does not belong to W. Indeed a and
b are mutually inverse in M , and generate M . However z = a2b2a2 belongs
to the minimal ideal of M , but (abzab)ω = (aba2b2a2ab)ω = a2b2a2b 6< ab.

Note that the quotient of M under the congruence a2b2 = a2b2a2b and
a2b2a = a2b2a2 is an ordered monoid of the variety defined by the identity

((xy)ω(xωyω)ω(xy)ω)ω ≤ (xy)ω

which is contained in W.

One can also try to strengthen the defining condition of W by requiring
that, for any pair (a, b) of elements of M (not necessarily mutually inverse)
and any element z of the minimal ideal of the submonoid generated by a
and b, (abzab)ω ≤ ab. However, the monoid M of Example 4.2 is in W but
does not satisfy this condition.

Example 4.2 Let (M,≤) be the ordered monoid presented by the relations
a2ba = a2b, a2b2 = a2b, aba2 = ab2, ba2b = b3, bab2 = b2, b2ab = b3,
b3a = b3, b4 = b3, a6 = a5, a5b = a5, ababab = ab, ba4b = ba3b, b2a4 = b2a3,
b2a3b = b2a3, ab3 ≤ abab and b3 ≤ baba. There are 34 elements in M , and
its regular J -classes are represented in Figure 4.3 below.
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∗1

ab aba

∗abab ababa

bab ∗baba

babab bababa

∗a2b

∗a3b

∗ab3

∗b3

∗ba3b

∗a4b

∗b2a3

∗ba5

∗ab2a3

∗a5

Figure 4.3: The regular J -classes of M .

This monoid (without order) is also the transition monoid of the automaton
represented in Figure 4.4
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a
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a

a

a

a

a a

b
b

b

b

b

b

b

b

bb

b

b

b

b

a, ba, b

Figure 4.4: An automaton for M .

The order in M is defined by the following relations

b3 < b2, bab, b2a, baba, b2a2, babab, b2a3, bababa

ab3 < ab, aba, ab2, abab, ab2a, ababa, ab2a2, ab2a3

There are four elements of M which are their own inverse: ab, abab, baba
and bababa. Each of them generates a cyclic group of order 2, and thus, the
condition defining W is trivially verified for these elements. The two other
pairs of mutually inverse elements are {aba, babab} and {bab, ababa}. The
subsemigroup generated by aba and babab is

{aba, babab, abab, baba, ab3, b3}

and the subsemigroup generated by ababa and bab is

{ababa, bab, abab, baba, ab3, b3}

It follows that, for each pair of mutually inverse elements (x, y) of M and
for any element z in the minimal ideal of the submonoid of M generated by
x and y, the relation ((xy)ωz(xy)ω)ω ≤ (xy)ω holds, and hence (M,≤) ∈
W. Actually, M even belongs to the variety [[(xy)ω(yx)ω(xy)ω ≤ (xy)ω]].
However ((ab)ωa5(ab)ω)ω = ab2a3 6≤ (ab)ω = abab.

Another attempt consisted to compare W with a variety of the form Wρ,
where ρ is not necessarily in the minimal ideal of F̂ . By a suitable choice
of ρ, we may insure that B1−

2 does not belong to W and thus Wρ ⊆ W.
One can take for instance ρ = (yx)ω. However, Example 4.3 shows that the
variety [[((xy)ω(yx)ω(xy)ω)ω ≤ (xy)ω]] is strictly contained in W.
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Example 4.3 Let (M,≤) be the ordered monoid with zero presented by the
relations aba = a, bab = b, ba2b = ab2a, a3 = b3 = 0, 0 ≤ a and 0 ≤ b. There
are 15 elements in M , and its J -class structure is represented in Figure 4.5
below.

∗1

a ∗ab

∗ba b

a2 a2b ∗a2b2

ba2 ∗ab2a ab2

∗b2a2 b2a b2

∗0

Figure 4.5: The J -class structure of M .

The order relation is defined by 0 ≤ x for every x ∈M . This ordered monoid
does not belong to the variety [[((xy)ω(yx)ω(xy)ω)ω ≤ (xy)ω]] since in M , ab
and ba are idempotent, but (ab)(ba)(ab) = ab2a 6≤ ab. However, M belongs
to W.

