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Abstract

In a previous paper, the authors studied the polynomial closure of
a variety of languages and gave an algebraic counterpart, in terms of
Mal’cev products, of this operation. They also formulated a conjecture
about the algebraic counterpart of the boolean closure of the polyno-
mial closure — this operation corresponds to passing to the upper level
in any concatenation hierarchy. Although this conjecture is probably
true in some particular cases, we give a counterexample in the general
case. Another counterexample, of a different nature, was indepen-
dently given recently by Steinberg. Taking these two counterexamples
into account, we propose a modified version of our conjecture and some
supporting evidence for that new formulation. We show in particular
that a solution to our new conjecture would give a solution of the
decidability of the levels 2 of the Straubing-Thérien hierarchy and of
the dot-depth hierarchy. Consequences for the other levels are also
discussed.

All semigroups and monoids considered in this paper are either finite or free.

1 Introduction.

The study of the concatenation product goes back to the early years of
automata theory. The first major result in this direction was the characteri-
zation of star-free languages obtained by Schützenberger in 1965 [38]. A few
years later, Cohen and Brzozowski [11] defined the dot-depth of a star-free
language and subdivided the class of star-free languages into Boolean alge-
bras, according to their dot-depth. In the original definition, the languages
of dot-depth 0 were the finite or cofinite languages and the hierarchy was
built by alternating concatenation product and boolean operations.
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It took a few years [8] to show that the dot-depth hierarchy is infinite
and a few more years to find an algorithm to decide whether a given star-free
language is of dot-depth one [21, 22]. Since then, the dot-depth problem —
to find an algorithm to compute the dot-depth of a given star-free language
— is wide open, and is, together with the star-height problem, one of the
most important open questions of the theory of finite automata.

It does not mean no significant progress was made on the dot-depth prob-
lem during the recent years. Elaborating on the precursor work of Büchi
[9] and McNaughton [23], Thomas [49] discovered a remarkable connection
with logic. It made the dot-depth problem appealing to researchers in model
theory, and the articles of Thomas [50, 51] and Selivanov [39] are a good
illustration of the contribution of these techniques. Another key fact was the
arrival of non-commutative algebra on the scene. Indeed, both the charac-
terizations of star-free languages and of dot-depth one languages were given
in terms of an algebraic property of their syntactic semigroups, leading to
the hope that every level of the dot-depth hierarchy would have a similar
characterization. This hope became fact with Eilenberg’s variety theory [13]
(see also its extension by the first author [29]).

Roughly speaking, the variety theorem gives a one-to-one correspondence
between certain classes of recognizable languages, the varieties of languages,
and certain classes of algebraic structures, the varieties of semigroups (resp.
monoids, ordered semigroups, ordered monoids). For instance, each level
of the dot-depth hierarchy forms a variety of languages and corresponds to
a variety of (ordered) semigroups. Furthermore, again by general results,
every variety of semigroups can be defined by a set of identities. The problem
is that the theory usually does not tell how to find these identities, and for
instance, identities are known only for the lower levels of the dot-depth
hierarchy.

In view of the variety theorem, one may expect some relationship be-
tween the operators on languages (of combinatorial nature) and the oper-
ators on semigroups (of algebraic nature). The following table, extracted
from [30], summarizes some of the results of this type related to the con-
catenation product. We shall not attempt to explain in detail the meaning of
the symbols in the right column except for one: the symbol M© corresponds
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to the Mal’cev product, whose definition is given in Section 2.2.

Closure under the operations . . . V

Product and union [[xωyxω ≤ xω]] M©V

Unambiguous product and union [[xωyxω = xω]] M©V

Left deterministic product and union [[xωy = xω]] M©V

Right deterministic product and union [[yxω = xω]] M©V

Product, boolean operations A M©V

Product with counters, boolean operations LGsol M©V

Product, product with counters, bool. op. LGsol M©V

Product followed by boolean closure ?

The operator on the last line is precisely the one used to pass from dot-
depth n to dot-depth n + 1. In view of this table, it is tempting to guess
that the question mark should also be some Mal’cev product. If this is the
case, a short argument shows it has to be B1 M©V, where B1 is the variety
corresponding to dot-depth one. This is exactly the conjecture that was
formulated in [35].

We prove in this paper that this conjecture is false. Actually, another
counterexample was proposed recently by Steinberg [41]. Taking these two
counterexamples into account, we propose a new formulation of the conjec-
ture, still deeply related to Mal’cev products, we give supporting evidence
for this new conjecture, and we discuss some of its consequences.

2 Semigroups and varieties

2.1 Varieties

A variety of semigroups is a class of semigroups closed under taking sub-
semigroups, quotients and finite direct products [13]. Varieties of ordered
semigroups are defined analogously [29]. If V is a variety of monoids, we
denote by VS the smallest variety of semigroups containing the monoids of
V. We also denote by LV the variety of all semigroups S, such that, for each
idempotent e ∈ S, the monoid eSe belongs to V. In particular, LI is the
variety of locally trivial semigroups. Finally, if V is a variety of semigroups,
we denote by VM the variety of monoids consisting of all monoids in V.

Varieties of ordered semigroups are conveniently defined by identities
[34]. Precise definitions can be found in Almeida’s book [1], or in the first
sections of the survey paper [30]. See also [29, 35] for more specific informa-
tion. For instance, the identity x ≤ 1 defines the variety of ordered monoids
M such that, for all x ∈ M , x ≤ 1. This variety is denoted [[x ≤ 1]]. Fol-
lowing Almeida [1], we use the symbols e and f to represent idempotents
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in identities. For instance, the variety [[exe ≤ e]] is the variety of ordered
semigroups (S,≤) such that, for each idempotent e ∈ S and for each x ∈ S,
exe ≤ e. The following varieties will be used in this paper.

I = {1} LI = [[exe = e]]

G = [[e = 1]] LG = [[(exe)ω = e]]

J+ = [[x ≤ 1]] LJ+ = [[exe ≤ e]]

J− = [[x ≥ 1]] LJ− = [[exe ≥ e]]

The varieties on the left are varieties of monoids and those one the right are
varieties of semigroups. The variety G is the variety of all groups (considered
as monoids). Note that LI = LJ+ ∩ LJ−.

The join of two varieties V1 and V2, that is, the smallest variety con-
taining V1 and V2, is denoted by V1 ∨V2. For instance, it is shown in [37]
that the join of J+ and J− is the variety of J -trivial monoids

J = [[(xy)ωx = (xy)ω = y(xy)ω]].

