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Abstract. Given a subset S of N, filtering a word a0a1 · · · an by S con-
sists in deleting the letters ai such that i is not in S. By a natural
generalization, denote by L[S], where L is a language, the set of all
words of L filtered by S. The filtering problem is to characterize the fil-
ters S such that, for every recognizable language L, L[S] is recognizable.
In this paper, the filtering problem is solved, and a unified approach is
provided to solve similar questions, including the removal problem con-
sidered by Seiferas and McNaughton. There are two main ingredients on
our approach: the first one is the notion of residually ultimately periodic
sequences, and the second one is the notion of representable transduc-
tions.

1 Introduction

The original motivation of this paper was to solve an automata-theoretic puzzle,
proposed by the fourth author (see also [8]), that we shall refer to as the filtering
problem. Given a subset S of N, filtering a word a0a1 · · ·an by S consists in
deleting the letters ai such that i is not in S. By a natural generalization, denote
by L[S], where L is a language, the set of all words of L filtered by S. The filtering
problem is to characterize the filters S such that, for every recognizable language
L, L[S] is recognizable. The problem is non trivial since, for instance, it can be
shown that the filter {n! | n ∈ N} preserves recognizable languages.

The quest for this problem led us to search for analogous questions in the
literature. Similar puzzles were already investigated in the seminal paper of
Stearns and Hartmanis [14], but the most relevant reference is the paper [12] of
Seiferas and McNaughton, in which the so-called “removal problem” was solved:
characterize the subsets S of N

2 such that, for each recognizable language L, the
language

P (S, L) = {u ∈ A∗ | there exists v ∈ A∗ such that (|u|, |v|) ∈ S and uv ∈ L}

is recognizable.



The aim of this paper is to provide a unified approach to solve at the same
time the filtering problem, the removal problem and similar questions. There are
two main ingredients in our approach. The first one is the notion of residually
ultimately periodic sequences, introduced in [12] as a generalization of a similar
notion introduced by Siefkes [13]. The second one is the notion of representable
transductions introduced in [9, 10]. Complete proofs will be given in the extended
version of this article.

Our paper is organized as follows. Section 2 introduces some basic defini-
tions: rational and recognizable sets, etc. The precise formulation of the filtering
problem is given in Section 3. Section 4 is dedicated to transductions. Residu-
ally ultimately periodic sequences are studied in Section 5 and the properties of
differential sequences are analyzed in Section 6. Section 7 is devoted to resid-
ually representable transductions. Our main results are presented in Section 8.
Further properties of residually ultimately periodic sequences are discussed in
Section 9. The paper ends with a short conclusion.

2 Preliminaries and background

2.1 Rational and recognizable sets

Given a multiplicative monoid M , the subsets of M form a semiring P(M)
under union as addition and subset multiplication defined by XY = {xy | x ∈
X and y ∈ Y }. Throughout this paper, we shall use the following convenient
notation. If X is a subset of M , and K is a subset of N, we set XK =

⋃

n∈K Xn.
Recall that the rational subsets of a monoid M form the smallest subset

R of P(M) containing the finite subsets of M and closed under finite union,
product, and star (where X∗ is the submonoid generated by X). The set of
rational subsets of M is denoted by Rat(M). It is a subsemiring of P(M).

Recall that a subset P of a monoid M is recognizable if there exists a finite
monoid F and a monoid morphism ϕ : M → F such that P = ϕ−1(ϕ(P )). By
Kleene’s theorem, a subset of a finitely generated free monoid is recognizable if
and only if it is rational. Various characterizations of the recognizable subsets
of N are given in Proposition 1 below, but we need first to introduce some
definitions.

A sequence (sn)n≥0 of elements of a set is ultimately periodic (u.p.) if there
exist two integers m ≥ 0 and r > 0 such that, for each n ≥ m, sn = sn+r.

