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NONLINEAR EQUATIONS WITH UNBOUNDED HEAT CONDUCTION

AND INTEGRABLE DATA

Dominique Blanchard(1)(2), Olivier Guibé(2) and Hicham Redwane(3)

Abstract. We consider a class of quasi-linear diffusion problems involving a
matrix A(t, x, u) which blows up for a finite value m of the unknown u. Stationary
and evolution equations are studied for L1 data. We focus on the case where the
solution u can reach the value m. For such problems we introduce a notion of
renormalized solutions and we prove the existence of such solutions.

Keywords: nonlinear equations, blowing-up heat conduction, existence, renor-
malized solutions, integrable data.

Résumé. Nous considérons une classe de problèmes de diffusion quasi-linéaires
pour des matrices A(t, x, u) qui explosent pour une valeur m finie de l’inconnue
u. Les cas stationnaire et d’évolution sont traités pour des données intégrables et
pour des solutions qui atteignent la valeur m. Nous donnons une formulation de
solutions renormalisées pour ces problèmes et nous démontrons l’existence de telles
solutions.
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NONLINEAR EQUATIONS WITH UNBOUNDED HEAT CONDUCTION

AND INTEGRABLE DATA

Dominique Blanchard, Olivier Guibé and Hicham Redwane

0.1. Introduction

We investigate a class of diffusion problems, in the stationary and evolution cases, with
singular matrices with respect to the unknown. More precisely let Ω be a bounded domain of
R

N , m and T be two positive real numbers and β and γ be two functions of C0((−∞,m)) such
that β(s) ≤ γ(s), lims→m− β(s) = +∞ and

∫m
0 γ(s) ds < +∞. We consider a Carathéodory

matrix field A(t, x, s) defined on (0, T ) × Ω × (−∞,m) such that

(0.1) β(s)|ξ|2 ≤ A(t, x, s)ξ · ξ ≤ γ(s)|ξ|2

for any s ∈ (−∞,m) and any ξ ∈ R
N , almost everywhere in (0, T ) × Ω.

Then the matrix A(t, x, s) blows up (uniformly with respect to (t, x)) as s→ m−. We are
interested in the diffusion problems governed by the matrix field A(t, x, u) in the stationary
(A is then independent of t) or evolution cases (see equations (1.1) and (2.1)). When
dealing such problems, the main difficulty is indeed to give a sense to the flux A(t, x, u)Du
on the set {(t, x) ; u(t, x) = m}, or more precisely to describe the behavior of the energy
Aε(t, x, uε)Duε ·Duε for approximate solutions uε. In the elliptic case where the matrix is
independent of the space variable and with a diagonal blowing part the analysis was carried
out in [6] for L2 data where an L2 estimate for Aε(uε)Duε was derived. Then the authors
gave two formulations of problem of type (1.1), both of them using a sort of decoupling
behavior of the solution on the subset {u < m} and on the subset {u = m}. Indeed another
type of assumptions can be adopted when A depends on the x-variable and is not diagonal
as in [8, 9, 14] where one assumes that

∫m
0 β(s) ds = +∞, which forces the solution to avoid

the value m. Then it is easy to construct a solution u which is strictly less that m almost
everywhere in (0, T ) × Ω (that is meas{u = m} = 0) (see also Section 6) and to show, at
least for L2 data, that Aε(t, x, uε)Duε ·Duε → A(t, x, u)Du ·Du in L1((0, T ) × Ω). Indeed
this is due to the fact that no energy can concentrate on the set {u = m}. For L1 data, the
same results hold true with uε and u replaced by any truncation Tk(u

ε) and Tk(u) (see the
definition of Tk in Section 1.1).

In the present paper, we focus on the case where A(t, x, u) is not diagonal,
∫m
0 γ(s) ds <

+∞ and for L1 data both for elliptic and parabolic problems. If we assume that if f is
small in Lq for some appropriate q then one can prove that u < m almost everywhere (see
[14] for the elliptic case). Here we just assume that f is in L1 and then we have to handle
the set {u = m}. We give a notion of renormalized solutions (which is more precise in the
elliptic case than the one given in [6]) and we prove the existence of such solutions for L1

data. The formulation of the problem consists (as in [6]) in considering the equation on the
subset {u < m} on the one hand and in specifying the behavior of the energy near the subset
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{u = m} where the coefficients are singular on the other hand. For this point of view, it is at
least formally similar to the formulation for elliptic problems with measure data considered
in [7], where one distinguishes the equation where the measure is smooth and the behavior
of the energy where the measure is singular.

Let us point out that the energy condition that we obtain in the present paper is more
precise that the one stated in [6].

Let us also emphasize that another difficulty arising in the analysis of diffusion problems
with matrices satisfying (0.1) is the possible different behaviors of the functions β and γ
near m. Loosely speaking, the lower bound in (0.1) and the equation lead to estimates
on D(

∫ u
0 β(s) ds) in some Lp (depending on the smoothness of f) while the upper bound

of (0.1) naturally yields an estimate on the flux A(t, x, u)Du if one have an estimate on
D(
∫ u
0 γ(s) ds).

The paper is organized as follows. In Part 1 we investigate the elliptic case. In Section
1.1 we precise the assumptions on the data and we give the definition of a solution. Section
1.2 we state the existence theorem and we detail the proof in 3 steps. Part 2 is devoted to
the parabolic case. The definition of the solution is given in Section 2.1. Section 2.2 gives
the existence theorem together with its proof. Section 2.3 is devoted to concluding remarks
concerning the case

∫m
0 β(s) ds = +∞ and to a partial uniqueness result.

Part 1. The elliptic case

1.1. Assumption on the data and definition of a solution

Let Ω be a bounded domain of R (N ≥ 1) and m be a positive real number. We consider
the following nonlinear problem

(1.1)

{
− div(A(x, u)Du) = f in Ω;

u = 0 on ∂Ω,

where the assumptions on the data are detailed below. We assume that

f ∈ L1(Ω)(1.2)

A : (x, s) 7→ A(x, s)(1.3)

is a Carathéodory function from Ω × (−∞,m) into R
N×N
S , the set of N × N symmetric

matrices, such that there exist two positive function β and γ in C0((−∞,m)) which satisfy

lim
s→m−

β(s) = +∞; β(s) ≥ α > 0 ∀s ∈ (−∞,m)(1.4)
∫ m

0
γ(s) ds < +∞(1.5)

∀s ∈ (−∞,m), ∀ξ ∈ R
N β(s)|ξ|2 ≤ A(x, s)ξ · ξ ≤ γ(s)|ξ|2 a.e. in Ω.(1.6)

Remark 1.1. Indeed (1.4)–(1.6) imply that lims→m− γ(s) = +∞ and
∫m
0 β(s) ds < +∞.

The study of (1.1) under the assumption
∫m
0 β(s) ds = +∞ is easier (see [10, 14] and Section

2.3) because one can then show that there exists a solution such that u < m a.e. in Ω.

Assumptions (1.4), (1.6) imply that the (x, s)–dependent norm |A1/2(x, s)ξ| on R
N blows

up as s tends to m uniformly with respect to x in Ω.
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The following notations will be used throughout the paper: for any k ≥ 0, the truncation
at height k is defined by Tk(s) = max(−k,min(s, k)); for any integer n ≥ 1 and any positive
real number ε > 0, the functions θn, hn, Sn and bε are defined by

θn(s) =
1

n

(
Tn(s− Tn(s)), hn(s) = 1 − |θn(s)|,(1.7)

Sn(s) =

∫ s

0
hn(r) dr(1.8)

bε(r) =





1 if r ≤ m− 2ε,

1 − (r −m+ ε) if m− 2ε ≤ r ≤ m− ε,

0 if r ≥ m− ε.

(1.9)

1.1.1. Definition of a solution. In this subsection, we give the definition of a solution of
(1.1). This definition is more precise than the one used in [6] in the the sense that it localizes
the behavior of the energy near the zone where a solution may reach the value m (see [6]).

Definition 1.2. A measurable function u defined on Ω is a renormalized solution of (1.1) if

∀k ≥ 0; Tk(u) ∈ H1
0 (Ω),(1.10)

u ≤ m a.e. in Ω,(1.11)

∀k ≥ 0; 1l{−k<u<m}A(x, u)Du ∈ (L2(Ω))N , ,(1.12)

lim
n→+∞

1

n

∫

{−2n<u<−n}
A(x, u)Du ·Dudx = 0,(1.13)

for any function ϕ ∈ L∞(Ω) ∩H1(Ω) such that Dϕ = 0 a.e. on {x ∈ Ω ; u(x) = m} one has

lim
n→+∞

n

∫

{m−2/n<u<m−1/n}
A(x, u)Du ·Duϕ dx =

∫

{u=m}
fϕdx,(1.14)

for any function h ∈W 1,∞(R) such that supp(h) is compact and h(m) = 0, u satisfies

−div
[
h(u)A(x, u)Du

]
+ h′(u)A(x, u)Du ·Du = h(u)f in D′(Ω).(1.15)

Remark 1.3 (Comments on Definition 1.2). Conditions (1.10) and (1.13) are classical when
dealing with renormalized solutions for partial differential equations with L1 data (see [12,
13, 2]). The fact that u ≤ m almost everywhere in Ω is already explained (and is natural)
in [6]. By contrast, the condition (1.14) on the behavior of the energy near the subset
{x ∈ Ω ; u(x) = m} is an improvement (even in the case f ∈ L2(Ω)) of the one obtained in
[6] where it is written for ϕ ≡ 1. As mentioned in the introduction this type of condition on
the behavior of the energy near level set of u is also considered in [7].