5 Power ordered monoids

The definitions given in this section were first given by the second author in
[14].

Given a monoid M , we denote by P(M) the set of subsets of M with
the multiplication defined, for all X,Y ∈ P(M) by

XY = {xy | x ∈ X and y ∈ Y }

It is possible to extend this notion to ordered monoids. Let (M,≤) be an
ordered monoid. Three ordered monoids, denoted respectively by P+(M,≤),
P−(M,≤) and P(M,≤), can be defined. Let ≤+ be the relation defined on
P(M) by setting X ≤+ Y if and only if, for all y ∈ Y , there exists x ∈ X
such that x ≤ y, that is, if the filter generated by Y is included in the filter
generated by X.
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It is immediate to see that the relation ≤+ is a stable preorder relation
on P(M). Furthermore, if Y ⊆ X, then X ≤+ Y . Denote by ∼+ the
equivalence relation defined by X ∼+ Y if X ≤+ Y and Y ≤+ X. Then
again, ≤+ induces a stable order on the monoid P(M)/∼+. The underlying
ordered monoid is denoted by P+(M,≤). The monoid P−(M,≤) is the
same monoid, equipped with the dual order.

For technical reasons, it is sometimes useful to use the monoid P ′+(M),
which is the submonoid of P+(M) obtained by removing the empty set. The
two monoids are related as follows.

Proposition 5.1 Let (M,≤) be an ordered monoid. Then P ′+(M,≤) is a
submonoid of P+(M,≤) and P+(M,≤) is a quotient of U−

1 ×P ′+(M,≤).

Proof. By definition, P+(M,≤) = P ′+(M,≤) ∪ {{∅}} and ∅ is a zero such
that, for every s ∈M , s ≤ ∅. Thus P ′+(M,≤) is a submonoid of P+(M,≤).
Furthermore the map γ : P ′+(M,≤)×U−

1 → P+(M,≤) defined by γ(X, 0) =
∅ and γ(X, 1) = X is a surjective morphism. Therefore, P+(M,≤) is a
quotient of U−

1 ×P ′+(M,≤).

To define P(M,≤), we introduce another relation on P(M), denoted by
≤, and defined by setting X ≤ Y if and only if,

(1) for every y ∈ Y , there exists x ∈ X such that x ≤ y,

(2) for every x ∈ X, there exists y ∈ Y such that x ≤ y.

It is not difficult to see that ≤ is also a stable preorder on the semiring
P(M). The associated semiring congruence ∼ is defined by setting X ∼ Y
if X ≤ Y and Y ≤ X. Then again, ≤ induces a stable order on the semiring
P(M)/∼ and the underlying ordered semiring (resp. monoid) is denoted by
P(M,≤).

Looking at the definitions of the orders ≤+, ≤− and ≤ for power monoids,
one can describe the equivalence relations ∼+, ∼− and ∼ and the corre-
sponding equivalence classes [ ]+, [ ]− and [ ].

Proposition 5.2 Let (M,≤) be an ordered monoid and let X and Y be
subsets of M .

(1) X ∼+ Y if and only if X and Y have the same set of minimal elements.

(2) X ∼− Y if and only if X and Y have the same set of maximal ele-
ments.

(3) X ∼ Y if and only if X and Y have the same set of minimal and
maximal elements.

The following characterization of the equivalence ∼+ was given in [20].

Corollary 5.3 Let (M,≤) be an ordered monoid and let X and Y be subsets
of M . Then X ∼+ Y if and only if ↑X =↑Y .
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In view of these results, there are two natural representations of the ordered
power monoids. First, P+(M,≤) and P−(M,≤) can be identified with the
set of antichains of M . If X and Y are two antichains of M , their product
in P+(M,≤) (resp. in P−(M,≤)) is the set of minimal (resp. maximal)
elements of the set XY . In particular, if M is totally ordered, then both
P+(M,≤) and P−(M,≤) are isomorphic to M , and P(M,≤) is isomorphic
to the set of intervals of M under the following multiplication: if I and J are
two intervals, their product is the interval [min(I)min(J),max(I)max(J)].

Secondly, as was observed in [20], P+(M,≤) can be identified with the
monoid of filters of M , where the product of two filters F and G is defined
as the filter generated by the set FG, and the order relation is ⊇. This is an
immediate consequence of Corollary 5.3. Note that the identity of P +(M,≤)
is the filter generated by 1 and the maximal element is the empty filter.