The (first) differential sequence of an integer sequence (sn)n≥0 is the sequence
∂s defined by (∂s)n = sn+1 − sn. Note that the integration formula sn = s0 +
∑

0≤i≤n−1(∂s)i allows one to recover the original sequence from its differential
and s0. A sequence is syndetic if its differential sequence is bounded.

If S is an infinite subset of N, the enumerating sequence of S is the unique
strictly increasing sequence (sn)n≥0 such that S = {sn | n ≥ 0}. The differential
sequence of this sequence is simply called the differential sequence of S. A set is
syndetic if its enumerating sequence is syndetic.

The characteristic sequence of a subset S of N is the sequence cn equal to 1
if n ∈ S and to 0 otherwise. The following elementary result is folklore.



Proposition 1. Let S be a set of non-negative integers. The following condi-
tions are equivalent:

(1) S is recognizable,

(2) S is a finite union of arithmetic progressions,

(3) the characteristic sequence of S is ultimately periodic.

If S is infinite, these conditions are also equivalent to the following conditions

(4) the differential sequence of S is ultimately periodic.

Example 1. Let S = {1, 3, 4, 9, 11} ∪ {7 + 5n | n ≥ 0} ∪ {8 + 5n | n ≥ 0} =
{1, 3, 4, 7, 8, 9, 11, 12, 13, 17, 18, 22, 23, 27, 28, . . .}. Its characteristic sequence

0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .

and its differential sequence 2, 1, 3, 1, 1, 2, 1, 1, 4, 1, 4, 1, 4, . . . are ultimately peri-
odic.

2.2 Relations

Given two sets E and F , a relation on E and F is a subset of E × F . The
inverse of a relation S on E and F is the relation S−1 on F × E defined by
(y, x) ∈ S−1 if and only if (x, y) ∈ S. A relation S on E and F can also be
considered as a function from E into P(F ), the set of subsets of F , by setting,
for each x ∈ E, S(x) = {y ∈ F | (x, y) ∈ S}. It can also be viewed as a function
from P(E) into P(F ) by setting, for each subset X of E:

S(X) =
⋃

x∈X

S(x) = {y ∈ F | there exists x ∈ X such that (x, y) ∈ S}

Dually, S−1 can be viewed as a function from P(F ) into P(E) defined, for each
subset Y of F , by S−1(Y ) = {x ∈ E | S(x) ∩ Y 6= ∅}. When this “dynamical”
point of view is adopted, we say that S is a relation from E into F and we use
the notation S : E → F .

A relation S : N → N is recognizability preserving if, for each recognizable
subset R of N, the set S−1(R) is recognizable.

3 Filtering languages

A filter is a finite or infinite increasing sequence s of non-negative integers. If
u = a0a1a2 · · · is an infinite word (the ai are letters), we set u[s] = as0

as1
· · · .

Similarly, if u = a0a1a2 · · · an is a finite word, we set u[s] = as0
as1

· · ·ask
, where

k is the largest integer such that sk ≤ n < sk+1. Thus, for instance, if s is the
sequence of squares, abracadabra[s] = abcr.

By extension, if L is a language (resp. a set of infinite words), we set

L[s] = {u[s] | u ∈ L}



If s is the enumerative sequence of a subset S of N, we also use the notation
L[S]. If, for every recognizable language L, the set L[s] is recognizable, we say
that the filter S preserves recognizability. The filtering problem is to characterize
the recognizability preserving filters.

4 Transductions

In this paper, we consider transductions that are relations from a free monoid
A∗ into a monoid M . Transductions were intensively studied in connection with
context-free languages [1].

Some transductions can be realized by a non-deterministic automaton with
output in P(M), called transducer. More precisely, a transducer is a 6-tuple
T = (Q, A, M, I, F, E) where Q is a finite set of states, A is the input alphabet,
M is the output monoid, I = (Iq)q∈Q and F = (Fq)q∈Q are arrays of elements
of P(M), called respectively the initial and final outputs. The set of transitions
E is a finite subset of Q ×A ×P(M)× Q. Intuitively, a transition (p, a, R, q) is
interpreted as follows: if a is an input letter, the automaton moves from state p
to state q and produces the output R.