The condition (1.12), which was established in [6] for a diagonal matrix A, is here strongly
linked to the fact that

∫m
0 γ(s) ds < +∞. The equation (1.15) and the conditions on the

function h are the same as in [6] to which we refer to claim that every term makes sense in
this equation. Let us first recall that since u ≤ m almost everywhere in Ω, the condition
h(m) = 0 in (1.15) may be equivalently replaced by h(r) = 0, ∀r ≥ m.
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1.2. Existence result

We establish the following theorem.

Theorem 1.4. Under the assumptions (1.2)–(1.6), there exists at least a solution of (1.1)
in the sense of Definition 1.2.

Proof. The main difficulty comes from the fact that the functions β and γ entering in the
lower and upper bounds of (1.6) may have different growths when s tends to m. Loosely
speaking, even if f ∈ L2(Ω), (and formally) if one uses

∫ u
0 β(s) ds as a test function in (1.1)

the lower bound in (1.6) leads to an estimate on
∫ u
0 β(s) ds in H1

0 (Ω). The upper bound in
(1.6) does not permit to obtain any kind of estimates on the fields A(x, u)Du1l{u<m} if no
assumption on the relative behavior of γ with respect to β near m is adopted.

As shown in the sequel, we will use a test function which mixes the two functions β and γ.
In some sense, this forces to introduce a specific regularization of A(x, s) which is different
from the one used in [6] (namely a truncation of A(x, s) near m).

For any ε > 0, we consider the field of matrices Aε(x, s) defined on Ω × R by

(1.16) Aε(x, s) = bε(s)A(x, s) + (1 − bε(s))β(m− ε)I,

where bε is the function defined in (1.9) and I is the identity matrix of R
N×N . Indeed (1.16)

we use the convention
bε(s)A(x, s) = 0 for s ≥ m− ε.

Due to assumptions (1.4) and (1.6), we have

(1.17) ∀s ∈ R; ∀ξ ∈ R
N α|ξ|2 ≤ Aε(x, s)ξ · ξ ≤

(
bε(s)γ(s) + max

r∈(0,m−ε)
β(r)

)
|ξ|2.

Using classical result on renormalized solutions for quasi-linear elliptic problems (see e.g.
[7, 12, 13]) and (1.17), the following regularized problem admits at least one solution uε

(1.18)

{
− div(Aε(x, uε)Duε) = f in Ω;

uε = 0 on ∂Ω.

Recall that the sequence uε satisfies the following properties (see again [7, 12, 13] )

Tk(u
ε) ∈ H1

0 (Ω), ∀k ≥ 0,(1.19)

lim
n→+∞

1

n

∫

{n<|uε|<2n}
Aε(x, uε)Duε ·Duε dx = 0,(1.20)

for any function h ∈W 1,∞(R) such that supp(h) is compact

−div
[
h(uε)Aε(x, uε)Duε

]
+ h′(uε)A(x, uε)Duε ·Duε = h(uε)f in D′(Ω).(1.21)

In order to show that, for a subsequence still indexed by ε, uε converges to a solution u of
the problem in the sense of Definition 1.2, we first introduce the two sequences of auxiliary
functions

(1.22) vε =

∫ (uε)+

0

(
γ(s)bε(s) + (1 − bε(s))β(m− ε)) ds

and

(1.23) wε =

∫ (uε)+

0

(
β(s)bε(s) + (1 − bε(s))β(m− ε)) ds.
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Remark that, since γ(s) ≥ β(s) ≥ α for any s ∈ (−∞,m), we have

(1.24) α(uε)+ ≤ wε ≤ vε a.e. in Ω

and

(1.25) vε ≤ max
s∈(0,m−ε)

γ(s)(uε)+ a.e. in Ω.

Then because of (1.19), vε and wε satisfy Tk(v
ε) ∈ H1

0 (Ω) and Tk(w
ε) ∈ H1

0 (Ω) with

DTk(v
ε) = 1l{vε<k}

[
γ(uε)bε(u

ε) + (1 − bε(u
ε))β(m− ε)

]
DTk/α(uε)+(1.26)

DTk(w
ε) = 1l{wε<k}

[
β(uε)bε(u

ε) + (1 − bε(u
ε))β(m− ε)

]
DTk/α(uε)+(1.27)

a.e. in Ω. In order to shorten the notation, we set for ε > 0

(1.28) Gε(r) =

∫ r+

0

(
γ(s)bε(s) + (1 − bε(s))β(m− ε)

)
ds,

which is the Lipschitz-continuous monotone function such that

(1.29) vε = Gε(uε).

The proof is now divided into 3 steps.
Step 1. A priori estimates and pointwise convergence of uε.

All the estimates derived below are obtained through (1.18)-(1.21) with a classical tech-
nique (at least as far as a reader which is familiar with renormalized solutions is concerned).
It consists in choosing h = hp in (1.21), then in plugging a test function which is bounded
and with a gradient equal to a monotone function of DTl(u

ε) (as this is the case in (1.26),
(1.27)) and then to pass to the limit in the obtained result making use of (1.20) (with p in
place of n) when p tends to +∞. It means that using formally such test functions directly
in (1.18) is a licit process. We refer to [7, 12, 13] if necessary.

Choosing first Tk(u
ε) in this process (i.e. h = hp with Tk(u

ε) as a test function and letting
p→ +∞ for fixed k and ε), we first obtain the classical estimate (see (1.4), (1.6))

α

∫

Ω
|DTk(u

ε)|2 dx ≤ k‖f‖L1(Ω),(1.30)

(Aε(x, uε))1/2DTk(u
ε) is bounded in (L2(Ω))N ,(1.31)

for any k ≥ 0 and uniformly in ε.
From (1.30) we deduce with a classical argument (see e.g. [12]) that, for a subsequence

still indexed by ε,

uε −→ u a.e. in Ω,(1.32)

Tk(u
ε) −→ Tk(u) weakly in H1

0 (Ω),(1.33)

as ε tends to 0, where u is a measurable function defined on Ω which is finite a.e. in Ω (and

which belongs to W 1,q
0 (Ω), 1 ≤ q < N/(N − 1)).

To prove that u is less or equal to m is an easy task which is performed exactly as in [6]:
when choosing T+

2m(uε) − T+
m(uε) instead of Tk(u

ε) in the above process and by using the
definition (1.16) of Aε, one obtain

β(m− ε)

∫

Ω
|DT+

2m(uε) −DT+
m(uε)|2 dx ≤ m‖f‖L1(Ω).
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Then in view of (1.32) and with the help of Poincaré’s inequality together with the fact that
β(m− ε) → +∞ as ε tends to 0, we deduce that

T+
2m(u) − T+

m(u) = 0 a.e. in Ω,

that is

(1.34) u ≤ m a.e. in Ω.

Let us now take Tn(wε− (uε)−) as a test function in (1.21) (with h = hp and then passing
to the limit as p goes infinity), we obtain

∫

Ω
Aε(x, uε)Duε ·DTn(wε − (uε)−) dx ≤ n‖f‖L1(Ω).

Since the support of wε and (uε)− are disjoint, we deduce that, using also (1.27)

(1.35)

∫

Ω
1l{wε<n}

[
β(uε)bε(u

ε) + (1 − bε(u
ε)
]
Aε(x, uε)D(uε)+ ·DTn/α((uε)+) dx

+

∫

Ω
1l{(uε)−<n}A

ε(x, uε)D(uε)− ·DTn((uε)−) ≤ n‖f‖L1(Ω).

Now the definition (1.16) of Aε together with assumption (1.6) show that

β(s)bε(s)|ξ|
2 + (1 − bε(s))β(m− ε)|ξ|2 ≤ Aε(x, s)ξ · ξ,

for any s ∈ R; any ξ ∈ R
N and a.e. in Ω.

Then (1.16), (1.27) and (1.35) yield

(1.36)

∫

Ω
|DTn(wε)|2 dx+ α

∫

Ω
|DTn((uε)−)|2 dx ≤ n‖f‖L1(Ω),

which in turn implies (using again the fact that wε and (uε)− have disjoint supports)

(1.37) min(1, α)

∫

Ω
|DTn(wε − (uε)−)|2 dx ≤ n‖f‖L1(Ω).

Poincaré’s inequality and (1.37) lead to

n2meas{x ∈ Ω ; |wε − (uε)−| > n} ≤ Cn‖f‖L1(Ω),

where C does not depend on n and ε, and we obtain that

(1.38) lim
n→+∞

sup
ε
{x ∈ Ω ; |wε − (uε)−| > n} = 0.

To obtain the analog of (1.38) with vε in place of wε, we use the assumption
∫m
0 γ(s) ds <

+∞. Indeed

(1.39) vε = wε +

∫ (uε)+

0
(γ(s) − β(s))bε(s) ds ≤ wε +

∫ m

0
(γ(s) − β(s)) ds,

where
∫m
0 (γ(s) − β(s)) ds < +∞ by (1.5). It follows that (1.38) implies that

(1.40) lim
n→+∞

sup
ε
{x ∈ Ω ; |vε − (uε)−| > n} = 0.