In the rest of the paper, we shall use this latter approach and consider
P+(M,≤) as the monoid of filters of M . Let us mention a useful property.

Proposition 5.4 Let (M,≤) be an ordered monoid and let X1 and X2 be
subsets of M . Then in P+(M,≤) holds the formula (↑X1)(↑X2) =↑(X1X2).

Proof. If t ∈ (↑ X1)(↑ X2), then t1t2 ≤ t for some t1 ∈ ↑X1 and some
t2 ∈ ↑X2. Thus s1 ≤ t1 and s2 ≤ t2 for some s1 ∈ X1 and s2 ∈ X2. It
follows that s1s2 ≤ t1t2 ≤ t and thus t ∈ ↑(X1X2).

Conversely, let t ∈ ↑(X1X2). Then s1s2 ≤ t for some s1 ∈ X1 and
s2 ∈ X2. But since s1 ∈ ↑X1 and s2 ∈ ↑X2, t ∈ (↑ X1)(↑ X2).

Example 5.1 Let (M,≤) be the ordered monoid ({0, a, 1},≤) in which 1
is the identity, 0 is a zero, a2 = a and 0 ≤ a ≤ 1.

First, {0, 1} ∼ {0, a, 1}. Thus in P(M), {0, 1} and {0, a, 1} should be
identified. Similarly {0} ∼+ {0, 1} ∼+ {0, a} ∼+ {0, a, 1} and {a} ∼+

{a, 1}. Thus P+(M,≤) = {∅, {0, a, 1}, {a, 1}, {1}}. The orders are repre-
sented in Figure 5.1.
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{a, 1}

{1}

∅

{0, a, 1}

{a, 1}

{1}

Figure 5.1: The monoids P(M) (on the left) and P+(M) (on the right).

Given a variety of ordered monoids V, we define P+V (resp. P
′+V) as the

variety of ordered monoids generated by the monoids of the form P+(M,≤)
(resp. P

′+(M,≤)) where (M,≤) ∈ V. The connection between the opera-
tors P+ and P

′+ is a direct consequence of Proposition 5.1.

Proposition 5.5 If V is a variety of ordered monoids containing U−
1 , then

P+V = P
′+V.

A general result on power monoids is required to compute the varieties
P+W.

Proposition 5.6 Let (M,≤) be an ordered monoid and let P ∈ P(M), then
for each x ∈ P ω there exists e ∈ E(P ω), such that x ≤J e in the semigroup
Pω.

Proof. Let S be the semigroup P ω. By [11, Proposition 1.12], there exists
n > 0 such that Sn = SE(S)S. Since S2 = S, it means that for all x ∈ S,
there exists an idempotent e ∈ S such that x ≤J e.

Proposition 5.7 The equality W = P+W = P
′+W holds.

Proof. Since W contains U−
1 , it suffices to show, by Proposition 5.5, that

W = P
′+W. Let ρ be an element of the minimal ideal of F̂ . By Theo-

rem 3.2, W = Wρ. We use the characterization given in Proposition 3.1.
Let (M,≤) be an ordered monoid of W and let X and Y be two mutually
inverse elements of P

′+(M,≤). Then XY is idempotent, and if a ∈ XY ,
there exists by Proposition 5.6 an idempotent e of XY such that a ≤J e
in the semigroup XY . Thus there exist a1, a2 ∈ XY such that a = a1ea2.
Furthermore, e = x′y′ for some x′ ∈ X and y′ ∈ Y . Now, the elements
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x = (x′y′)ω−1x′ ∈ (XY )ω−1X = X and y = y′(x′y′)ω ∈ Y (XY )ω =
Y are mutually inverse and satisfy xy = e, and thus (eρ(x, y)e)ω ≤ e
by Proposition 3.1, whence a1(eρ(x, y)e)

ωa2 ≤ a1ea2 = a. Finally, since
a1(eρ(x, y)e)

ωa2 ∈ XY (XY ρ(X,Y )XY )ωXY = (XY ρ(X,Y )XY )ω, the
relation (XY ρ(X,Y )XY )ω ≤+ XY holds. Thus P

′+(M,≤) ∈ Wρ and

P
′+W = W.