A path is a sequence of consecutive transitions:

q0
a1|R1

−→ q1
a2|R2

−→ q2 · · · qn−1
an|Rn
−→ qn

The (input) label of the path is the word a1a2 · · ·an. Its output is the set
Iq0

R1R2 · · ·RnFqn
. The transduction realized by T maps each word u of A∗

onto the union of the outputs of all paths of input label u.
A transduction τ : A∗ → M is said to be rational if τ is a rational subset of

the monoid A∗ ×M . By the Kleene-Schützenberger theorem [1], a transduction
τ : A∗ → M is rational if and only if it can be realized by a rational transducer,
that is, a transducer with outputs in Rat(M).

A transduction τ : A∗ → M is said to preserve recognizability, if, for each
recognizable subset P of M , τ−1(P ) is a recognizable subset of A∗. It is well
known that rational transductions preserve recognizability, but this property is
also shared by the larger class of representable transductions, introduced in [9,
10].

Two types of transduction will play an important role in this paper, the
removal transductions and the filtering transductions. Given a subset S of N

2,
considered as a relation on N, the removal transduction of S is the transduction
σS : A∗ → A∗ defined by σS(u) =

⋃

(|u|,n)∈S uAn. The filtering transduction

of a filter s is the transduction τs : A∗ → A∗ defined by τs(a0a1 · · · an) =
As0a0A

s1a1 · · ·AsnanA{0,1,...,sn+1}.
The main idea of [9, 10] is to write an n-ary operator Ω on languages as the

inverse of some transduction τ : A∗ → A∗ × · · · × A∗, that is Ω(L1, . . . , Ln) =
τ−1(L1×· · ·×Ln). If the transduction τ turns out to be representable, the results
of [9, 10] give an explicit construction of a monoid recognizing Ω(L1, . . . , Ln),
given monoids recognizing L1, . . . , Ln, respectively.



In our case, we claim that P (S, L) = σ−1
S (L) and L[s] = τ−1

∂s−1(L). Indeed,
we have on the one hand

σ−1
S (L) = {u ∈ A∗ |

(

⋃

(|u|,n)∈S

uAn
)

∩ L 6= ∅}

= {u ∈ A∗ | there exists v ∈ A∗ such that (|u|, |v|) ∈ S and uv ∈ L}

= P (S, L)

and on the other hand

τ−1
∂s−1(L) = {a0a1 · · · an ∈ A∗ |

As0−1a0A
s1−s0−1a1 · · ·A

sn−sn−1−1anA{0,1,...,sn+1−sn−1} ∩ L 6= ∅}

= L[s]

Unfortunately, the removal transductions and the filtering transductions are not
in general representable. We shall see in Section 7 how to overcome this difficulty.
But we first need to introduce our second major tool, the residually ultimately
periodic sequences.

5 Residually ultimately periodic sequences

Let M be a monoid. A sequence (sn)n≥0 of elements of M is residually ultimately
periodic (r.u.p.) if, for each monoid morphism ϕ from M into a finite monoid F ,
the sequence ϕ(sn) is ultimately periodic.

We are mainly interested in the case where M is the additive monoid N of
non-negative integers. The following connexion with recognizability preserving
sequences was established in [5, 7, 12, 16].

Proposition 2. A sequence (sn)n≥0 of non-negative integers is residually ulti-
mately periodic if and only if the function n → sn preserves recognizability.

For each non-negative integer t, define the congruence threshold t by setting:

x ≡ y (thr t) if and only if x = y < t or x ≥ t and y ≥ t.

Thus threshold counting can be viewed as a formalisation of children counting:
zero, one, two, three, . . . , many.