Another consequence of (1.36) is that (for a subsequence) wε converges almost everywhere
in Ω to a measurable function w which is finite almost everywhere in Ω. Then (1.39), in
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which (uε)+ can be replaced by Tm((uε)+) (because of the definition of bε), shows that (for
a subsequence)

(1.41) vε −→ v a.e. in Ω,

where v = w +
∫ u+

0 (γ(s) − β(s)) ds, because Tm((uε)+) → u+ a.e. in Ω since u ≤ m a.e. in
Ω. Indeed v is a measurable positive function which is finite almost everywhere in Ω. Let
us point out that the definitions (1.9) of bε and (1.22) of vε, together with the convergences
(1.32) and (1.41), show that

v =

∫ u+

0
γ(s) ds a.e. in {x ∈ Ω ; u(x) < m},(1.42)

w =

∫ u+

0
β(s) ds a.e. in {x ∈ Ω ; u(x) < m},

but we do not know if this relations hold true on the subset {x ∈ Ω ; u(x) = m}.
Now we choose θn(vε − (uε)−) as a test function in (1.21), it gives

1

n

∫

{n≤|vε−(uε)−|≤2n}
Aε(x, uε)Duε ·D(vε − (uε)−) dx ≤

∫

{|vε−(uε)−|>n}
|f |dx.

Using now f ∈ L1(Ω) and (1.40) we obtain

(1.43) lim
n→+∞

sup
ε

1

n

∫

{n≤|vε−(uε)−|≤2n}
Aε(x, uε)Duε ·D(vε − (uε)−) dx = 0.

Remark that the condition (1.43) is the analog of the standard one (i.e. for a matrix A(x, s)
defined and continuous for s ∈ R) upon replacing (uε)+ by vε.

To end this step we show below that the flux Aε(x, uε)Duε is bounded in (L2(Ω))N on
the subsets where vε − (uε)− is truncated. To this end we plug the test function Tk(v

ε) in
(1.21). We obtain using (1.26)

(1.44)

∫

{|vε|<k}
Aε(x, uε)Duε ·

[
bε(u

ε)γ(uε)+ (1− bε(u
ε))β(m− ε)

]
D(uε)+ dx ≤ k‖f‖L1(Ω).

Now remark that (1.6) and the definition (1.16) of Aε(x, s) leads to

(1.45) Aε(x, s)ξ · ξ ≤
[
bε(s)γ(s) + (1 − bε(s))β(m− ε)

]
|ξ|2

for any s ∈ R, any ξ ∈ R
N and a.e. in Ω. Using (1.45) with ξ =

[
Aε(x, uε)

]1/2
D(uε)+ in

(1.44) yields ∫

Ω
1l{vε<k}|A

ε(x, uε)D(uε)+|2 dx ≤ k‖f‖L1(Ω),

and then for any k ≥ 0

(1.46) 1l{vε<k}A
ε(x, uε)D(uε)+ is bounded in (L2(Ω))N

uniformly in ε. Now, since 1l{|vε−(uε)−|<k} = 1l{0≤vε<k}+1l{−k<uε<0} a.e. in Ω, the continuous
character of A(x, s) for s ∈ (−∞, 0] and estimate (1.30) show that for any k ≥ 0

(1.47) 1l{|vε−(uε)−|<k}A
ε(x, uε)Duε is bounded in (L2(Ω))N

uniformly in ε.

Step 2. Weak limit of the fields and proof of 1l{−k<u<m}A(x, u)Du ∈ (L2(Ω))N .



8 D. BLANCHARD, O. GUIBÉ AND H. REDWANE

We first use the estimates (1.31) and (1.47) to extract another subsequence, still indexed
by ε, such that (recall that supp(hn) ⊂ [−2n, 2n]),

(1.48)
(
Aε(x, uε)

)1/2
DTk(u

ε) −→ Xk weakly in (L2(Ω))N ,

and

(1.49) hn(vε − (uε)−)Aε(x, uε)Duε −→ ψn weakly in (L2(Ω))N ,

as ε tends to 0, where for any k ≥ 0 and n ≥ 1, Xk ∈ (L2(Ω))N and ψn ∈ (L2(Ω))N .
Next we identify ψn on the subset where u < m and to this end we use the same technique

as in [3]. Let h be a C∞(R)–function such that supp(h) is compact in (−M, l) with l < m
and M > 0. Then using the fact that h(s)Aε(x, s) = h(s)A(x, Tl(s

+)− TM (s−)) for ε small
enough and the convergences (1.32), (1.33), (1.41), we have
(1.50)

h(uε)hn(vε − (uε)−)Aε(x, uε)Duε −→ h(u)hn(v − u−)A(x, u)Du weakly in (L2(Ω))N ,

as ε tends to 0 and where Du stands for DTl(u
+) −DTM (u−). It follows from (1.49) and

(1.50) that

(1.51) ψn = hn(v − u−)A(x, u)Du a.e. in {x ∈ Ω ; u(x) < m}

since l < m and M are arbitrary. Let us point out that to obtain (1.50) and then (1.51),
it is sufficient to know that vε pointwise converges to v one the subset {x ∈ Ω ; u(x) < m}
(this will be used in the parabolic case).

Now, remark that on the subset {x ∈ Ω ; u(x) < m}, we have 0 ≤ v =
∫ u+

0 γ(s) ds <∫m
0 γ(s) ds, and then for n >

∫m
0 γ(s) ds, hn(v − u−) = hn(−u−) on {x ∈ Ω ; u(x) < m}. It

follows that from (1.51)

(1.52) ψn = hn(−u−)A(x, u)Du a.e. in {x ∈ Ω ; u(x) < m},

which in turn implies that

(1.53) 1l{−k<u<m}A(x, u)Du ∈ (L2(Ω))N .

We now identify Xk. To this end, proceeding exactly as for ψn above, we first have for any
k ≥ 0

(1.54) hn(vε − (uε)−)Aε(x, uε)DTk(u
ε) −→ ψk

n weakly in (L2(Ω))N

as ε tends to 0 with

(1.55) ψk
n = hn(v − u−)A(x, u)DTk(u) a.e. in {x ∈ Ω ; u(x) < m}

Then, for n > max(k,
∫m
0 γ(s) ds) one has hn(v − u−)DTk(u) = DTk(u) a.e. in {x ∈

Ω ; u(x) < m}. It follows that

(1.56) ψk
n = A(x, u)DTk(u) a.e. in {x ∈ Ω ; u(x) < m}

for n > max(k,
∫m
0 γ(s) ds).

Secondly, we write
(1.57)

hn(vε − (uε)−)
(
Aε(x, uε)

)1/2
DTk(u

ε) = hn(vε − (uε)−)
(
Aε(x, uε)

)−1/2
Aε(x, uε)DTk(u

ε)
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and we use the pointwise convergence of uε to obtain
(
Aε(x, uε)

)−1/2
→
(
A(x, u)

)−1/2
a.e.

in Ω (with indeed (A(x, u))−1/2 = 0 on the subset {x ∈ Ω ; u(x) = m}). Passing to the limit

in (1.57) as ε tends to 0 (remark that
∣∣(Aε(x, uε))−1/2ξ

∣∣2 ≤ |ξ|2/α) gives using (1.54)
(1.58)

hn(vε−(uε)−)
(
Aε(x, uε)

)1/2
DTk(u

ε) −→
(
A(x, u)

)−1/2
ψk

n weakly in (L2(Ω))N as ε tends to 0.

Now for n > max(k,
∫m
0 γ(s) ds),

(
A(x, u)

)−1/2
ψk

n = 1l{u<m}

(
A(x, u)

)1/2
DTk(u) a.e. in Ω,

because of (1.56) in the the subset {x ∈ Ω ; u(x) < m} and the equality is trivial in {x ∈

Ω ; u(x) = m} since both
(
A(x, u)

)−1/2
and DTk(u) are equal to 0. In view of (1.48) and

(1.58) we deduce that

(1.59) Xk = 1l{u<m}

(
A(x, u)

)1/2
DTk(u) a.e. in Ω.

Step 3. End of the proof.
We choose h(r) = hn(Gε(r) − r−) in (1.21) (recall that this is licit because h ∈W 1,∞(R)

and supp(h) ⊂ [−2n, 2n/α]). Then let z be an element of L∞(Ω) ∩H1
0 (Ω). Plugging z as a

test function in (1.21) with h defined above, we obtain using (1.29)

(1.60)

∫

Ω
hn(vε − (uε)−)Aε(x, uε)Duε ·Dz dx

=

∫

Ω
fhn(vε − (uε)−)z dx+

∫

Ω
zAε(x, uε)Duε ·Dhn(vε − (uε)−) dx.