6 Operations on languages

In this section we establish a connection between the shuffle operation, the
length preserving morphisms on languages and the operations of power or-
dered monoids defined in the previous section. These results are the coun-
terpart, for positive varieties, of well-known results on varieties of languages
[7, 22, 23].

6.1 Length preserving morphisms

A morphism ϕ from A∗ into B∗ is length preserving if ϕ(A) ⊆ B. Given a
positive variety of languages V, we define the positive variety of languages
Λ+V as follows. For each alphabet A, Λ+V(A∗) consists of the languages
which are positive boolean combinations of sets of the form ϕ(L), where
L ∈ V(B∗) for some finite alphabet B and ϕ is a length preserving morphism
from B∗ into A∗.

The next proposition extends to positive varieties a result of Straub-
ing [23] about the relation between power monoids and length preserving
morphisms. See also [20, Remark 1, page 414].

Proposition 6.1 Let V be a positive variety of languages and let V be the
corresponding variety of ordered monoids. Then Λ+V is a positive variety
of languages and the corresponding variety of ordered monoids is P+V.

Proof. Let U be the positive variety of languages corresponding to P+V.
We first show that U ⊆ Λ+V. Every language of U(B∗) is a positive boolean
combination of languages of the form ψ−1(↓Z) where ψ : B∗ → P+(M,≤)
is a morphism, (M,≤) is an ordered monoid of V and Z is an element of
P+(M,≤), that is, a filter of M . Observe that ↓ Z is the order ideal of
P+(M,≤) generated by Z, and since the order relation is reverse inclusion,
↓Z actually denotes the set of filters of M that contain Z.

Set, for each s ∈M ,

Xs = {u ∈ B∗ | ψ(u)∩ ↓s 6= ∅},

We claim that
ψ−1(↓Z) =

⋂

s∈Z

Xs (8)
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Indeed, first suppose that u ∈ ψ−1(↓Z). Then ψ(u) contains Z and thus,
for each s ∈ Z, ψ(u) meets ↓ s. Therefore u ∈

⋂
s∈Z Xs. Conversely, if this

property holds, then for each s ∈ Z, ψ(u) meets ↓ s, and since ψ(u) is a
filter, it contains s. Therefore ψ(u) contains Z, proving (8).

Since Λ+V(B∗) is a positive boolean algebra, it now suffices to show that
Xs ∈ Λ+V for each s ∈M . Let

A = {(b, x) | b ∈ B, x is a minimal element of ψ(b)}

Define a length preserving morphism ϕ : A∗ → B∗ by setting ϕ(b, x) = b
and a morphism of ordered monoids η : A∗ →M by setting η(b, x) = x. We
claim that

Xs = ϕ(η−1(↓s)) (9)

First, if b1 · · · bn ∈ Xs, then by definition there exist some elements y1 ∈
ψ(b1), . . . , yn ∈ ψ(bn) such that y1 · · · yn ≤ s. For 1 ≤ i ≤ n, let us choose
a minimal element xi ∈ ψ(bi) such that xi ≤ yi. Then (bi, xi) is a letter of
A, η(bi, xi) = xi and ϕ(bi, xi) = bi. Furthermore, x1 · · · xn ≤ y1 · · · yn ≤ s,
and thus b1 · · · bn ∈ ϕ(η−1(↓s)). Conversely, if b1 · · · bn ∈ ϕ(η−1(↓s)), there
exists, for 1 ≤ i ≤ n, an element xi ∈ ψ(bi) such that x1 · · · xn ≤ s. It follows
that b1 · · · bn ∈ Xs, proving the claim. Formula (9) shows that Xs ∈ Λ+V
and thus U ⊆ Λ+V.

We now prove that Λ+V ⊆ U . Let ϕ : A∗ → B∗ be a length preserving
morphism and let L ∈ V(A∗). We want to prove that ϕ(L) ∈ U(B∗).

By definition, there is an ordered monoid (M,≤) ∈ V, a monoid mor-
phism η : A∗ →M and an order ideal P of M such that L = η−1(P ).

Lemma 6.2 The map ψ : B∗ → P+(M,≤) defined by setting, for each
u ∈ B∗,

ψ(u) = {↑η(v) | v ∈ A∗, ϕ(v) = u},

is a morphism.