A function s : N → N is said to be ultimately periodic modulo p if, for each
monoid morphism ϕ : N → Z/pZ, the sequence un = ϕ(s(n)) is ultimately
periodic. It is equivalent to state that there exist two integers m ≥ 0 and r > 0
such that, for each n ≥ m, un ≡ un+r (mod p). A sequence is said to be cyclically
ultimately periodic (c.u.p.) if it is ultimately periodic modulo p for every p > 0.
These functions are called “ultimately periodic reducible” in [12, 13].

Similarly, function s : N → N is said to be ultimately periodic threshold t if,
for each monoid morphism ϕ : N → Nt,1, the sequence un = ϕ(s(n)) is ultimately
periodic. It is equivalent to state that there exist two integers m ≥ 0 and r > 0
such that, for each n ≥ m, un ≡ un+r (thr t).



Proposition 3. A sequence of non-negative integers is residually ultimately pe-
riodic if and only if it is ultimately periodic modulo p for all p > 0 and ultimately
periodic threshold t for all t ≥ 0.

The next proposition gives a very simple criterion to generate sequences that
are ultimately periodic threshold t for all t.

Proposition 4. A sequence (un)n≥0 of integers such that limn→∞ un = +∞ is
ultimately periodic threshold t for all t ≥ 0.

Example 2. The sequence n! is residually ultimately periodic. Indeed, let p be
a positive integer. Then for each n ≥ p, n! ≡ 0 mod p and thus n! is ultimately
periodic modulo p. Furthermore, Proposition 4 shows that, for each t ≥ 0, n! is
ultimately periodic threshold t.

The class of cyclically ultimately periodic functions has been thoroughly
studied by Siefkes [13], who gave in particular a recursion scheme for producing
such functions. Residually ultimately periodic sequences have been studied in [3,
5, 7, 12, 15, 16]. Their properties are summarized in the next proposition.

Theorem 1. [16, 3] Let (un)n≥0 and (vn)n≥0 be r.u.p. sequences. Then the fol-
lowing sequences are also r.u.p.:

(1) (composition) uvn
,

(2) (sum) un + vn,

(3) (product) unvn,

(4) (difference) un − vn provided that un ≥ vn and lim
n→∞

(un − vn) = +∞,

(5) (exponentation) uvn
n ,

(6) (generalized sum)
∑

0≤i≤vn
ui,

(7) (generalized product)
∏

0≤i≤vn
ui.

In particular, the sequences nk and kn (for a fixed k), are residually ultimately
periodic. However, r.u.p. sequences are not closed under quotients. For instance,
let un be the sequence equal to 1 if n is prime and to n! + 1 otherwise. Then
nun is r.u.p. but un is not r.u.p.. This answers a question left open in [15].

The sequence 222
.. .2

(exponential stack of 2’s of height n), considered in [12],
is also a r.u.p. sequence, according to the following result.

Proposition 5. Let k be a positive integer. Then the sequence un defined by
u0 = 1 and un+1 = kun is r.u.p.

The existence of non-recursive, r.u.p. sequences was established in [12]: if
ϕ : N → N is a strictly increasing, non-recursive function, then the sequence
un = n!ϕ(n) is non-recursive but is residually ultimately periodic. The proof is
similar to that of Example 2.



6 Differential sequences

An integer sequence is called differentially residually ultimately periodic (d.r.u.p.
in abbreviated form), if its differential sequence is residually ultimately periodic.

What are the connections between d.r.u.p. sequences and r.u.p. sequences?
First, the following result holds:

Proposition 6. [3, Corollary 28] Every d.r.u.p. sequence is r.u.p.

However, the two notions are not equivalent: for instance, it was shown in [3]
that if bn is a non-ultimately periodic sequence of 0 and 1, the sequence un =
(
∑

0≤i≤n bi)! is r.u.p. but is not d.r.u.p. It suffices to observe that (∂u)n ≡ bn

threshold 1.
Note that, if only cyclic counting were used, it would make no difference:

Proposition 7. Let p be a positive number. A sequence is ultimately periodic
modulo p if and only if its differential sequence is ultimately periodic modulo p.