First recall that the convergences (1.32) and (1.41) give
∫

Ω
fhn(vε − (uε)−)z dx −→

∫

Ω
fhn(v − u−)z dx

as ε tends to 0.
Then, setting

ω(n) = sup
ε

1

n

∫

{n<|vε−(uε)−|<2n}
Aε(x, uε)Duε ·D(vε − (uε)−) dx,

we deduce that from (1.49), upon extracting another subsequence of ε, still denoted by ε

− ω(n)‖z‖L∞(Ω) ≤ lim
ε→0

∫

Ω
hn(vε − (uε)−)Aε(x, uε)DuεDz dx

−

∫

Ω
fhn(v − u−)z dx ≤ ω(n)‖z‖L∞(Ω).

Now hn(v − u−) → 1 a.e. in Ω as n tends to +∞ (recall that both u and v are finite a.e. in
Ω) while ω(n) → 0 as n tends to +∞ (see (1.43)), it follows that

(1.61) lim
n→+∞

lim
ε→0

∫

Ω
hn(vε − (uε)−)Aε(x, uε)DuεDz dx =

∫

Ω
fz dx.

From (1.61), we will deduce that u satisfies (1.13)–(1.15) and the strong convergence of the
energy.
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Firstly choose z = h(u)ϕ where h ∈W 1,∞(R) has a compact support and satisfies h(m) =
0 and ϕ ∈ C∞

0 (Ω). By (1.33) we have h(u)ϕ ∈ H1
0 (Ω)∩L∞(Ω). Then, (1.49) and (1.61) lead

to

(1.62) lim
n→+∞

∫

Ω
ψnD(h(u)ϕ) dx =

∫

Ω
fh(u)ϕ dx.

Using now the identification (1.52) of ψn, it follows that, for k ≥ 0 such that supp(h) ⊂
[−k, k] and n ≥ k

ψnD[h(u)ϕ] = ψnh(u)Dϕ+ ψnϕDh(Tk(u))

= 1l{u<m}A(x, u)D[h(u)ϕ] a.e. in Ω

(1.63)

because h(m) = 0 and Dh(Tk(u)) = 0 a.e. on the subset {x ∈ Ω ; u(x) = m} (since
Tk(u) ∈ H1

0 (Ω)).
From (1.62) and (1.63), we obtain that

∫

Ω
1l{u<m}A(x, u)Du ·D[h(u)ϕ] dx =

∫

Ω
fh(u)ϕ dx

for any ϕ ∈ C∞
0 (Ω). This shows that (1.15) is satisfied in D′(Ω)

Secondly, we choose z = θp(−u
−) (see (1.7)) for a fixed integer p ≥ 1 and we obtain

(1.64) lim
n→+∞

∫

Ω
ψnDθp(−u

−) dx =

∫

Ω
fθp(−u

−) dx.

Using the identification of ψn as above, it gives∫

Ω
A(x, u)Du ·Dθp(−u

−) dx =

∫

Ω
fθp(−u

−) dx

and, then letting p tends to +∞

lim
p→+∞

1

p

∫

{−2p<u<−p}
A(x, u)Du ·Dudx = 0,

since again u is finite a.e. in Ω, and (1.13) is established.
Thirdly to obtain (1.14), we take zp = (1− b1/p(u

+))ϕ where p is a fixed integer ≥ 1 (see

(1.9)) and ϕ ∈ H1(Ω) ∩ L∞(Ω) is such that Dϕ = 0 a.e. in {x ∈ Ω ; u(x) = m}. Indeed
‖zp‖L∞(Ω) ≤ ‖ϕ‖L∞(Ω) and

Dzp = p1l{m−2/p<u<m−1/p}Duϕ+
(
1 − b1/p(u

+)
)
Dϕ

so that Dzp = 0 a.e. on {x ∈ Ω ; u(x) = m}. It follows that from (1.61)

(1.65) p

∫

Ω
1l{m−2/p<u<m−1/p}A(x, u)Du ·Duϕ dx

+

∫

Ω

(
1 − b1/p(u

+)
)
1l{u<m}A(x, u)Du ·Dϕdx

=

∫

Ω
f
(
1 − b1/p(u

+)
)
ϕ dx.

Now, as p tends to +∞,
(
1 − b1/p(u

+)
)
→ 1l{u=m} a.e. in Ω and (1.65) gives

lim
p→+∞

p

∫

Ω
1l{m−2/p<u<m−1/p}A(x, u)Du ·Duϕ dx =

∫

Ω
f1l{u=m}ϕ dx

which is (1.14).
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Finally, in order to prove the strong convergence of the energy we choose z = Tk(u). The
relation (1.61) gives as above (remark that DTk(u) = 0 a.e. in {x ∈ Ω ; u(x) = m})

lim
n→+∞

∫

Ω
ψnDTk(u) dx =

∫

Ω
fTk(u) dx.

The identification (1.52) of ψn then leads to

lim
n→+∞

∫

Ω
hn(−u−)1l{u<m}A(x, u)Du ·DTk(u) dx =

∫

Ω
fTk(u) dx

and then for n > k

(1.66)

∫

Ω
1l{u<m}A(x, u)DTk(u) ·DTk(u) dx =

∫

Ω
fTk(u) dx

for any k ≥ 0.
Indeed, recalling the process that leads to (1.30) and passing to the limit first as p→ +∞

and then as ε tends to 0, using the pointwise convergence of uε, permits to obtain the
classical convergence

(1.67) lim
ε→0

∫

Ω
Aε(x, uε)DTk(u

ε) ·DTk(u
ε) dx =

∫

Ω
fTk(u) dx.

From the identification (1.59) of Xk we deduce from (1.66) and (1.67) that for any k ≥ 0

(1.68)
(
Aε(x, uε)

)1/2
DTk(u

ε) −→ 1l{u<m}

(
A(x, u)

)1/2
DTk(u) strongly in (L2(Ω))N ,

as ε tends to 0.
Remark that (1.68) implies that for any k ≥ 0

Tk(u
ε) −→ Tk(u) strongly in H1

0 (Ω), as ε tends to 0.

The proof of Theorem 1.4 is achieved. �

Part 2. The parabolic case

2.1. Assumption on the data and definition of a solution

The second part of the paper is devoted to investigate a parabolic version of (1.1) namely
the problem

(2.1)





∂u

∂t
− div[A(t, x, u)Du] = f in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u(t = 0) = u0 in Ω,

where now T > 0 and

f ∈ L1((0, T ) × Ω);(2.2)

u0 ∈ L1(Ω) and u0 ≤ m a.e. in Ω;(2.3)

A : (t, x, s) → A(t, x, s) is a Carathéodory function from (0, T ) × Ω ×

(−∞,m) into R
N×N
S , such that there exists two positive functions β and

γ in C0((−∞,m)) which satisfy (1.4), (1.5) and

(2.4)

∀s ∈ (−∞,m), ∀ξ ∈ R
N , β(s)|ξ|2 ≤ A(t, x, s)ξ · ξ ≤ γ(s)|ξ|2 a.e. in (0, T ) × Ω.(2.5)

We denote by Q the set (0, T ) × Ω. We use the following definition of a solution of (2.1).
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Definition 2.1. A function u in L∞(0, T ;L1(Ω)) is a renormalized solution of (2.1) if

∀k ≥ 0, Tk(u) ∈ L2(0, T ;H1
0 (Ω));(2.6)

u ≤ m a.e. in Q;(2.7)

∀k ≥ 0, 1l{−k<u<m}A(t, x, u)Du ∈ (L2(Q))N(2.8)

lim
n→+∞

1

n

∫

{−2n<u<−n}
A(t, x, u)Du ·Dudxdt = 0;(2.9)

for any ϕ ∈ C∞
0 ([0, T ))

lim
n→+∞

n

∫

{m−2/n<u<m−1/n}
ϕA(t, x, u)Du ·Dudxdt =

∫

{u=m}
fϕdxdt.(2.10)

∀S ∈ W 2,∞(R) such that supp(S′) is compact and S′(m) = 0, ∀ϕ ∈ W 1,∞(Q) such that
ϕ(T ) = 0 and S′(0)ϕ = 0 on ∂Ω, u satisfies

(2.11) −

∫

Q
ϕtS(u) dxdt−

∫

Ω
ϕ(0)S(u0) dx

+

∫

Q
A(t, x, u)Du ·D[S′(u)ϕ] dxdt =

∫

Q
fS′(u)ϕ dxdt

Remark 2.2 (Comments on Definition 2.1). Conditions (2.6) and (2.9) are classical in the
framework of renormalized solutions. Indeed (2.7) and (2.10) is the analog of (1.11) and
(1.14) in the elliptic case, and due to (2.2), (2.4) and (2.6) every term in (2.11) makes sense.
Let us point out that the main difference between Definition 1.2 and 2.1 is that (2.10) is
analog to (1.14) but with ϕ ∈ C∞

0 ([0, T )) which does not depend on the variable x. Actually
we are not able to prove (2.10) with any function ϕ ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q) such that
Dϕ = 0 a.e. in {(t, x) ; u(t, x) = m} because of a lack of regularity on u with respect to t in
the parabolic case. Then Definition 2.1 is less precise that Definition 1.2.

Moreover remark that, since we are dealing with homogeneous Dirichlet condition (u = 0
on (0, T ) × ∂Ω), the condition S′(u)ϕ ∈ L2(0, T ;H1

0 (Ω)) just rewrites as S′(0)ϕ = 0 on
(0, T ) × ∂Ω (indeed S′(u)ϕ ∈ L2(0, T ;H1(Ω)) by (2.6)).