Similarly, it is shown in [37] that the join of LJ+ and LJ− is the variety

B1 = [[(esfte)ω(eufve)ω = (esfte)ωesfve(eufve)ω]].

This identity was discovered by Knast [22] in his study of dot-depth one
languages (see Section 7). Another example will be considered in this paper.
Let H be a variety of groups. The semigroups in LI∨HS are easy to describe:
their unique regular D-class is their minimal ideal and is isomorphic to the
product of a rectangular band by a group in H. The next proposition is just
another way of stating the same result.

Proposition 2.1 Let H be a variety of groups. Then a semigroup S belongs
to LI ∨ HS if and only if S ∈ LH and efe = e for every pair (e, f) of
idempotents of S.

Let S and T be semigroups. We write the product in S additively to
provide a more transparent notation, but it is not meant to suggest that S
is commutative. A left action of T on S is a map (t, s) 7→ t·s from T 1 × S
into S such that, for all s, s1, s2 ∈ S and t, t1, t2 ∈ T ,

(1) (t1t2)·s = t1(t2 ·s)

(2) t·(s1 + s2) = t·s1 + t·s2

(3) 1·s = s

If S is a monoid with identity 0, the action is unitary if it satisfies, for all
t ∈ T ,

(4) t·0 = 0
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The semidirect product of S and T (with respect to the given action) is the
semigroup S ∗ T defined on S × T by the multiplication

(s, t)(s′, t′) = (s + t·s′, tt′)

Given two varieties of ordered semigroups V and W, their semidirect product
V ∗W is the variety generated by all semidirect products of the form S ∗ T
with S ∈ V and T ∈ W. If V is a monoid variety, we always assume that
the action of T on S is unitary.

We illustrate these notions by an elementary result, which will be used
in Section 6.

Proposition 2.2 For every variety of groups H, H∗LI = LH and LI∗H =
LI ∨HS.

Proof. The equality H ∗ LI = LH is proved for instance in [13]. The
inclusion LI ∨HS ⊆ LI ∗ H is clear. To establish the opposite inclusion,
consider a semidirect product S∗H, with S ∈ LI and H ∈H. Since LI∗H is
contained in LH [13], Proposition 2.1 can be applied if we prove the identity
on idempotents. Let (e, 1) and (f, 1) be idempotents in S ∗H. Writing the
product in S additively, we have

(e, 1)(f, 1)(e, 1) = (e + 1f, 1)(e, 1) = (e + 1f + 1e, 1) = (e, 1)

and thus (e, 1)(f, 1)(e, 1) = (e, 1) as required.

A much more difficult result is the equality

B1 = J1 ∗ LI

established by Knast [21, 22].

2.2 Relational morphisms

If (S,≤) and (T,≤) are ordered semigroups, a relational morphism from S
to T is a relation τ : (S,≤) → (T,≤), i.e. a mapping from S into P(T ) such
that:

(1) τ(s)τ(t) ⊆ τ(st) for all s, t ∈ S,

(2) τ(s) is non-empty for all s ∈ S,

For a relational morphism between two ordered monoids (S,≤) and (T,≤),
a third condition is required

(3) 1 ∈ τ(1)

Equivalently, τ is a relation whose graph

graph(τ) = { (s, t) ∈ S × T | t ∈ τ(s) }
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is an ordered subsemigroup (resp. submonoid if S and T are monoids) of
S × T , with first-coordinate projection surjective onto S.

Let V1 and V2 be varieties of ordered semigroups. A relational mor-
phism τ : S → T is a (V1,V2) relational morphism if, for every ordered
subsemigroup R of T in V2, the ordered semigroup τ−1(R) belongs to V1.
A (V,V) relational morphism is simply called a V-relational morphism.

Let W be a variety of ordered semigroups (resp. monoids). The class of
all ordered semigroups (resp. monoids) S such that there exists a (V1,V2)
relational morphism τ : S → T , with T ∈ W, is a variety of ordered
semigroups (resp. monoids), denoted by (V1,V2) M©W. If V1 = V and if
V2 is the trivial variety IS, the notation simplifies to V M©W (this is the
Mal’cev product of V and W). Note that even though the inclusion

V1 M©(V2 M©V3) ⊆ (V1 M©V2) M©V3 (1)

always holds [54], the Mal’cev product is not associative.
In [35], the authors gave a description of a set of identities defining

V M©W, given a set of identities describing V and W.
Let us recall a useful characterization of LI- (resp. LG-) relational

morphisms, given in [27, Chapter 3].

Proposition 2.3 A relational morphism is a LI-relational morphism if and
only if it is a (LI, IS) relational morphism. A relational morphism is a LG-
relational morphism if and only if it is a (LG, IS) relational morphism.

Corollary 2.4 LI M©LI = LI and LG M©LG = LG.

We now state a few elementary results on relational morphisms.

Lemma 2.5 Let V and W be varieties of ordered semigroups and let τ :
S → T be a (V,W) relational morphism. Let S ′ and T ′ be subsemigroups
of S and T , respectively, and let τ ′ : S′ → T ′ be a relational morphism
such that, for each s ∈ S ′, τ ′(s) ⊆ τ(s). Then τ ′ is a (V,W) relational
morphism.

Proof. We note that if W is a subsemigroup of T ′, then τ ′−1(W ) is a
subsemigroup of τ−1(W ). Now if W ∈ W, then τ−1(W ) ∈ V and hence
also τ ′−1(W ) ∈ W.

Proposition 2.6 Let V1, V2, V3 and V be varieties of ordered semigroups.
Any (V1,V2) relational morphism is a ((V1,V3) M©V, (V2,V3) M©V) rela-
tional morphism.

Proof. Let τ : S → T be a (V1,V2) relational morphism between ordered
semigroups. Let T ′ be a subsemigroup of T such that T ′ ∈ (V2,V3) M©V.
Then there exists a (V2,V3) relational morphism τ ′ : T ′ → W with W ∈ V.
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Now let S′ = τ−1(T ′) and ρ : S′ → T ′ be the relational morphism given
by ρ(s) = τ(s)∩T ′ for each s ∈ S ′. By Lemma 2.5, ρ is a (V1,V2) relational
morphism.