There is a special case for which the notions of r.u.p. and d.r.u.p. sequences
are equivalent. Indeed, if the differential sequence is bounded, Proposition 1 can
be completed as follows.

Lemma 1. If a syndetic sequence is residually ultimately periodic, then its dif-
ferential sequence is ultimately periodic.

Putting everything together, we obtain

Proposition 8. Let s be a syndetic sequence of non-negative integers. The fol-
lowing conditions are equivalent:

(1) s is residually ultimately periodic,

(2) ∂s is residually ultimately periodic,

(3) ∂s is ultimately periodic.

Proof. Proposition 6 shows that (2) implies (1). Furthermore (3) implies (2) is
trivial. Finally, Lemma 1 shows that (1) implies (3).

Proposition 9. Let S be an infinite syndetic subset of N. The following condi-
tions are equivalent:

(1) S is recognizable,

(2) the enumerating sequence of S is residually ultimately periodic,

(3) the differential sequence of S is residually ultimately periodic,

(4) the differential sequence of S is ultimately periodic.

Proof. The last three conditions are equivalent by Proposition 8 and the equiv-
alence of (1) and (4) follows from Proposition 1.

The class of d.r.u.p. sequences was thoroughly studied in [3].

Theorem 2. [3, Theorem 22] Differential residually ultimately periodic sequences
are closed under sum, product, exponentation, generalized sum and generalized
product. Furthermore, given two d.r.u.p. sequences (un)n≥0 and (vn)n≥0 such
that un ≥ vn and lim

n→∞
(∂u)n − (∂v)n = +∞, the sequence un − vn is d.r.u.p.



7 Residually representable transductions

Let M be a monoid. A transduction τ : A∗ → M is residually rational (resp.
residually representable ) if, for every monoid morphism α from M into a finite
monoid N , the transduction α ◦ τ : A∗ → N is rational (resp. representable).

Since a rational transduction is (linearly) representable, every residually ra-
tional transduction is residually representable. Furthermore, every representable
transduction is residually representable. We now show that the removal trans-
ductions and the filtering transductions are residually rational. We first consider
the removal transductions.

. . .

R0 R1 R2

Rt

Rt+1

Rt+2

Rt+3

Rt+n−3

Rt+n−2

Rt+n−1

a | a a | a a | a

a | a

a | a a | a

a | aa | a

a | a

.
.
.

.
.
.

Fig. 1. A transducer realizing β.

Proposition 10. Let S be a recognizability preserving relation on N. The re-
moval transduction of S is residually rational.

Proof. Let α be a morphism from A∗ into a finite monoid N . Let β = α ◦ τs and
R = α(A). Since the monoid P(N) is finite, the sequence (Rn)n≥0 is ultimately
periodic. Therefore, there exist two integers r ≥ 0 and q > 0 such that, for all
n ≥ r, Rn = Rn+q. Consider the following subsets of N: K0 = {0}, K1 = {1}, . . . ,
Kr−1 = {r−1}, Kr = {r, r+q, r+2q, . . .}, Kr+1 = {r+1, r+q+1, r+2q+1, . . .},
. . . , Kr+q−1 = {r + q − 1, r + 2q − 1, r + 3q − 1, . . .}. The sets Ki, for i ∈
{0, 1, . . . , r+q−1} are recognizable and since S is recognizability preserving, each
set S−1(Ki) is also recognizable. By Proposition 1, there exist two integers ti ≥ 0
and pi > 0 such that, for all n ≥ ti, n ∈ S−1(Ki) if and only if n+pi ∈ S−1(Ki).
Setting t = max0≤i≤r+q−1 ti and p = lcm0≤i≤r+q−1 pi, we conclude that, for all
n ≥ t and for 0 ≤ i ≤ r + q − 1, n ∈ S−1(Ki) if and only if n + p ∈ S−1(Ki), or
equivalently

S(n) ∩ Ki 6= ∅ ⇐⇒ S(n + p) ∩ Ki 6= ∅



It follows that the sequence Rn of P(N) defined by Rn = RS(n) is ultimately
periodic of threshold t and period p, that is, Rn = Rn+p for all n ≥ t. Con-
sequently, the transduction β can be realized by the transducer represented in
Figure 1, in which a stands for a generic letter of A. Therefore β is rational and
τs is residually rational.