2.2. Existence result

We prove the following result

Theorem 2.3. Under the assumptions (2.2)–(2.5), there exists at least a solution of (2.1)
in the sense of Definition 2.1.

Proof of Theorem 2.3. We proceed through the same approximation process as in the proof
of Theorem 1.4 and define Aε(t, x, s) by the expression given in (1.16) (with A(t, x, s) in
place of A(x, s)). Due to (1.17), the approximate problem

(2.12)





∂uε

∂t
− div[Aε(t, x, uε)Duε] = f in Q,

uε = 0 on (0, T ) × ∂Ω,

uε(t = 0) = u0 in Ω,
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admits at least a renormalized solution (see e.g. [4, 5]). Recall that such a solution satisfies

uε ∈ L∞(0, T ;L1(Ω))(2.13)

∀k ≥ 0; Tk(u
ε) ∈ L2(0, T ;H1

0 (Ω))(2.14)

lim
n→+∞

1

n

∫

{n<|uε|<2n}
Aε(t, x, uε)Duε ·Duε dxdt = 0;(2.15)

∀S ∈ W 2,∞(R) such that supp(S′) is compact, ∀ϕ ∈ W 1,∞(Q) such that ϕ(T ) = 0 and
S′(uε)ϕ ∈ L2(0, T ;H1

0 (Ω)), uε satisfies

(2.16) −

∫

Q
ϕtS(uε) dxdt−

∫

Ω
ϕ(0)S(u0) dx

+

∫

Q
Aε(t, x, uε)Duε ·D[S′(uε)ϕ] dxdt =

∫

Q
fS′(uε)ϕ dxdt

In order to prove that, for a subsequence still indexed by ε, the sequence uε converges to a
solution in the sense of Definition 2.1 we proceed in 5 Steps.

Step 1. A priori estimates
Let us define the two sequences vε and wε through the formulae (1.22) and (1.23) (now

vε and wε are defined on Q). Since (1.24) and (1.25) still hold true (see assumptions (2.4)
and (2.5)), (2.6) implies that Tk(v

ε) ∈ L2(0, T ;H1
0 (Ω)), Tk(w

ε) ∈ L2(0, T ;H1
0 (Ω)) and

DTk(v
ε) = 1l{vε<k}

[
γ(uε)bε(u

ε) + (1 − bε(u
ε))β(m− ε)

]
DTk/α(uε)+(2.17)

DTk(w
ε) = 1l{wε<k}

[
β(uε)bε(u

ε) + (1 − bε(u
ε))β(m− ε)

]
DTk/α(uε)+(2.18)

a.e. in Q.
The techniques used to derive all the estimates contained in this section is similar to the

one used in the elliptic case. It consists in choosing S′(r) = h′p(r)Z(r) in (2.16), where hp

is defined in (1.7) and where Z is a monotone bounded and Lipschitz continuous function

defined on R. The test function ϕ is always equal to ϕ = min
( (T−δ−t)+

δ , 1
)

(which is then
independent of x). Compared to the elliptic case, this means that the choice of the non linear
test function of uε is included in the function S and this is the advantage of the formulation
(2.16) : it has already used an integration by part (in time) formula (see Section 2 of [5]). In
this process, the parameter δ first tends to 0. Then we let p tends first to +∞ using (2.15),
for a fixed ε and a fixed function Z.

We begin with classical estimates by choosing S′(r) = hp(r)Tk(r) in (2.16) (that is Z(r) =
Tk(r)). We obtain

(2.19)
1

δ

∫ T−δ

T−2δ

∫

Ω

(∫ uε

0
hp(r)Tk(r) dr

)
dxdt

+

∫ T−2δ

0

∫

Ω
Aε(t, x, uε)Duε ·D[hp(u

ε)Tk(u
ε)] dxdt

≤ k
[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
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Letting δ tend to 0, it gives as soon as p > k

∫ T

0

∫

Ω
Aε(t, x, uε)DTk(u

ε) ·DTk(u
ε) dxdt

≤ k
[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
+
k

p

∫

{(t,x) ; p<|uε|<2p}
Aε(t, x, uε)Duε ·Duε dxdt.

Now for fixed ε and k we let p tends to +∞ and it yields using (2.15)

(2.20)

∫ T

0

∫

Ω
Aε(t, x, uε)DTk(u

ε) ·DTk(u
ε) dxdt ≤ k

[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
.

In view of (1.16) (which is now also uniform in t), we deduce from (2.20) that

(2.21) α

∫

Q
|DTk(u

ε)|2 dxdt ≤ k
[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
.

Remark that, replacing T by 0 < T ′ < T in the function ϕ, the inequality (2.19) also leads
to the classical estimate

(2.22) ‖uε‖L∞(0,T ; L1(Ω)) ≤ ‖f‖L1(Q) + ‖u0‖L1(Ω).

Now we choose S′(r) = hp(r)(T
+
2m(r) − T+

m(r)) in (2.16) and we proceed as above. After
letting δ and p tend to 0 and +∞ respectively, we obtain

∫

Q
Aε(t, x, uε)Duε ·D[T+

2m(uε) − T+
m(uε)] dxdt ≤ m

[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
.

Then, using the definition of Aε exactly as in the elliptic case, we deduce that

(2.23) β(m− ε)

∫

Q
|T+

2m(uε) − Tm(uε)|2 dxdt ≤ m
[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
.

Let us now define the Lipschitz-continuous monotone function Hε by

(2.24) Hε(r) =

∫ r+

0

(
β(s)bε(s) + (1 − bε(s))β(m− ε)

)
ds,

so that

(2.25) wε = Hε(uε) a.e. in Q.

We choose S′(r) = hp(r)Tn(Hε(r) − r−) in (2.16) and we obtain as above, and using (2.25)

(2.26)

∫

Q
Aε(t, x, uε)Duε ·DTn(wε − (uε)−) dxdt ≤ n

[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
.

In (2.26) we have used the fact that Tn(Hε(r)− r−) has a derivative with compact support
(see (1.24)). Proceeding now exactly as in the elliptic case (see (1.35), (1.37) and (1.38)),
we deduce that from (2.26)

lim
n→+∞

sup
ε

{
(t, x) ∈ Q ; |wε − (uε)−| > n

}
= 0(2.27)

and then

lim
n→+∞

sup
ε

{
(t, x) ∈ Q ; |vε − (uε)−| > n

}
= 0.(2.28)
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This last result permits to obtain the energy condition when vε − (uε)− is “large” through
setting S′(r) = hp(r)θn(Gε(r)− r−) in (2.16) which indeed gives (see the definition of Gε in
(1.28) and (1.29))

(2.29)
1

n

∫

{(t,x) ; n<|vε−(uε)−|<2n}
Aε(t, x, uε)Duε ·D(vε − (uε)−) dxdt

≤

∫

{(t,x) ; n<|vε−(uε)−|}
|f |dxdt+

∫

Ω

∫ |u0|

0

∣∣θn(Gε(r) − r−)
∣∣ dr dx.

As far as the first term of the right hand side of (2.29) is concerned, we use f ∈ L1(Q) and
(2.28) to obtain

lim
n→+∞

sup
ε

∫

{(t,x) ; n<|vε−(uε)−|}
|f |dxdt = 0.

For the second term, we recall that the support of Gε(r) and of r− are disjoints so that
∫

Ω

∫ |u0|

0

∣∣θn(Gε(r) − r−)
∣∣ dr dx ≤

∫

Ω

∫ |u0|

0
θn(Gε(r)) dr dx+

∫

{u0<−n}
|u0|dx.

Since u0 ≤ m almost everywhere in Ω and
∫ +∞
0 γ(s) ds < +∞ we first have

(2.30) sup
ε

∫

Ω

∫ |u0|

0
θn(Gε(r)) dr dx = 0,

for n >
∫ +∞
0 γ(s) ds, while

(2.31) lim
n→+∞

∫

{u0<−n}
|u0|dx = 0

because u0 ∈ L1(Ω).
In view of (2.29), (2.30) and (2.31), we conclude that

(2.32) lim
n→+∞

sup
ε

1

n

∫

{(t,x) ; n<|vε−(uε)−|<2n}
Aε(t, x, uε)Duε ·D(vε − (uε)−) dxdt = 0.

Remark that repeating the above argument with S′(r) = hp(r)θn(r) leads to

(2.33)
1

n

∫

{n<|uε|<2n}
Aε(t, x, uε)Duε ·Duε dxdt ≤

∫

Q
fθn(uε) dxdt+

∫

{|u0|>n}
|u0|dx.

To end this subsection, we derive the analog of (1.47) of the elliptic case. To this end, we
take S′(r) = hp(r)Tk(G

ε(r)) in (2.16) and this yields
∫

Q
Aε(t, x, uε)Duε ·DTk(v

ε) dxdt ≤ k
[
‖f‖L1(Q) + ‖u0‖L1(Ω)

]
.

Reproducing the arguments used in (1.44), (1.45), (1.46) of the elliptic case gives for any
k ≥ 0

(2.34) 1l{|vε−(uε)−|<k}A
ε(t, x, uε)Duε is bounded in (L2(Q))N

uniformly in ε.
Step 2. Pointwise convergence of uε.