We claim that the composite τ ′ ◦ ρ : S′ → W is a (V1,V3) relational
morphism. Indeed, if U is a subsemigroup of W , then (τ ′ ◦ ρ)−1(U) =
ρ−1(τ ′−1(U)). If U ∈ V3, then τ ′−1(U) ∈ V2 since τ ′ is a (V2,V3) relational
morphism and ρ−1(τ ′−1(U)) ∈ V1 since ρ is a (V1,V2) relational morphism.
This proves the claim. It follows that S ′ ∈ (V1,V3) M©V, which concludes
the proof.

Specializing Proposition 2.6 with V3 = IS shows that any (V1,V2) re-
lational morphism is a (V1 M©V,V2 M©V) relational morphism. This yields
the following corollary.

Corollary 2.7 Let W be a variety of semigroups (resp. monoids) and let
V1, V2 and V be varieties of semigroups. Then the following inclusion holds

(V1,V2) M©W ⊆ (V1 M©V,V2 M©V) M©W

As an illustration of these definitions, let us compute a few Mal’cev
products.

Proposition 2.8 Let H be a variety of groups. Then

LI ∗H = LI M©HS = LI ∨HS H ∗ LI = HS M©LI = LH

LI ∗ LH = LI M©LH = LH LI ∗ (LI ∗H) = LI M©(LI ∗H) = LI ∗H

LH ∗ LI = LH M©LI = LH (LI ∗H) ∗ LI = (LI ∗H) M©LI = LH

Proof. The equalities HS M©LI = LH and LI M©HS = LI∨HS are proved
in [19]. It follows by Proposition 2.2 that H∗LI = LH and LI∗H = LI∨HS.
This settles the first line of the proposition. Next, we have LI ∗ (LI ∗H) =
(LI∗LI)∗H = LI∗H and since LI∗H ⊆ H∗LI, (LI∗H)∗LI = H∗LI = LH.
Furthermore,

LI ∗H ⊆ LI M©(LI ∗H) = LI M©(LI M©HS) ⊆ (LI M©LI) M©HS

= LI M©HS = LI ∗H

Thus, LI M©(LI ∗H) = LI ∗H. Now, we have

LH ⊆ LI M©LH = LI M©(HS M©LI) ⊆ (LI M©HS) M©LI

= (LI ∗H) M©LI ⊆ LH M©LI

Finally, let S ∈ LH M©LI. By definition, there exists a semigroup T ∈ LI

and a LH-relational morphism τ : S → T . Let e be an idempotent of S, and
let f be an idempotent of τ(e). Then e ∈ τ−1(f). Now if s ∈ S and t ∈ τ(s),
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f = ftf ∈ τ(e)τ(s)τ(e) ⊆ τ(ese). It follows that eSe is a subsemigroup of
τ−1(f). Since τ−1(f) ∈ LH, eSe ∈ LH. Therefore, e(eSe)e = eSe ∈ H and
S ∈ LH. This proves that LH M©LI ⊆ LH, completing the proof of the
proposition.

3 Languages

A +-class (resp. ∗-class) of recognizable languages is a correspondence
C which associates with each alphabet A a set C(A+) (resp. C(A∗)) of
recognizable languages of A+ (resp. A∗).

3.1 Varieties of languages

A positive +-variety of languages is a class of recognizable languages V such
that

(1) for every alphabet A, V(A+) contains ∅ and A+ and is closed under
finite intersection and finite union,

(2) if ϕ : A+ → B+ is a morphism of semigroups, L ∈ V(B+) implies
ϕ−1(L) ∈ V(A+),

(3) if L ∈ V(A+) and if a ∈ A, then a−1L and La−1 are in V(A+).

Positive ∗-varieties are defined analogously by replacing each instance of +
by ∗ and morphisms of semigroups by morphisms of monoids. A variety is
a positive variety closed under complement.

Eilenberg’s theorem [13] provides a bijective correspondence between
varieties of languages and varieties of semigroups. There is an analogous
correspondence [29] between positive varieties of languages and varieties of
ordered semigroups. In the sequel, we shall use freely the term “corre-
sponding variety” to refer to these correspondences in both directions. In
particular, if V is a variety of ordered semigroups, a V-language is a lan-
guage recognized by an ordered semigroup of V, that is, a language of the
positive variety of languages corresponding to V. The next proposition will
serve as an illustration of this definition.

Proposition 3.1 Let V = LI ∨HS, where H is a variety of groups, and
let V be the corresponding variety of languages. For each alphabet A, V(A+)
consists of the finite unions of languages of the form w, where w ∈ A+, or
uLv, where uv ∈ A+ and L is an H-language of A∗.

Proof. Let C be the class of languages described in the second part of the
statement. First, it is well known [13] that the LI-languages are finite unions
of languages of the form w, where w ∈ A+, or uA∗v, where uv ∈ A+. Thus
C contains the LI-languages, since A∗ is an H-language of A∗ for any H.
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Next, an HS-language is a language of the form L ∩A+, where L is an H-
language. Now, L ∩A+ =

⋃
a∈A a(a−1L), and since, for each letter a, a−1L

is an H-language, L ∩ A+ is in C(A+). This proves that C contains all the
V-languages.

To establish the opposite inclusion, it suffices to consider the languages
of the form {w} or uLv described above. It was already mentioned that
the singletons are LI-languages, and hence V-languages. Next, let L be an
H-language and let η : A∗ → H be its syntactic morphism. Since H is a
variety of groups, H is a group. Let u, v be words of A∗ such that uv 6= 1
and let ū and v̄ be words such that η(ū) = η(u)−1 and η(v̄) = η(v)−1. We
claim that

uLv = uA∗v ∩ ū−1Lv̄−1

First observe that, for every x ∈ A∗, η(ūuxvv̄) = η(x). Thus x ∈ L if and
only if ūuxvv̄ ∈ L. It follows that if x ∈ L, then uxv ∈ uA∗v ∩ ū−1Lv̄−1.
Conversely, if uxv ∈ uA∗v ∩ ū−1Lv̄−1, then ūuxvv̄ ∈ L, and hence x ∈ L,
which proves the claim. Now uA∗v is a LI-language and A+ ∩ ū−1Lv̄−1

is an HS-language. This proves that uLv is a LI ∨ HS-language.