. . .
a | Rs0a a | Rs1a a | Rst−1a

a | Rsta

a | Rst+1a a | Rst+2a

a | Rst+n−3aa | Rst+n−2a

a | Rst+n−1a

.
.
.

.
.
.

Fig. 2. A transducer realizing γs.

Proposition 11. Let s be a residually ultimately periodic sequence. Then the
filtering transduction τs is residually rational.

Proof. Let α be a morphism from A∗ into a finite monoid N . Let γs = α ◦ τs

and R = α(A). Finally, let ϕ : N → P(N) be the morphism defined by ϕ(n) =
Rn. Since P(N) is finite and sn is residually ultimately periodic, the sequence
ϕ(sn) = Asn is ultimately periodic. Therefore, there exist two integers t ≥ 0 and
p > 0 such that, for all n ≥ t, Rsn+p = Rsn . It follows that the transduction γs

can be realized by the transducer represented in Figure 2, in which a stands for
a generic letter of A. Therefore γs is rational and thus τs is residually rational.

The fact that the two previous transducers preserve recognizability is now a
direct consequence of the following general statement.

Theorem 3. Let M be a monoid. Any residually rational transduction τ : A∗ →
M preserves recognizability.

Proof. Let P be a recognizable subset of M and let α : M → N be a morphism
recognizing P , where N is a finite monoid. By definition, α−1(α(P )) = P . Since
τ is residually rational, the transduction α ◦ τ : A∗ → N is rational. Since N
is finite, every subset of N is recognizable. In particular, α(P ) is recognizable
and since τ preserves recognizability, (α◦τ)−1α(P ) is recognizable. The theorem
follows, since (α ◦ τ)−1α(P ) = τ−1(α−1(α(P ))) = τ−1(P ).



8 Main results

The aim of this section is to provide a unified solution for the filtering problem
and the removal problem.

8.1 The filtering problem

Theorem 4. A filter preserves recognizability if and only if it is differentially
residually ultimately periodic.

Proposition 11 and Theorem 3 show that if a filter is d.r.u.p., then it preserves
recognizability. We now establish the converse property.

Proposition 12. Every recognizability preserving filter is differentially residu-
ally ultimately periodic.

Proof. Let s be a recognizability preserving filter. By Proposition 3 and 7, it
suffices to prove the following properties:

(1) for each p > 0, s is ultimately periodic modulo p,

(2) for each t ≥ 0, ∂s is ultimately periodic threshold t.

(1) Let p be a positive integer and let A = {0, 1, ...(p− 1)}. Let u = a0a1 · · · be
the infinite word whose i-th letter ai is equal to si modulo p. At this stage, we
shall need two elementary properties of ω-rational sets. The first one states that
an infinite word u is ultimately periodic if and only if the ω-language {u} is ω-
rational. The second one states that, if L is a recognizable language of A∗, then
−→
L (the set of infinite words having infinitely many prefixes in L) is ω-rational.