Loosely speaking we consider separately the subset uε < m for which we use the equation
(2.16) and the subset uε ≥ m for which we use estimate (2.23).
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Let us first consider in (2.16) a function S ∈ W 2,∞(R) such that supp(S′) is compact in
(−∞,m). Then due to (2.21), we have

S(uε) is bounded in L2(0, T ;H1
0 (Ω)),

and

∂S(uε)

∂t
is bounded in L2(0, T ;H−1(Ω)) + L1(Q),

uniformly with respect to ε. With a classical argument relying on an Aubin’s type Lemma
(see e.g. [16] and [4]) it follows that there exists a subsequence of uε, still indexed by ε, such
that for any m > δ > 0

T+
m−δ(u

ε) → ϕδ a.e. in Q,(2.35)

(uε)− → ϕ− a.e. in Q,(2.36)

as ε tends to 0, where ϕδ is a nonnegative measurable function defined on Q with ϕδ ≤ m−δ
in Q for any δ and ϕ− is a non negative measurable function defined on Q.

Now remark that the sequence ϕδ is decreasing with respect to δ so that there exists a
positive measurable function ϕ+ defined on Q such that ϕ+ ≤ m a.e. in Q and

(2.37) ϕδ → ϕ+ a.e. in Q

as δ tends to 0. Moreover, because of (2.35),

(2.38) T+
m−δ(ϕ

+) = ϕδ

for any m > δ > 0 so that

(2.39) T+
m−δ(u

ε) → T+
m−δ(ϕ

+) a.e. in Q

for fixed m > δ > 0 as ε tends to 0. Indeed (2.39) implies that

(2.40) (uε)+ → ϕ+ a.e. in {(t, x) ∈ Q ; ϕ+ < m}.

To prove that the above pointwise convergence also holds true on {(t, x) ∈ Q ; ϕ+ = m}, we
use now the estimate (2.23), which shows that, extracting another subsequence,

(2.41) T+
2m(uε) − T+

m(uε) → 0 strongly in L1(Q) and a.e. in Q.

Then, from (2.39) and (2.41), we deduce that for any δ > 0

(2.42) T+
m−δ(u

ε) + T+
2m(uε) − T+

m(uε) → T+
m−δ(ϕ

+) a.e. in Q

as ε tends to 0. Since indeed
∣∣r+ − (T+

m−δ(r) + T+
2m(r) − T+

m(r))
∣∣ ≤ δ for r ≤ 2m, it follows

that, from (2.42)

(2.43) (uε)+ → ϕ+ a.e. in {(t, x) ∈ Q ; ϕ+(t, x) = m},

as ε tends to 0
In view of (2.36), (2.40) and (2.41) we finally conclude that

(2.44) uε → u a.e. in Q

as ε tends to 0 where the measurable function u = ϕ+ − ϕ− is such that

(2.45) u ≤ m a.e. in Q.
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Let us point out that we do not know if the sequence vε pointwise converges in Q in the
parabolic case (due to the lack of estimate on ∂vε

∂t ). But, indeed, in view of (2.44), we have

(2.46) vε → v =

∫ u+

0
γ(s) ds a.e. in {(t, x) ∈ Q ; u(t, x) < m},

as ε goes to 0.

Step 3. Weak convergences of the fields
Upon extracting another subsequence, (2.21) and (2.44) give

(2.47) DTk(u
ε) −→ DTk(u) weakly in L2(0, T ;H1

0 (Ω)),

as ε tends to 0 and (2.21) also shows that u is finite almost everywhere in Q. Now let us
point out that the identification of Xk and ψn performed in the elliptic case only use the
pointwise convergence of vε on the subset {u < m} (see the comment below the proof of
(1.50)–(1.51)). Then from (2.47) and estimates (2.20) and (2.34), we deduce that for any
k ≥ 0 and any n >

∫m
0 γ(s) ds (and for a subsequence)

Aε(t, x, uε)1/2DTk(u
ε) → 1l{u<m}A(t, x, u)1/2DTk(u) weakly in (L2(Q))N(2.48)

hn(vε − (uε)−)Aε(t, x, uε)Duε → ψn weakly in (L2(Q))N ,(2.49)

as ε tends to 0, where

(2.50) ψn = hn(−u−)A(t, x, u)Du a.e. in {(t, x) ∈ Q ; u(t, x) < m}.

Remark that for any k ≥ 0

(2.51) 1l{−k<u<m}A(t, x, u)Du ∈ (L2(Q))N .

Step 4. Strong convergence of the energy.
In this step we prove that the convergence in (2.48) is actually strong in (L2(Q))N . We

will use the technique developed by the first author and A. Porretta to deal with Stefan’s
type problems (see [5]). This method is simpler that the widely used on which relies on a
particular time regularization introduced in [11] and adapted to renormalized solutions in
[4].

In this subsection ξ denotes a function in C∞
0 ([0, T )) such that 0 ≤ ξ ≤ 1.

We first choose S′(r) = hn(r)Tk(r) and ϕ = ξ in (2.16) to obtain for k < n

(2.52)

∫

Q
Aε(t, x, uε)Duε ·DTk(u

ε)ξ dxdt ≤

∫

Q
fhn(uε)Tk(u

ε)ξ dxdt

+

∫

Q
ξt

∫ uε

0
hn(s)Tk(s) dsdxdt+

∫

Ω
ξ(0)

∫ u0

0
hn(s)Tk(s) dsdx

+
k

n

∫

{n<|uε|<2n}
Aε(t, x, uε)Duε ·Duε dxdt.
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We pass to the limit sup as ε tends to 0 in (2.52) for fixed n and k. In view of (2.44), this
gives

lim sup
ε→0

∫

Q
Aε(t, x, uε)Duε ·DTk(u

ε)ξ dxdt ≤

∫

Q
fhn(u)Tk(u)ξ dxdt

+

∫

Q
ξt

∫ u

0
hn(s)Tk(s) dsdxdt+

∫

Ω
ξ(0)

∫ u0

0
hn(s)Tk(s) dsdx

+ k lim sup
ε→0

1

n

∫

{n<|uε|<2n}
Aε(t, x, uε)Duε ·Duε dxdt.

In view of (2.33) and since u is finite almost everywhere in Q, we have

(2.53) lim
n→+∞

lim sup
ε→0

1

n

∫

{n<|uε|<2n}
Aε(t, x, uε)Duε ·Duε dxdt = 0.

Using the fact that u ∈ L∞(0, T ; L1(Ω)), (2.15) and (2.53), we pass to the limit as n tends
to +∞ and we obtain

(2.54) lim sup
ε→0

∫

Q
Aε(t, x, uε)Duε ·DTk(u

ε)ξ dxdt ≤

∫

Q
fTk(u)ξ dxdt

+

∫

Q
ξt

∫ u

0
Tk(s) dsdxdt+

∫

Ω
ξ(0)

∫ u0

0
Tk(s) dsdx.

Now we use S′(r) = hn(Gε(r+) − r−) in (2.16) (Gε is defined in (1.28)) and this leads to

(2.55) − ‖ϕ‖L∞(Q)
1

n

∫

{n<|vε−(uε)−|<2n}
Aε(t, x, uε)Duε ·D(vε − (uε)−) dxdt

≤ −

∫

Q
ϕt

∫ uε

0
hn(Gε(s) − s−) dsdxdt−

∫

Q
ϕ(0)

∫ u0

0
hn(Gε(s) − s−) dsdx

+

∫

Q
Aε(t, x, uε)Duε ·Dϕhn(vε − (uε)−) dxdt−

∫

Q
fhn(vε − (uε)−)ϕdxdt

≤ ‖ϕ‖L∞(Q)
1

n

∫

{n<|vε−(uε)−|<2n}
Aε(t, x, uε)Duε ·D(vε − (uε)−) dxdt.

We pass to the limit as ε tends to 0 in (2.55) for fixed n. To this end, first remark that for
n >

∫m
0 γ(s) ds

hn(Gε(s) − s−) → hn(−s−)1l{s<0} + hn(s+)1l{0≤s≤m}

as ε tends to 0. As a consequence of (2.44), it follows that

(2.56)

∫

Q
ϕt

∫ uε

0
hn(Gε(s) − s−) dsdxdt→

∫

Q
ϕt

[ ∫ −u−

0
hn(s) ds+ T+

m(u)
]
dxdt

and

(2.57)

∫

Ω
ϕ(0)

∫ u0

0
hn(Gε(s) − s−) dsdx→

∫

Ω
ϕ(0)

[ ∫ −u−

0

0
hn(s) ds+ T+

m(u0)
]
dx.

Secondly, with the help of (2.49) and (2.50)

(2.58)

∫

Q
Aε(t, x, uε)Duε ·Dϕhn(vε − (uε)−) dxdt→

∫

Q
ψnDϕdxdt.
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At last, remark that in contrast with the elliptic case, we dot not know here that the
sequence vε converges pointwise on the whole set Q. In order to control the term

∫
Q fhn(vε−

(uε)−)ϕ dxdt, we will use (2.28) and the inequalities

(2.59)

∫

Q
fϕdxdt− ‖ϕ‖L∞(Q)

∫

{|vε−(uε)−|>n}
|f |dxdt

≤

∫

Q
fhn(vε − (uε)−)ϕ dxdt

≤

∫

Q
fϕdxdt+ ‖ϕ‖L∞(Q)

∫

{|vε−(uε)−|>n}
|f |dxdt.