3.2 Polynomial closure

The polynomial closure of a set of languages L of A∗ is the set of languages
of A∗ that are finite unions of languages of the form

L0a1L1 · · · anLn

where n ≥ 0, the ai’s are letters and the Li’s are elements of L.
A product L = L0a1L1 · · · anLn is unambiguous if every word u of L

admits a unique factorization of the form u0a1u1 · · · anun with u0 ∈ L0,
u1 ∈ L1, . . . , un ∈ Ln. The unambiguous polynomial closure of a set of
languages L of A∗ is the set of languages that are finite disjoint unions of
unambiguous products of the form

L0a1L1 · · · anLn

where n ≥ 0, the ai’s are letters and the Li’s are elements of L.
The polynomial closure of a set of languages L of A+ is the set of lan-

guages of A+ that are finite unions of languages of the form

u0L1u1 · · ·Lnun

where n ≥ 0, the ui’s are words of A∗ and the Li’s are elements of L. If
n = 0, one requires of course that u0 is not the empty word.

A product L = u0L1u1 · · ·Lnun of n languages L1, . . . , Ln of A+ is
unambiguous if every word u of L admits a unique factorization of the form
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u0v1u1 · · · vnun with v1 ∈ L1, . . . , vn ∈ Ln. The unambiguous polynomial
closure of a set of languages L of A+ is the set of languages that are finite
disjoint unions of unambiguous products of the form

u0L1u1 · · ·Lnun

where n ≥ 0, the ui’s are words of A∗ and the Li’s are elements of L.
Finally, the boolean closure of a set of languages L of A∗ (resp. A+) is

the smallest set of languages containing L and closed under finite boolean
operations (finite union and complement).

By extension, if C is a ∗-class (resp. +-class), we denote by Pol C its
polynomial closure, that is, the class of languages such that, for every alpha-
bet A, Pol C(A∗) (resp. Pol C(A+)) is the polynomial closure of C(A∗) (resp.
C(A+)). The unambiguous polynomial closure UPol C and the boolean clo-
sure BC of a class of languages C is defined analogously. One can show that
if C is a variety of languages, then Pol C is a positive variety of languages,
while UPol C and BPol C are varieties of languages.

The following theorem summarizes the results of [36].

Theorem 3.2 Let V be a variety of monoids (resp. semigroups) and let V
be the corresponding variety of languages.

(1) The variety of ordered monoids (resp. semigroups) corresponding to
Pol V is the variety LJ+

M©V.

(2) The variety of monoids (resp. semigroups) corresponding to UPol V
is the variety LI M©V.

We shall denote by V̂ the variety of semigroups (resp. monoids) correspond-
ing to BPol V. It follows from the results of [35, 36] that

LI M©V = (LJ+
M©V) ∩ (LJ− M©V) and (2)

V̂ = (LJ+
M©V) ∨ (LJ− M©V) (3)

In view of Theorem 3.2, it is tempting to guess that V̂ is also of the form
V → W M©V for some variety W. The inclusion V̂ ⊆ B1 M©V follows from
[28, Theorems 3.1 and 3.2]. In [35], it was conjectured that V̂ = B1 M©V,
but a counterexample will be given in Section 4. An improved version of the
conjecture will be stated in Section 6.

For any class of languages C, Pol C = Pol (UPol C) and thus BPol C =
BPol (UPol C). In view of Theorem 3.2, the latter equality can be translated
in terms of varieties as follows.

Corollary 3.3 For any variety of monoids (resp. semigroups) V, the equal-

ity L̂I M©V = V̂ holds.
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The variety V̂ can also be described in terms of Schützenberger prod-
ucts. We refer the reader to [32] for precise definitions. Given a variety of
semigroups (resp. monoids) V, we denote by ♦V the variety generated by
all Schützenberger products of semigroups in V.

It was shown in [26] that if V is a variety of monoids, then V̂ = ♦V.
It follows from [32, Theorem 5.3] that the same result holds for varieties of
semigroups, provided that the variety of languages corresponding to V is
closed under the operations L → uL and L → Lu (where u is a word).

4 A counterexample

In this section, we give an aperiodic counterexample to the conjecture V̂ =
B1 M©V. It is interesting to note that Steinberg [41] gave another counterex-
ample, in a quite different realm: he showed that if H is a variety of groups,
Ĥ = J ∗ H, B1 M©H = J M©H, yet J ∗ H 6= J M©H as soon as H consists
only of commutative groups, or of groups satisfying a fixed identity of the
form xn = 1.

Our starting point is a semigroup in LJ which is not in B1, discovered
by Knast [21] as a byproduct of his characterization of the languages of
dot-depth one. This semigroup is the syntactic semigroup of the following
language:

L0 = (ab+ ∪ ac+)∗ab+d(c+d ∪ b+d)∗.

We study in some detail the syntactic monoid of the image L of L0 under
the morphism which maps a, b, c, d respectively to ab, ab2, ab3, ab4:

L = (ab(ab2)+ ∪ ab(ab3)+)∗ab(ab2)+ab4((ab3)+ab4 ∪ (ab2)+ab4)∗.

The minimal automaton A of L has 26 states, and is depicted below1. The
initial state is 1 and the unique final state is 19.

1

2

3

4 5

6

7

8

9

1011

12

13

14

15

16 17

1819

20 21

2223 2425 26
a b

a

b

b

b

a

b

a

b

b

a

b

b

a a

b

b

a b b

b

a
bbb

b

a

a

bbb

a

1This computation was performed using Champarnaud’s automate software [10].
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Let S be the syntactic monoid of L and let σ : A+ → S be its syntactic
morphism. It is aperiodic and it has 445 elements, of which are 85 idem-
potents. Its D-class structure is as follows2. The maximal D-class is the
singleton {1}. Next there are 19 non-regular singleton D-classes (with ele-
ments respectively the images by σ of a, b, ab, ba, b2, ab2, bab, b2a, bab2, b2ab,
b2ab2 and b3, ab3, b3a, bab3, b3ab, b2ab3, b3ab2, b3ab3). Next there are two
incomparable regular D-classes. The first one has 3 R-classes, 3 L-classes
and 3 idempotents σ(b2ab2a), σ(bab2ab), σ(ab2ab2). The second one has 4
R-classes, 4 L-classes and 4 idempotents σ(b3ab3a), σ(b2ab3ab), σ(bab3ab2),
σ(ab3ab3). (The first group of non-regular elements listed above is J -above
both these D-classes, and the second group, the images of words having
b3 as a factor, sits above the second D-class only.) All the other elements
have rank at most 1. Consisting of such elements, there are 2 incomparable
regular D-classes, one with 10 R-classes, 10 L-classes and 32 idempotents,
and the other with 13 R-classes, 13 L-classes and 44 idempotents. Below
both these classes, there is a non-regular D-class with 10 R-classes and 13
L-classes; and finally the trivial D-class 0.