Proof. Let u1, u2 ∈ A∗. Let F be an element of ψ(u1)ψ(u2). By definition,
F = (↑ η(v1))(↑ η(v2)) for some v1, v2 ∈ A∗ such that ϕ(v1) = u1 and
ϕ(v2) = u2. Now by Proposition 5.4,

(↑η(v1))(↑η(v2)) =↑(η(v1)η(v2)) =↑η(v1v2) (10)

Since ϕ(v1v2) = u1u2, it follows that F ∈ ψ(u1u2).
Conversely, let F ∈ ψ(u1u2). Then F =↑η(v) for some v ∈ A∗ such that

ϕ(v) = u1u2. Since ϕ is length preserving, v = v1v2 for some v1, v2 such
that ϕ(v1) = u1 and ϕ(v2) = u2. By (10), F = (↑ η(v1))(↑ η(v2)), and thus
F ∈ ψ(u1)ψ(u2). Therefore ψ(u1)ψ(u2) = ψ(u1u2).

The set
F = {F ∈ P+(M,≤) | F ∩ P 6= ∅}
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is an order ideal. Furthermore, since P is an order ideal, the conditions
↑s ∩ P 6= ∅ and s ∈ P are equivalent. Therefore

ψ−1(F) = {u ∈ B∗ | ψ(u) ∈ F}

= {u ∈ B∗ | there exists v ∈ A∗, ϕ(v) = u and ↑η(v) ∩ P 6= ∅}

= {u ∈ B∗ | there exists v ∈ A∗, ϕ(v) = u and η(v) ∈ P}

= ϕ(L).

Thus ϕ(L) is recognized by P+(M,≤) and hence belongs to U(B∗). There-
fore Λ+V ⊆ U .

A slight adjustment in the proof would establish a similar result for
surjective length preserving morphisms. More precisely, given a positive
variety of languages V, define the positive variety of languages Λ

′+V as
follows. For each alphabet A, Λ

′+V(A∗) is the positive boolean closure of
the class of sets of the form ϕ(L), where L ∈ V(B∗) for some finite alphabet
B and ϕ is a surjective length preserving morphism from B∗ into A∗.

Proposition 6.3 Let V be a variety of ordered monoids and let V be the
corresponding variety of languages. Then the positive variety of languages
corresponding to P

′+V is Λ
′+V.

We now apply these results to the positive variety W corresponding to
W. Let us first give an immediate corollary of Theorem 3.6, Proposition 6.1
and Proposition 5.7.

Corollary 6.4 The positive variety W is the largest variety not containing
the language (ab)∗. It is closed under length-preserving morphisms.

The next result concerns the varieties containing the language (ab)∗.

Theorem 6.5 If a positive variety of languages V contains the language
(ab)∗, then Λ+V and Λ

′+V are both equal to the class of all rational lan-
guages.

Proof. Let V be a positive variety of languages containing the language
(ab)∗ and let V be the corresponding variety of ordered monoids. Then V

contains B1−
2 , the ordered syntactic monoid of (ab)∗. And since U−

1 divides

B1−
2 , V also contains U−

1 . It follows by Proposition 5.5 that P+V = P
′+V

and hence, by Propositions 6.1 and 6.3, Λ+V = Λ
′+V.

By Proposition 2.4, V contains all the languages of the form F ∗, where
F is a finite multilinear language.

The end of the proof is based on a result of [8] (see also [16, Theorem
8.1]), that we now briefly recall. Let L be a rational language of A∗ and let
A = (Q,A, · , 1, F ) be its minimal automaton, where Q = {1, 2, . . . , n}. Let
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B = A ∪ {c}, where c is a new letter, and let τ : N → N be the function
defined by τ(k) = 2k−1 − 1. Set

R = {cτ(i)acτ(n)−τ(i·a) | a ∈ A, i ∈ Q} and P = {cτ(i) | i ∈ F}.

The aforementioned result states that L = ψ−1(R∗P ), where ψ is the mor-
phism from A∗ to B∗ defined by ψ(a) = acτ(n) for every a ∈ A.

Since a positive variety of languages is closed under inverse morphisms,
it suffices to show that R∗P is in Λ+V(B∗). Since R∗P = ∪p∈PR

∗p, it
amounts to showing that, for each p ∈ P , R∗p is in Λ+V(B∗). Observe
that any word of P is the prefix of a word in R. We need a last lemma to
conclude.