Setting

ω1(n) =
1

n
sup

ε

∫

{n<|vε−(uε)−|<2n}
Aε(t, x, uε)Duε ·D(vε − (uε)−) dxdt(2.60)

and

ω2(n) = sup
ε

∫

{|vε−(uε)−|>n}
|f |dxdt,(2.61)

and with the help of (2.45), (2.56), (2.57) and (2.58), we pass to the limit in (2.55) as ε
tends to 0 and it gives

(2.62) − ‖ϕ‖L∞(Q)(ω1(n) + ω2(n)) ≤ −

∫

Q
ϕt

[ ∫ −u−

0
hn(s) ds+ T+

m(u)
]
dxdt

−

∫

Ω
ϕ(0)

[ ∫ −u−

0

0
hn(s) ds+ T+

m(u0)
]
dx+

∫

{u(t,x)<m}
hn(v − u−)A(t, x, u)Du ·Dϕdxdt

+

∫

{u(t,x)=m}
ψnDϕdxdt−

∫

Q
fϕdxdt

≤ ‖ϕ‖L∞(Q)(ω1(n) + ω2(n)).

Now we choose for the test function ϕ the time regularization that is introduced in [5]. Let
u0j be a sequence of C∞

0 (Ω) which converges strongly to u0 in L1(Ω) and set u(t) = u0j for
t < 0. We set

ϕ = ξ
1

h

∫ t

t−h
Tk(u(τ)) dτ
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in (2.62). Indeed we have ϕ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(Q), ϕt ∈ L∞(Q) and ‖ϕ‖L∞(Q) ≤ k

(because 0 ≤ ξ ≤ 1). It gives (recall that ξ ∈ C∞
0 ([0, T )))

(2.63) − k(ω1(n) + ω2(n))

≤ −

∫

Q

∂

∂t

(
ξ
1

h

∫ t

t−h
Tk(u(τ)) dτ

)[∫ −u−

0
hn(s) ds+ T+

m(u)

]
dxdt

−

∫

Ω
ϕ(0)

[ ∫ −u−

0

0
hn(s) ds+ T+

m(u0)
]
dx

+

∫

{u(t,x)<m}
ξhn(v − u−)A(t, x, u)Du ·D

[1

h

∫ t

t−h
Tk(u(τ)) dτ

]
dxdt

+

∫

{u(t,x)=m}
ξψnD

[1

h

∫ t

t−h
Tk(u(τ)) dτ

]
dxdt

−

∫

Q
fξ

1

h

∫ t

t−h
Tk(u(τ)) dτ dxdt ≤ k(ω1(n) + ω2(n)).

In order to deal with the parabolic contribution in (2.62), we now apply Lemma 2.3 (p. 388)

of [5] with w = u, B(r) =
∫ −r−

0 hn(s) ds + T+
m(r), β = B(u), β0 = B(u0), w0 = u0j and

F (λ) = Tk(λ). It gives

(2.64) −

∫

Q

∂

∂t

(
ξ
1

h

∫ t

t−h
Tk(u(τ)) dτ

)[∫ −u−

0
hn(s) ds+ T+

m(u)

]
dxdt

−

∫

Ω
ϕ(0)

[ ∫ −u−

0

0
hn(s) ds+ T+

m(u0)
]
dx

≤ −

∫

Q
ξt

[(∫ −u−

0
hn(s) ds+ T+

m(u)
)1

h

∫ t

t−h
Tk(u(τ)) dτ

−
1

h

∫ t

t−h

(∫ u(τ)

0
T ′

k(r)
(∫ −r−

0
hn(s) ds+ T+

m(r)
)

dr dτ

)]
dxdt

−

∫

Ω
ξ(0)

[(∫ −u−

0

0
hn(s) ds+ T+

m(u0)
)
Tk(u0j) −

∫ u0j

0
T ′

k(r)
(∫ −r−

0
hn(s) ds+ T+

m(r)
)

dr

]
dx.
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Remark that, since supp(T ′
k) ⊂ [−k, k], for n large enough

∫ r
0 T

′
k(s)

∫ −r−

0 hn(s) ds = −
∫ r
0 T

′
k(s)s

− ds.
Then letting h tend to 0 in (2.64) leads to

(2.65) lim sup
h→0

(
−

∫

Q

∂

∂t

(
ξ
1

h

∫ t

t−h
Tk(u(τ)) dτ

)[∫ −u−

0
hn(s) ds+ T+

m(u)

]
dxdt

−

∫

Ω
ϕ(0)

[ ∫ −u−

0

0
hn(s) ds+ T+

m(u0)
]
dx

)

≤ −

∫

Q
ξt

[(∫ −u−

0
hn(s) ds+ T+

m(u)
)
Tk(u) −

∫ u

0
T ′

k(r)(−r
− + T+

m(r)) dr

]
dxdt

−

∫

Ω
ξ(0)

[(∫ u−

0

0
hn(s) ds+ T+

m(u0)
)
Tk(u0j) −

∫ u0j

0
T ′

k(r)(−r
− + T+

m(r)) dr

]
dx.

Now to pass to the limit in (2.63) as h tends to 0 and j tend to +∞, we use the fact that

1

h

∫ h

t−h
Tk(u(τ)) dτ −→ Tk(u) strongly in L2(0, T ;H1

0 (Ω))

and the inequality (2.65), it yields

(2.66) − k(ω1(n) + ω2(n))

≤ −

∫

Q
ξt

[(∫ −u−

0
hn(s) ds+ T+

m(u)
)
Tk(u) −

∫ u

0
T ′

k(r)(−r
− + T+

m(r)) dr

]
dxdt

−

∫

Ω
ξ(0)

[(∫ u−

0

0
hn(s) ds+ T+

m(u0)
)
Tk(u0) −

∫ u0

0
T ′

k(r)(−r
− + T+

m(r)) dr

]
dx

+

∫

{u(t,x)<m}
ξhn(v − u−)A(t, x, u)Du ·DTk(u) dxdt

+

∫

{u(t,x)=m}
ξψn ·DTk(u) dxdt−

∫

Q
fξTk(u) dxdt.

Remark that ψn1l{u=m}DTk(u) = 0 almost everywhere in Q so that the forth term in the
right hand side of (2.66) is equal to 0. In order to pass to the limit in (2.66) as n tends
to +∞, we first recall (2.28) and (2.32) so that ω1(n) → 0 and ω2(n) → 0 as n tends
to infinity (because f ∈ L1(Q)). Secondly we use hn(r) → 1 for any r and thirdly the

fact that on the subset {u(t, x) < m}, one has 0 ≤ v =
∫ u+

0 γ(s) ds <
∫m
0 γ(s) ds so that

hn(v − u−) = hn(−u−) as soon as n >
∫m
0 γ(s) ds. Then we obtain

(2.67) 0 ≤ −

∫

Q
ξt

[
(−u− + T+

m(u))Tk(u) −

∫ u

0
T ′

k(r)(−r
− + T+

m(r)) dr

]
dxdt

−

∫

Ω
ξ(0)

[(
− u−0 + T+

m(u0)
)
Tk(u0) −

∫ u0

0
T ′

k(r)
(
− r− + T+

m(r)
)
dr

]
dx

+

∫

{u(t,x)<m}
ξA(t, x, u)Du ·DTk(u) dxdt−

∫

Q
fξTk(u) dxdt.
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Now since u ≤ m almost everywhere in Q, we have

(2.68)
(
− u− + T+

m(u)
)
Tk(u) −

∫ u

0
T ′

k(r)
(
− r− + T+

m(r)
)
dr

= uTk(u) −

∫ u

0
T ′

k(r)r dr =

∫ u

0
Tk(r) dr

almost everywhere in Q, and the same relation holds true with u0 in place of u since u0 ≤ m
also. Inserting (2.68) in (2.67) and comparing the obtained result with (2.54) yield for any
k ≥ 0

(2.69) lim sup
ε→0

∫

Q
ξAε(t, x, uε)Duε ·DTk(u

ε) dxdt

≤

∫

Q
ξ1l{u<m}A(t, x, u)Du ·DTk(u) dxdt.

Then, in view of (2.48), we conclude that for any k ≥ 0 any 0 < τ < T

(2.70)
(
Aε(t, x, uε)

)1/2
DTk(u

ε) −→ 1l{u<m}

(
A(t, x, u)

)1/2
DTk(u) strongly in (L2((0, τ) × Ω))N ,

as ε tends to 0.
Indeed we can deduce from (2.70) (as in the elliptic case) that for any k ≥ 0

(2.71) Tk(u
ε) −→ Tk(u) strongly in L2((0, τ);H1

0 (Ω))

as ε tends to 0.

Step 5. End of the proof.

Let us point out that we can not end the proof as in the elliptic case from (2.62), essentially
because the function u is not smooth enough with respect to t to allow the choices ϕh(u)
or ϕ(1 − b1/p(u

+)) as test functions in (2.62) which have to be in W 1,∞(Q). This is exactly
the reason why the energy condition (2.10) is weaker than in the elliptic case.