Using this monoid, we show that R̂ 6= B1 M©R. More precisely, we use
the known fact that Ĵ1 = R̂, where R is the variety of R-trivial monoids
[33]. We verify that the monoid S lies in B1 M©R and not in B1 M©J1.
Thus B1 M©J1 is strictly contained in B1 M©R. Since V̂ ⊆ B1 M©V for every
variety V, it follows that

R̂ = Ĵ1 ⊆ B1 M©J1 ( B1 M©R

and thus R̂ 6= B1 M©R.
In order to verify that S 6∈ B1 M©J1, it suffices to find words e, f , s, t, u,

v in {a, b}∗ with the same alphabetic content, and such that the transitions
labeled by e, f , esfte, eufve (that is, their images by σ) are idempotent, and
the transitions labeled (esfte)(eufve) and (esfte)esfve(eufve) are different
(see [54, Proposition 1.3] or [35, Theorem 5.1]).

Let e = ab2ab2, f = ab3ab3, s = t = ab and u = v = ab4. It was
remarked above that σ(e) and σ(f) are idempotent. Now σ(esfte) is the
rank 1 transition with domain {3, 6, 9, 12, 13} and range {13}. Also σ(eufve)
is the rank 1 transition with domain {6, 13, 18, 91, 23, 26} and range {26}.
And σ(esfve) is the empty transition. Thus σ((esfte)(eufve)) 6= 0 while
σ((esfte)esfve(eufve)) = 0, and S 6∈ B1 M©J1.

We now prove that S ∈ B1 M©R. Let ρ : A∗ → R be the syntactic
morphism of the language (b2a)3A∗ ∪ (b3a)3A∗, whose minimal automaton
is the following:

2This computation was performed using Pin’s Semigroupe software [14].
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It is immediately verified that R ∈ R and we consider the relational mor-
phism τ = ρ ◦ σ−1 : S → R. To show that S ∈ B1 M©R, it suffices to show
that if e, f , s, t, u, v are elements of A∗ whose ρ-images are equal and
idempotent in R and such that σ(e) and σ(f) are idempotent, then in S we
have

σ((esfte)ω(eufve)ω) = σ((esfte)ωesfve(eufve)ω)

If σ(esfte)ω = 0 or σ(eufve)ω = 0, the above equality holds trivially,
with both terms equal to 0. Let us now assume that σ(esfte)ω 6= 0 and
σ(eufve)ω 6= 0.

If σ(e) has rank 1, then σ(e), σ(esf), σ(euf), σ(fte), σ(fve) are all D-
equivalent. Indeed, if it were not the case, we would have σ(esfte) <J σ(e)
or σ(eufve) <J σ(e), and in particular, σ(esfte)ω = 0 or σ(eufve)ω = 0,
a contradiction. It follows that σ(esfte), σ(eufve), σ(esfve) and σ(e) are
H-equivalent, and hence equal. The equality above is now immediate.

If σ(e) = 1, then e = 1 ∈ A∗, so ρ(e) = 1. But ρ−1(1) = {1}, so we have
f = s = t = u = v = e = 1, and the expected equality holds again in this
case.

The remaining cases are those where

e ∈ F = {b2ab2a, bab2ab, ab2ab2, b3ab3a, b2ab3ab, bab3ab2, ab3ab3}.

Note that σ−1(σ(b2ab2a)) = (b2ab2a)+, and τ(σ(b2ab2a)) = ρ((b2ab2a)+)
contains a single idempotent, equal to ρ(b2ab2a)2. The same is true of
the other idempotents of rank 2 in S: if x ∈ F , then τ(σ(x)) contains a
single idempotent, namely ρ(x2). Finally one can verify that these seven
idempotents of R are pairwise distinct, for instance by checking that the
corresponding transitions have distinct domains.

Thus, if σ(e) ∈ F , σ(f) is idempotent and ρ(e) = ρ(f), then we must
have σ(e) = σ(f). Now it suffices to check that each of the seven local
submonoids of S of the form gSg (g ∈ F ) are J -trivial (since a monoid is
in B1 if and only if it is J -trivial), which is readily verified.
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Thus we have proved that S ∈ B1 M©R and S /∈ B1 M©J1.

The reader may wonder how an appropriate R-trivial monoid was found, to
show that a specific 445-element monoid sits in B1 M©R. In fact the authors
first used general results on free profinite objects on Mal’cev products [35]
and structure theorems on free pro-R monoids [2, 52] to ascertain that S ∈
B1 M©R, and then to exhibit a specific B1-relational morphism into an R-
trivial monoid.

5 Properties of the concatenation product

For 1 ≤ i ≤ n, let Li be a recognizable language of A+, Si be its syntactic
semigroup and ηi : A+ → Si be its syntactic morphism. We also denote by
S+

i its ordered syntactic semigroup. Let

η : A+ → S+
1 × S+

2 × · · · × S+
n

be the morphism of ordered semigroups defined by

η(u) = (η1(u), η2(u), . . . , ηn(u))

Let u0, u1, . . . , un be words of A∗, let L = u0L1u1 · · ·Lnun. Let S (resp.
S+) be the (resp. ordered) syntactic semigroup of L and let µ : A+ → S+ be
its syntactic morphism. The following property of the relational morphism

τ+ = η ◦ µ−1 : S+ → S+
1 × S+

2 × · · · × S+
n

was established in [32], as an improvement over similar former results [44,
28, 36].

Proposition 5.1 The relational morphism τ+ : S+ → S+
1 × S+

2 × · · · × S+
n

is a LJ+-relational morphism.

In order to turn this result into a property of the relational morphism

τ = η ◦ µ−1 : S → S1 × S2 × · · · × Sn

we need an auxiliary result, which is interesting in its own right.