We claim that u is ultimately periodic. Define L as the set of prefixes of the
infinite word (0123 · · · (p − 1))ω. Then L[s] is the set of prefixes of u. Since L is

recognizable, L[s] is recognizable, and thus the set
−→
L[s] is ω-rational. But this

set reduces to {u}, which proves the claim. Therefore, the sequence (sn)n≥0 is
ultimately periodic modulo p.
(2) The proof is quite similar to that of (1), but is sligthly more technical. Let
t be a non-negative integer and let B = {0, 1, . . . , t} ∪ {a}, where a is a special
symbol. Let d = d0d1 · · · be the infinite word whose i-th letter di is equal to
si+1 − si − 1 threshold t. Let us prove that d is ultimately periodic. Consider
the recognizable prefix code P = {0, 1a, 2a2, 3a3, . . . , tat, a}. Then P ∗[s] is rec-
ognizable, and so is the language R = P ∗[s] ∩ {0, 1, . . . , t}∗. We claim that, for
each n > 0, the word pn = d0d1 · · · dn−1 is the maximal word of R of length n
in the lexicographic order induced by the natural order 0 < 1 < . . . < t. First,
pn = u[s], where u = as0d0a

s1−s0−1d1 · · · dn−1a
sn−sn−1−1 and thus pn ∈ R.

Next, let p′n = d′0d
′
1 · · · d

′
n−1 be another word of R of length n. Then p′n = u′[s]

for some word u′ ∈ P ∗. Suppose that p′n comes after pn in the lexicographic
order. We may assume that, for some index i ≤ n − 1, d0 = d′0, d1 = d′1, . . . ,
di−1 = d′i−1 and di < d′i. Since u′ ∈ P ∗, the letter d′

i, which occurs in position
si in u′, is followed by at least d′

i letters a. Now d′
i > di, whence di < t and

di = si+1 − si − 1. It follows in particular that in u′, the letter in position si+1



is an a, a contradiction, since u′[s] contains no occurrence of a. This proves the
claim.

Let now A be a finite deterministic trim automaton recognizing R. It follows
from the claim that in order to read d in A, starting from the initial state, it
suffices to choose, in each state q, the unique transition with maximal label in the
lexicographic order. It follows at once that d is ultimately periodic. Therefore,
the sequence (∂s) − 1 is ultimately periodic threshold t, and so is (∂s).

8.2 The removal problem

The solution of the removal problem was given in [12].

Theorem 5. Let S be a subset of N
2. The following conditions are equivalent:

(1) for each recognizable language L, the language P (S, L) is recognizable,

(2) S is a recognizability preserving relation

The most difficult part of the proof, (2) implies (1), follows immediately from
Proposition 10 and Theorem 3.

9 Further properties of d.r.u.p. sequences

Coming back to the filtering problem, the question arises to characterize the
filters S such that, for every recognizable language L, both L[S] and L[N \ S]
are recognizable. By Theorem 4, the sequences defined by S and its complement
should be d.r.u.p. This implies that S is recognizable, according to the following
slightly more general result.

Proposition 13. Let S and S ′ be two infinite subsets of N such that S ∪S ′ and
S ∩ S′ are recognizable. If the enumerating sequence of S is d.r.u.p. and if the
enumerating sequence of S ′ is r.u.p., then S and S′ are recognizable.

One can show that the conclusion of Proposition 13 no longer holds if S ′ is
only assumed to be residually ultimately periodic.

10 Conclusion

Our solution to the filtering problem was based on the fact that any residually
rational transduction preserves recognizability. There are several advantages to
our approach.

First, it gives a unified solution to apparently disconnected problems, like
the filtering problem and the removal problem. Actually, most of – if not all
– the automata-theoretic puzzles proposed in [4–7, 9–12, 14] and [15, Section
5.2], can be solved by using the strongest fact that any residually representable
transduction preserves recognizability.

Next, refining the approach of [9, 10], if τ : A∗ → A∗×· · ·×A∗ is a residually
representable transduction, one could give an explicit construction of a monoid



recognizing τ−1(L1 × · · · × Ln), given monoids recognizing L1, . . . , Ln, respec-
tively (the details will be given in the full version of this paper). This information
can be used, in turn, to see whether a given operation on languages preserves
star-free languages, or other standard classes of rational languages.
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