We first prove that (2.11) holds true. To this end, consider a function S ∈ C∞(R) such
that S′ has a compact support in (−∞,m) and denote by k and k′ two positive real numbers
such that k′ < m and supp(S′) ⊂ (−k, k′). For any ϕ ∈ C∞

0 ([0, T )×Ω) such that S′(0)ϕ = 0
on (0, T ) × ∂Ω, by (2.16), the function uε satisfies

(2.72) −

∫ T

0

∫

Ω
ϕtS(uε) dxdt−

∫

Ω
ϕ(0)S(u0) dx

+

∫ T

0

∫

Ω
S′′(uε)Aε(t, x, uε)Duε ·Duεϕ dxdt

+

∫ T

0

∫

Ω
S′(uε)Aε(t, x, uε)Duε ·Dϕdxdt =

∫ T

0

∫

Ω
fS′(uε)ϕ dxdt.

We pass to the limit as ε tends to 0 in (2.72). Since supp(S′) ⊂ (−k, k′), uε can be replaced
by TL(uε) with L = max(k, k′) in the second and third terms of (2.72). Then, due to (2.44)
and (2.70),

S′′(uε)Aε(t, x, uε)DTL(uε) ·DTL(uε) −→ S′′(u)A(t, x, u)DTL(u) ·DTL(u)
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strongly in L1((0, τ) × Ω) as ε tends to 0, for any τ < T such that ϕ(t) ≡ 0 for t ≥ τ . Now
since k′ < m,

S′(uε)Aε(t, x, uε)DTL(uε) −→ S′(u)A(t, x, u)DTL(u)

weakly in (L2(Q))N as ε tends to 0, because of (2.44) and (2.71). At least, S(uε) strongly
converges to S(u) in L1(Q) and S′(uε) converges to S′(u) weakly-∗ in L∞(Q), as ε tends
to 0. This shows that (2.11) is satisfied for any function S as above. Now, using the fact
that 1l{−k<u<m}A(t, x, u)Du ∈ (L2(Q))N (see (2.51)), a standard approximation process of

the function S implies that (2.11) still holds true for any S ∈ W 2,∞(R) such that S′ has a
compact support and with S′(r) = 0, r ≥ m, or equivalently with S′(m) = 0 since u ≤ m
almost everywhere in Q (see the comments on definition 2.1). It remains to prove (2.9)
and (2.10). Upon recalling (2.70), the proof of (2.9) is classical in view of the estimate

(2.53) (remark that
(
Aε(t, x, uε)

)1/2
DT2n(uε) → 1l{u<m}

(
A(t, x, u)

)1/2
DT2n(u) weakly in

(L2(Q))N as ε tends to 0). To establish (2.10), we proceed as in Step 2 of this subsection
and choose S′(r) = hp(r)

(
1 − b1/n(r+)

)
(for p, n integers ≥ 1) in (2.16). Passing first in the

limit as p tends to +∞ as usual, we obtain for any ϕ ∈ C∞
0 ([0, T )) (remark that S′(0) = 0

so that ϕ can be independent of x in (2.16)),

(2.73) −

∫

Q
ϕt

∫ uε

0

(
1 − b1/n(s+)

)
ds

+ n

∫

{m−2/n<uε<m−1/n}
ϕAε(t, x, uε)Duε ·Duε dxdt

=

∫

Q
f
(
1 − b1/n((uε)+)

)
ϕ dxdt+

∫

Ω
ϕ(0)

∫ u0

0

(
1 − b1/n(s+)

)
dsdx.

In view of (2.44) and (2.70), we pass to the limit as ε tends to 0 in (2.73) to obtain

(2.74) −

∫

Q
ϕt

∫ u

0

(
1 − b1/n(s+)

)
ds+ n

∫

{m−2/n<u<m−1/n}
ϕA(t, x, u)Du ·Dudxdt

=

∫

Q
f
(
1 − b1/n(u+)

)
ϕ dxdt+

∫

Ω
ϕ(0)

∫ u0

0

(
1 − b1/n(s+)

)
dsdx.

To pass to the limit as n tends to +∞ in (2.74), we just remark that since u ≤ m almost
everywhere in Q and u0 ≤ m in Ω,

∫ u

0

(
1 − b1/n(s+)

)
ds −→ 0 strongly in L1(Q),

∫ u0

0

(
1 − b1/n(s+)

)
ds −→ 0 strongly in L1(Ω),

(
1 − b1/n(u+)

)
−→ 1l{u=m} a.e. in Q and weakly-∗ in L∞(Q)

as n tends to +∞.
Then we get from (2.74)

lim
n→+∞

n

∫

{m−2/n<u<m−1/n}
ϕA(t, x, u)Du ·Dudxdt =

∫

Q
f1l{u=m}ϕ dxdt,

for any function ϕ ∈ C∞
0 ([0, T )) and (2.10) is established.

The proof of Theorem 2.3 is now complete. �



24 D. BLANCHARD, O. GUIBÉ AND H. REDWANE

2.3. Concluding remarks

The above analysis is restricted to the case where
∫m
0 γ(s) ds < +∞, which indeed implies

that
∫m
0 β(s) ds < +∞. Let us point out that if

∫m
0 β(s) ds = +∞, then the analysis is

simpler because one can construct a solution u of (1.1) or (2.1) (i.e. in the elliptic or parabolic
case) such that u < m almost everywhere. Moreover it is not necessary to introduce the
specific approximation Aε of A given in (1.16) and the sequences vε and wε. Indeed, if
Aε(x, s) = A(x, Tm−1/ε(s

+) − s−), the approximate problems corresponding to (1.18) or

(2.12) admit at least a renormalized solution uε. Setting βε(r) = β(Tm−1/ε(s
+) − s−) and

using Tn(
∫ uε

0 βε(s) ds) as a test function in these approximate problems gives that, (by the
same arguments as in Step 1 of the proof of Theorem 1.4 and Step 2 of the proof of Theorem
2.3)

(2.75) sup
ε>0

meas
{∫ uε

0
βε(s) ds > n

}
→ 0

as n tends to +∞.
Now, remark that the proof of the pointwise convergence of uε in Part 1 or Part 2 does

not use the assumption
∫m
0 γ(s) ds < +∞. Then, we still have uε → u almost everywhere

and u ≤ m. But on the set {u = m},
∫ uε

0 βε(s) ds→ +∞ as ε tends to 0, so that in view of

(2.75) we obtain meas{u = m} = 0. Another difference (with the case
∫m
0 β(s) ds < +∞)

is that when
∫m
0 β(s) ds = +∞, we cannot expect to have 1l{u<m}A(x, u)Du = A(x, u)Du

belongs to (L2)N and then equations (1.15) and (2.11) must be written with supp(h) and
supp(S′) compact in (−∞,m).

Let us conclude this section with a few remarks on a partial uniqueness result of a solution
in the sense Definition 1.2. We prove below that if u and v are two solutions of (1.1) such that
{u = m} = {v = m} then u = v (see a similar situation in [3]). We restrict our comments
to the elliptic case and for non negative solutions (i.e. for f ≥ 0) to focus on the use of
condition (1.14) on the energy (see e.g. [15] and [2] for a few conditions on A(x, s) for s ≤ 0).

First if u ≥ 0 is solution then because of (1.12) the function β̃(u) =
∫ u
0 β(s) ds (defined by

β̃(u) =
∫m
0 β(s) ds on the subset {u = m}) belongs to H1

0 (Ω) and Dβ̃(u) = 1l{u<m}β(u)Du

almost everywhere in Ω (consider β̃(Tm−ε(u)) ∈ H1
0 (Ω) and let ε tends to 0). Secondly, if

we assume that β(s) = αγ(s) with α > 0, the matrix Ã(x, s) = A(x, s)/β(s) is uniformly
coercive and bounded because of assumptions (1.6). Equation (1.15) can be rewritten as

(2.76) −div
[
h(u)Ã(x, s)Dβ̃(u)

]
+ h′(u)A(x, u)Du ·Du = h(u)f in D′(Ω).

Now let us consider two solutions u and v of (1.1) such that {u = m} = {v = m}. The usual

technique to prove that u = v consists in plugging the test function (bδ(u)−bδ(v))TK(β̃(u)−

β̃(v)) in the difference of the equation for u and v written as (2.76) (see (1.9) for the definition

of bδ). Let us point out that since {u = m} = {v = m} we have DTK(β̃(u) − β̃(v)) = 0
almost everywhere on {u = m} and then by condition (1.14)

lim
n→+∞

n

∫

{m−2/n<u<m−1/n}
A(x, u)Du ·DuTK(β̃(u) − β̃(v)) dx = 0,
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with a similar equality with v in place of u. It follows that, using bδ(u) → 1l{u=m}, bδ(v) →
1l{v=m} as δ goes to 0 and because {u = m} = {v = m} that

∫

Ω

(
Ã(x, u)Dβ̃(u) − Ã(x, v)Dβ̃(v)

)
·DTK(β̃(u) − β̃(v)) dx = 0

for any K > 0. If we assume that the matrix field Ã(x, s) is uniformly Lipschitz continuous

with respect to β̃(s) then the standard method of [1] applies and leads to β̃(u) = β̃(v) almost
everywhere in Ω. Recalling the assumption {u = m} = {v = m}, it follows that u = v almost
everywhere in Ω.
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