Lemma 5.2 Let τ1 : S1 → T1 and τ2 : S2 → T2 be relational morphisms
between ordered semigroups, and let τ : S1 × S2 → T1 × T2 be the relational
morphism given by τ(s1, s2) = τ1(s1) × τ2(s2). Let V1, V2, W1, W2 be
varieties of ordered semigroups. If τ1 is a (V1,W1) relational morphism
and τ2 is a (V2,W2) relational morphism, then τ is a (V1 ∨V2,W1 ∩W2)
relational morphism.
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Proof. Let πi : T1 × T2 → Ti be the projection (i = 1, 2), and let W be a
subsemigroup of T1×T2. Then τ−1(W ) is a subsemigroup of τ−1

1 (π1(W ))×
τ−1
2 (π2(W )). Now suppose that W ∈W1 ∩W2. In particular, W ∈ W1, so

π1(W ) ∈ W1 and τ−1
1 (π1(W )) ∈ V1. Similarly, τ−1

2 (π2(W )) ∈ V2, so that
τ−1(W ) ∈ V1 ∨V2.

Proposition 5.3 For each variety of semigroups V, the relational mor-
phism τ : S → S1 × S2 × · · · × Sn is a (V̂,LI M©V) relational morphism.

Proof. Let τ+ : S+ → S+
1 × · · · × S+

n be the canonical relational mor-
phism. By Proposition 5.1, τ+ is a LJ+-relational morphism, and hence by
Proposition 2.6, it is also a (LJ+

M©V)-relational morphism.
Let τ− : S− → S−

1 × · · · × S−
n be the relational morphism given by

τ−(s) = τ+(s) for each s ∈ S. It is an elementary verification that τ− is
a LJ−-relational morphism, and hence τ− is also a (LJ− M©V)-relational
morphism.

Now, Formula 3 and Lemma 5.2 show that the product relational mor-
phism

τ+ × τ− : S+ × S− −→ S+
1 × · · ·S+

n × S−
1 × · · · × S−

n

is a (V̂,LI M©V) relational morphism. Let us identify S (resp. S1×· · ·×Sn)
with the diagonal of S+ × S− (resp. (S+

1 × · · · × S+
n ) × (S−

1 × · · · × S−
n ).

Up to this identification, τ(s) ⊆ τ+ × τ−(s) for every s ∈ S. It follows by
Lemma 2.5 that τ is a (V̂,LI M©V) relational morphism.

There is a similar result for ordered syntactic monoids. Let, for 0 ≤ i ≤
n, Li be recognizable languages of A∗, M+

i be its ordered syntactic monoid
and ηi : A∗ → M+

i be its syntactic morphism. Let

η : A∗ → M+
0 ×M+

1 × · · · ×M+
n

be the morphism defined by

η(u) = (η0(u), η1(u), . . . , ηn(u))

Let a1, a2, . . . , an be letters of A, let L = L0a1L1 · · · anLn and let µ :
A∗ → M+ be the syntactic morphism of L. Finally, consider the relational
morphism

τ+ = µ−1η : M+ → M+
0 ×M+

1 × · · · ×M+
n

Proposition 5.4 The relational morphism τ : M + → M+
1 × M+

2 × · · · ×
M+

n is a LJ+-relational morphism. For each variety of semigroups V, the
relational morphism τ : M → M1×M2×· · ·×Mn is a (V̂,LI M©V) relational
morphism.
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6 A new conjecture and its consequences

In Section 4, we discussed counterexamples to the conjecture
⋂

V
= B1 M©V.

Taking these counterexamples into account, we formulate a new conjecture
and discuss its consequences.

Conjecture 6.1 For any variety of semigroups (resp. monoids) W,

Ŵ =
⋂

H

(J ∗ LI ∗H,LI ∗H) M©W

where the intersection is taken over all varieties of groups.

If all semigroups (resp. monoids) in W are aperiodic, Conjecture 6.1
simplifies to:

Conjecture 6.2 For any variety of aperiodic semigroups (resp. monoids)
W,

Ŵ = (J ∗ LI,LI) M©W.

Let us prove formally the logical connection between the two conjectures.

Proposition 6.1 For any variety of aperiodic semigroups (resp. monoids)
W, ⋂

H

(J ∗ LI ∗H,LI ∗H) M©W = (J ∗ LI,LI) M©W

Proof. The proof relies on the fact that an aperiodic semigroup in LI ∗H

is actually in LI. Let us call V1 (resp. V2) the variety on the left (resp.
right) of the formula. The inclusion V1 ⊆ V2 is clear. If S ∈ V2, there
exists a (J ∗ LI,LI) relational morphism τ from S into some W ∈ W. Let
T be a subsemigroup of W and let H be a variety of groups. If T ∈ LI ∗H,
then T ∈ LI, since W is aperiodic. Therefore τ−1(T ) ∈ J ∗ LI and hence
τ−1(T ) ∈ J ∗ LI ∗H. Thus τ is actually a (J ∗ LI ∗H,LI ∗H) relational
morphism, and consequently S ∈ V1. Thus V1 = V2.

Corollary 6.2 Conjecture 6.1 implies Conjecture 6.2.

With the same proof, one can show that for each variety W,

⋂

H

(J ∗ LI ∗H,LI ∗H) M©W =
⋂

H⊆G∩W

(J ∗ LI ∗H,LI ∗H) M©W.

Our conjecture originates in the following general result:
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Theorem 6.3 For any variety of monoids (resp. semigroups) W,

Ŵ =
⋂

(V̂,LI M©V) M©W (4)

where the intersection is taken over all varieties of semigroups V.

Proof. Let us prove the result in the monoid case (the semigroup case

is analogous). We consider a generator of Ŵ, in the form of the syntactic
monoid M of a language L = L0a1L1 · · · anLn, where for each i, ai is a letter
and Li is a language whose syntactic monoid Mi lies in W. By Proposition
5.3, the relational morphism τ : M → M1×M2×· · · ×Mn is a (V̂,LI M©V)
relational morphism for each variety of semigroups V. This proves the
inclusion

Ŵ ⊆
⋂

(V̂,LI M©V) M©W

To establish the opposite inclusion, we observe that if W is a variety of
semigroups, then (Ŵ,LI M©W) M©W is contained in Ŵ. If W is a variety
of monoids, let us take V = W ∗ LI. Then, since WS ⊆ LI M©V, we have

(V̂,LI M©V) M©W ⊆ V̂M.

Furthermore, by the results of [45, 37, 32], V̂ = Ŵ ∗ LI. Now, it follows

from [13, Proposition 5.6, page 131, and page 155] that Ŵ ∗ LI ⊆ LŴ and

thus (Ŵ ∗ LI)M = Ŵ and (V̂,LI M©V) M©W ⊆ Ŵ.