Lemma 6.6 Every language of A∗ of the form R∗p, where R is finite and p
is the prefix of a word of R, can be written as ϕ(F ∗u−1), where ϕ is a length
preserving morphism, F is a finite multilinear language and u is a word.

Proof. Let R = {u1, . . . , uk}, with ui = ai,1 · · · ai,ri
. We may assume that

p = a1,1 · · · a1,s for some s ≤ r1. Define a new alphabet with r1 + . . . + rk
letters B = {bi,ji

| 1 ≤ i ≤ k, 1 ≤ ji ≤ ri} and a multilinear language
F = {v1, . . . , vp}, with vi = bi,j1 · · · bi,jri

. Finally let ϕ be the length
preserving morphism from B∗ into A∗ defined by ϕ(bi,j) = ai,j and let
u = b1,s+1 · · · b1,r1

. Observe that F ∗u−1 = F ∗v, with v = b1,1 · · · b1,s. It
follows that ϕ(F ∗u−1) = ϕ(F ∗v) = R∗p.

Let us now conclude the proof of the theorem. We have seen that V contains
the languages of the form F ∗, where F is a finite multilinear set. Therefore,
it also contains the languages of the form F ∗u−1. It follows by Lemma 6.6,
that Λ+V contains the languages of the form R∗p, where R is finite and p
is the prefix of a word of R.

Corollary 6.7 The variety W is the largest proper positive variety closed
under length-preserving morphisms.

6.2 The shuffle operator

The shuffle of two languages L1 and L2 of A∗ is the language L1 X L2 of
A∗ defined by:

L1 X L2 = {w ∈ A∗ | w = u1v1 · · · unvn for some n ≥ 0 such that

u1 · · · un ∈ L1, v1 · · · vn ∈ L2}

The next proposition presents a connection between this operation and the
operator P+.
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Proposition 6.8 Let L1 and L2 be two languages on A∗ and let (M1,≤1)
and (M2,≤2) be ordered monoids recognizing L1 and L2 respectively. Then
L1 X L2 is recognized by the ordered monoid P+(M1 ×M2,≤).

Proof. Let, for 1 ≤ i ≤ 2, ηi : A∗ → Mi be a monoid morphism and let
Pi ⊆ Mi be an order ideal of Mi such that Li = η−1

i (Pi). Then P1 × P2 is
an order ideal of M1 ×M2.

Define a morphism η : A∗ → P+(M1×M2,≤) by setting, for each u ∈ A∗,

η(u) = {↑(η1(u1), η2(u2)) | u ∈ u1 X u2}

Let us verify that η is a morphism of monoids. First,

η(1) = {↑(η1(1), η2(1))} =↑(1, 1)

which is the identity of P+(M1 ×M2,≤). Now, by Proposition 5.4, we have
for all u, v ∈ A∗,

η(u)η(v) = {↑(η1(u1), η2(u2)) | u ∈ u1 X u2}

{↑(η1(v1), η2(v2)) | v ∈ v1 X v2}

= {↑(η1(u1v1), η2(u2v2)) | u ∈ u1 X u2, v ∈ v1 X v2}

Now, since uv ∈ x X y if and only if there are factorizations x = u1u2 and
y = v1v2 such that u ∈ u1 X u2 and v ∈ v1 X v2, one has

η(u)η(v) = {↑(η1(x), η2(y)) | uv ∈ x X y} = η(uv)

Now the set

F = {F ∈ P+(M1 ×M2,≤) | F ∩ (P1 × P2) 6= ∅}

is an order ideal of P+(M1 ×M2,≤). Furthermore

η−1(F) = {u ∈ A∗ | η(u) ∩ P1 × P2 6= ∅}

and by Proposition 5.2, and the definition of η,

η−1(F) = {u ∈ A∗ | there exist u1, u2 ∈ A∗, u ∈ u1 X u2,

η1(u1) ∈ P1, η2(u2) ∈ P2}

= L1 X L2

Thus η recognizes L1 X L2.

The shuffle operation can be extended to positive varieties of languages
as follows. Given a positive variety of languages V, denote by XV the
positive variety of languages generated by V and by the languages of the
form L1 X L2, where L1, L2 are in V(A∗).