A closer study of the varieties of the form LI M©V and V̂ is in order to estab-
lish the links between Formula (4) and our conjectures. We shall consider
successively varieties contained in LI and varieties of the form LI ∗H, H or
HS, where H is a variety of groups.

Proposition 6.4 Let V be a variety of semigroups. If V is contained in
LI, then LI M©V = LI and V̂ = B1.

Proof. Let V and LI be the varieties of languages corresponding to V and
LI, respectively. If V ⊆ LI, then LI ⊆ LI M©V ⊆ LI M©LI = LI. It follows,
by Theorem 3.2, that UPol V = LI, and thus

Pol V = Pol (UPol V) = Pol LI

and therefore BPol V = BPol LI. This proves the equality of the correspond-
ing varieties of semigroups, namely V̂ for BPol V and B1 for BPol LI.

The next result, which follows immediately from Theorem 6.3 and Propo-
sition 6.4, can be considered as the easy part of Conjecture 6.2.
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Corollary 6.5 For any variety of aperiodic semigroups (resp. monoids)
W,

Ŵ ⊆ (J ∗ LI,LI) M©W.

Corollary 6.6 Conjecture 6.2 is true for any variety contained in LI.

Proof. Let V be a variety contained in LI. Proposition 6.4 shows that V̂ =
B1 and by Corollary 6.5, B1 ⊆ (J∗LI,LI) M©V. Finally (J∗LI,LI) M©V ⊆
(J ∗ LI,LI) M©LI ⊆ J ∗ LI = B1. Thus V̂ = (J ∗ LI,LI) M©V.

Next we consider varieties of the form V ∗H, where V is a subvariety of LI

and H is a variety of groups.

Proposition 6.7 Let V be a variety such that (H)S ⊆ V ⊆ LI ∗H. Then

Ŵ = J ∗ LI ∗H.

Proof. By Corollary 3.3, L̂I M©V = V̂. Now, since (H)S ⊆ V ∗ H ⊆
LI ∗H, Proposition 2.8 gives LI M©HS = LI ∗H = LI M©(LI ∗H) and thus
LI M©V = LI ∗H. Therefore we may assume without loss of generality that
V = LI M©V.

Let V be the variety of languages corresponding to V. Then the variety
of languages corresponding to V̂ is BPol V by definition. Proposition 3.1
shows that V is closed under the operations L → uL and L → Lu (where
u is a word). Therefore by [32, Theorem 5.3], V̂ = ♦V. It follows by [32,
Theorem 4.8] that ♦V = (♦LI)∗H and since ♦LI = B1 = J∗LI, we finally
obtain V̂ = J ∗ LI ∗H.

The “easy part” of Conjecture 6.1 now follows from Theorem 6.3 and
Proposition 6.7.

Corollary 6.8 For any variety of semigroups (resp. monoids) W,

Ŵ ⊆
⋂

H

(J ∗ LI ∗H,LI ∗H) M©W

where the intersection is taken over all varieties of groups.

Corollary 6.9 Conjecture 6.1 is true for any variety of semigroups V such
that (H)S ⊆ V ⊆ LI ∗H, where H is a variety of groups.

Proof. Proposition 6.7 shows that V̂ = J ∗ LI ∗H. Furthermore

(J ∗ LI ∗H,LI ∗H) M©V ⊆ J ∗ LI ∗H = V̂

The conjecture now follows from Corollary 6.8.

Next, let us consider varieties of groups.

18



Proposition 6.10 Conjecture 6.1 is true for any variety of groups.

Proof. If H is a variety of groups, then Ĥ = J ∗H [41, 32]. Furthermore

(J ∗ LI ∗H,LI ∗H) M©H ⊆ (J ∗ LI ∗H)M ⊆ (J ∗H ∗ LI)M

Now, for any variety of monoids V, V ∗LI ⊆ LV and thus (V ∗LI)M = V.
It follows in particular that (J∗LI∗H,LI∗H) M©H ⊆ J∗H. The conjecture
now follows from Corollary 6.8.

Finally, let us consider the variety LG = G ∗ LI.

Proposition 6.11 Conjecture 6.1 is true for the variety LG.

Proof. The reader is referred to [20] for the definition of a kernel of a
monoid, and its connection with the Mal’cev product. It is shown in [25]

that L̂G = LBG, where J ∗G = BG is the variety of block groups. We
claim that

(J ∗ LI ∗G,LI ∗G) M©LG ⊆ LBG

Let S ∈ (J ∗LI ∗G,LI ∗G) M©LG. Then there exists a semigroup T ∈ LG

and a (J ∗ LI ∗ G,LI ∗ G) relational morphism τ : S → T . Let e be
an idempotent of S, f an idempotent of the semigroup τ(e) and let G be
the maximal subgroup of T containing f . If s ∈ S and t ∈ τ(s), then
ftf ∈ G since T ∈ LG. Thus ftf ∈ τ(e)τ(s)τ(e) ⊆ τ(ese). It follows that
G∩ τ(ese) 6= ∅, and thus eSe ⊆ τ−1(G). Now since τ is (J ∗LI ∗G,LI ∗G),
it follows that τ−1(G) ∈ J ∗ LI ∗G, and thus eSe ∈ J ∗ LI ∗G. Now by
[20, Theorem 3.1], J ∗ LI ∗G ⊆ (J ∗ LI) M©G ⊆ LJ M©G. It follows, by [20,
Theorem 3.4], that K(eSe) ∈ LJ. But eSe is a monoid and so is K(eSe).
Thus K(eSe) ∈ J, and by [20, Theorem 3.4] again, eSe ∈ J∗G = BG. Thus
S ∈ LBG, proving the claim. The conjecture now follows from Corollary
6.8.

Let us give a last result supporting Conjecture 6.1. Corollary 3.3 shows

that, for any variety of monoids (resp. semigroups) V, L̂I M©V = V̂. The
following proposition shows that if Conjecture 6.1 is true for V, then it is
also true for LI M©V.

Proposition 6.12 For any variety of groups H and any variety of semi-
groups (resp. monoids) V, (J ∗ LI ∗ H,LI ∗ H) M©V = (J ∗ LI ∗ H,LI ∗
H) M©(LI M©V).

Proof. The proof is given in the case where V is a variety of monoids, but
the semigroup case is entirely similar. Let M be a monoid in (J∗LI∗H,LI∗
H) M©(LI M©V). By definition, there exists a (J ∗ LI ∗H,LI ∗H) relational
morphism τ : M → N , where N ∈ LI M©V and a LI-relational morphism
σ : N → V with V ∈ V.
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Let S be a subsemigroup of V in LI∗H. Then σ−1(V ) is in LI M©(LI∗H),
and by Proposition 2.8, this variety is equal to LI∗H. Therefore (σ◦τ)−1(V )
is in J∗LI∗H, showing that σ◦τ : M → V is a (J∗LI∗H,LI∗H) relational
morphism. Thus (J∗LI∗H,LI∗H) M©(LI M©V) ⊆ (J∗LI∗H,LI∗H) M©V.
The opposite inclusion is obvious.

In particular, (B1,LI) M©J1 = (B1,LI) M©(LI M©J1) = (B1,LI) M©DA

and thus

B1 M©J1 = (B1,LI) M©J1 = (B1,LI) M©R = (B1,LI) M©DA

The counterexample given in Section 4 shows that, although Ĵ1 = R̂, the
inclusion B1 M©J1 ⊆ B1 M©R is strict, ruining the conjecture V̂ = B1 M©V.
It is no longer a counterexample to Conjecture 6.2, since (B1,LI) M©J1 =
(B1,LI) M©R = (B1,LI) M©DA (since DA = LI M©J1).

Conjecture 6.1 relies on the hope that the inclusion proved in Corollary
6.8 is actually an equality. Besides, Formula (4) shows that if the conjecture
is true, then the inclusion

⋂

H

(J ∗ LI ∗H,LI ∗H) M©W ⊆ (V̂,LI M©V) M©W (5)

should hold for each variety V and W. It would be interesting to prove
or disprove this inclusion for particular instances of V and W, for instance
for V = LH. Disproving one of these inclusions would of course disprove
Conjecture 6.1.

7 Concatenation hierarchies

By alternating the use of the polynomial closure and of the boolean closure
one can obtain hierarchies of recognizable languages. Let W be a variety
of languages. The concatenation hierarchy of basis W is the hierarchy of
classes of languages defined as follows.

(1) W0 = W

(2) for every integer n ≥ 0, Wn+1/2 = Pol Wn,

(3) for every integer n ≥ 0, Wn+1 = BPol Wn.

Levels of the form Wn (resp. Wn+1/2) for some integer n are called full
(resp. half ) levels. It is known that every full level is a variety of languages
and every half level is a positive variety of languages.

Three concatenation hierarchies have been considered so far in the liter-
ature. The first one, introduced by Cohen and Brzozowski [11, 7] and called
the dot-depth hierarchy, is the hierarchy of positive +-varieties whose basis
is the trivial variety. The second one, first considered implicitly in [48] and
explicitly in [43, 45] is called the Straubing-Thérien hierarchy : it is the hier-
archy of positive ∗-varieties whose basis is the trivial variety. The third one,
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introduced in [24], is the hierarchy of positive ∗-varieties whose basis is the
variety of group-languages. It is called the group hierarchy. The hierarchies
of basis H and LH, where H is a variety of groups, are also worth studying.

The variety of monoids (or ordered monoids for the half levels) cor-
responding to the n-th level of the Straubing-Thérien hierarchy (resp. of
the group hierarchy) is denoted by Vn (resp. Gn). The variety of (or-
dered) semigroups corresponding to the n-th level of the dot-depth hierar-
chy is denoted by Bn. These varieties are related by the following formulas
[45, 37, 31, 32], which hold for each level (full or half):

Bn = Vn ∗ LI Gn = Vn ∗G

It follows, but this is a non trivial result [45, 37], that Bn is decidable if and
only if Vn is decidable (for each integer or half integer n). In particular,
the identities defining the variety B1 were given in Section 2.1. It is not yet
known whether a similar result holds for Gn, but nevertheless the formula
Gn = Vn ∗G gives evidence that the Straubing-Thérien hierarchy should
be simpler to study.

The first level has been actually thoroughly studied by Simon [40] long
before the hierarchy was formally introduced. Simon’s result states that V1

is the variety J of J -trivial monoids. It follows that V1 is decidable. The
decidability of level 1/2 is quite easy, and was formally established in [29].
The decidability of level 3/2 was first established by Arfi [3, 4] and a better
algorithm was given by the authors in [36]. A promising approach based on
forbidden patterns, was also considered by Glaßer and Schmitz [15, 16, 17].

The decidability problem for level 2 is still open, although much progress
has been made in recent years [5, 6, 12, 33, 46, 47, 53, 54]. The more
important of these partial results is Straubing’s proof [46] of the decidability
of the level 2 for languages on a two-letter alphabet. This result was recently
extended to the level 5/2 by Glaßer and Schmitz [18]. One of the main results
about V2, proved in [33], is that V2 = Ĵ1, where J1 denotes the variety of
idempotent and commutative monoids. Conjecture 6.2, applied to W = J1

states that
V2 = (J ∗ LI,LI) M©J1.

Now, since LI ∩ J1 = IS, the following equality holds

(J ∗ LI,LI) M©J1 = (J ∗ LI, IS) M©J1 = B1 M©J1

This means that, for the special case V = J1, there is no difference between
Conjecture 6.2 and the conjecture made in [36]. In particular, our guess of
the identities of V2, which would prove the decidability of V2, is unchanged.

What would be the consequences of our conjecture for the upper levels
of the hierarchy? First, since for every integer n, V̂n = Vn+1, Conjecture
6.2 would imply that

Vn+1 = (J ∗ LI,LI) M©Vn.
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To obtain the identities of Vn+1, one could then use the following result,
whose proof will be published elsewhere.

Proposition 7.1 Let V be a variety of semigroups (resp. monoids). Then
(J ∗ LI,LI) M©V is defined by the identities of the form

(esfte)ωesfve(eufve)ω = (esfte)ω(eufve)ω

for all e, f, s, t, u, v such that V satisfies

e = eω, efe = e, s = u = ef,

f = fω, fef = f, t = v = fe

However, the decidability of each variety Vn would not follow immediately
from such a description.
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plications 24, (1990), 521–530.

[6] F. Blanchet-Sadri, On a complete set of generators for dot-depth two,
Discrete Appl. Math., 50, (1994), 1–25.

[7] J.A. Brzozowski, Hierarchies of aperiodic languages, RAIRO Inform.
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