The closure of V under shuffle is the smallest positive variety containing
V such that, if L1 and L2 are in V(A∗), L1 X L2 is also in V(A∗).
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7 Closure under shuffle

The following result was first conjectured in [9] and proved in [6]: ”Given a
variety of languages, either it is included in Com and then its closure under
shuffle is included in Com, or its closure under shuffle is the class of rational
languages”. It follows that there is a largest proper variety of languages
closed under shuffle. We now establish a similar result for positive varieties
of languages. The first step consists in adapting a proposition of [6] to
positive varieties of languages.

Proposition 7.1 If a positive variety of languages V contains the language
(ab)∗, then XV is the class of all rational languages.

Proof. Let V be the variety of ordered monoids corresponding to V. By
Theorem 6.5, Λ

′+V is the class of all rational languages. Therefore, it suffices
to show that Λ

′+V ⊆ XV.
Let L ∈ V(A∗), and let ϕ : A∗ → B∗ be a surjective length preserving

morphism. Note that ϕ(L) ∈ Λ
′+V by definition. Let c be a new letter and

let C = A ∪ {c}. Denote by π the projection from C∗ onto A∗ obtained by
erasing all occurrences of c. We claim that the languages

L1 = L X c∗ L2 = (Ac)∗ L3 = A∗

are all in V(C∗). For L1, this follows from the equality L1 = π−1(L), since
any positive variety is closed under inverse morphic images. Next, we observe
that L2 = γ−1((ab)∗), where γ denotes the morphism from C into {a, b}
mapping c to b and each letter of A to a. The fact that L3 is in V(C∗) is a
consequence of Proposition 2.4. It follows that the language

L4 = (L1 ∩ L2) X L3

belongs to XV(C∗).
To finish the proof, let, for each b ∈ B, ub be a word containing exactly

one occurrence of each letter in ϕ−1(b), and no other letter. Consider the
morphism η : B∗ → C∗ defined, for each b ∈ B, by η(b) = ubc. We claim
that

ϕ(L) = η−1(L4).

Indeed, let u = a1 · · · an ∈ L and let, for 1 ≤ i ≤ n, bi = ϕ(ai). Let
wi be the word obtained by deleting the letter ai in ubi

. Now the word
a1c · · · anc belongs to L1∩L2 and w = w1 · · ·wn belongs to L3. It follows that
ub1c · · · ubn

c belongs to L4 and hence b1 · · · bn is in η−1(L4). Thus ϕ(L) ⊆
η−1(L4). To establish the opposite inclusion, consider a word b1 · · · bn in
η−1(L4). Then w = η(b1 · · · bn) = ub1c · · · ubn

c belongs to L4. Therefore,
there exist two words u ∈ L1 ∩L2 and v ∈ L3 such that w ∈ u X v. Setting
u = a1ca2c · · · anc, we have necessarily a1 · · · an ∈ L since u ∈ L X c∗.
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Furthermore, for 1 ≤ i ≤ n, ai is a letter of ubi
, since w ∈ a1ca2c · · · anc X v.

It follows, by the definition of ubi
, that ϕ(ai) = bi and thus b1 · · · bn ∈ ϕ(L).

This proves the claim and shows that ϕ(L) ∈ XV(B∗). Thus Λ+V ⊆ XV
and hence XV is the class of all rational languages.

Combining the results above (Lemma 6.8, Theorem 6.5, Proposition 5.7
and Proposition 3.6) we arrive to the final theorem.

Theorem 7.2 The variety W is the largest proper positive variety which is
closed under shuffle.

8 Conclusion

It was shown that there is a largest positive variety not containing the lan-
guage (ab)∗. This variety is also the largest proper positive variety closed
under length-preserving morphisms, and the unique largest positive vari-
ety closed under shuffle. The corresponding variety of ordered monoids is
defined by the identities

[[((xy)ωρ((xy)ω−1x, y(xy)ω)(xy)ω)ω(xy)ω)ω ≤ (xy)ω]]

where ρ is any element of the minimal ideal of the free profinite monoid
generated by x and y. It is also the class of all finite monoids M such that,
for any pair (a, b) of mutually inverse elements of M , and any element z of
the minimal ideal of the submonoid generated by a and b, (abzab)ω ≤ ab.
In particular, this variety is decidable.
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