A New Flexible Approach to Estimate Highly Nonstationary Signals of Long Time Duration
Meryem Jabloun, François Léonard, Michelle Vieira, Nadine Martin

To cite this version:

HAL Id: hal-00112552
https://hal.science/hal-00112552
Submitted on 20 Dec 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A New Flexible Approach to Estimate the IA and IF of Nonstationary Signals of Long-Time Duration
Meryem Jabloun, Francois Leonard, Michelle Vieira, and Nadine Martin, Member, IEEE

Abstract—In this paper, we propose an original strategy for estimating and reconstructing monocomponent signals having a high nonstationarity and long-time duration. We locally apply to short-time duration intervals the strategy developed in our previous work about nonstationary short-time signals. This paper describes a nonsequential time segmentation that provides segments whose lengths are suitable for modeling both the instantaneous amplitude and frequency locally with low-order polynomials. Parameter estimation is done independently for each segment by maximizing the likelihood function by means of the simulated annealing technique. The signal is then reconstructed by merging the estimated segments. The strategy proposed is sufficiently flexible for estimating a large variety of nonstationarity and specifically applicable to high-order polynomial phase signals. The estimation of a high-order model is not necessary. The error propagation phenomenon occurring with the known approach, the higher ambiguity function (HAF)-based method, is avoided. The proposed strategy is evaluated using Monte Carlo noise simulations and compared with the Cramér–Rao bounds (CRBs). The signal of a songbird is used as a real example of its applicability.

Index Terms—Cramér–Rao bounds (CRBs), maximum likelihood, nonlinear modulation, nonstationary signal, polynomial phase signal, simulated annealing, time frequency (TF).

I. INTRODUCTION

This paper is concerned with the commonly encountered problem of estimating signals that show nonlinear amplitude and frequency (AM/FM) modulations and are embedded in an additive noise. These nonstationary signals are widely used in various applications including radar, sonar, mechanics, speech, biomedicine, and communications [1]–[5].

The observed noisy signal $y[n]$ is defined as follows:

$$y[n] = s[n] + e[n], \quad \text{for} \quad 0 \leq n \leq N - 1$$

$$s[n] = A[n]e^{j\Phi[n]}$$

where $s[n]$ represents the noise-free signal and $e[n]$ a white complex Gaussian noise with zero mean and unknown variance σ^2. N is the total sample number and j is the complex number verifying $j^2 = -1$. $A[n]$ and $\Phi[n]$ are the instantaneous amplitude (IA) and phase, respectively. The instantaneous frequency (IF) is defined by a numerical derivation of $\Phi[n]$

$$F[n] = \frac{1}{2\pi}(\Phi[n + 1] - \Phi[n]).$$

The IA and IF are both time-varying functions and IF verifies $0 < F[n] < (F_S/2)$ in relation to Shannon’s theorem, F_S being the sampling frequency. To remove the ambiguity in the definition of the amplitude and phase of the signal model (2), we assume $\Phi[n]$ is nondiscontinuous and $A[n]$ is real and positive [6].

A. Overview of Existent Techniques

The estimation of nonstationary signals, in particular, polynomial phase signals (PPS), received considerable attention and many techniques have already been proposed [7]–[16]. We present some of the current techniques based on polynomial modeling. The IA and phase are approximated by

$$A[n] = \sum_{m=0}^{P} \alpha_m n^m, \quad \text{for} \quad 0 \leq n \leq N - 1$$

$$\Phi[n] = \sum_{m=0}^{Q} \beta_m n^m,$$

where α_m and β_m are the real coefficients of the decomposition of $A[n]$ and $\Phi[n]$, respectively. P and Q are approximation orders of $A[n]$ and $\Phi[n]$, respectively, and need to be estimated in many application fields.

In [7], the higher ambiguity function (HAF), which is a suboptimal method compared with the maximum-likelihood procedure, was used to estimate PPS. The HAF technique involves transforming the Qth-order PPS given by (4) into a single harmonic at a frequency proportional to the Qth-order coefficient β_Q (4). The basic idea comes from the fact that $(\Phi[n] - \Phi[n - \tau])$ is a $(Q - 1)$th-order polynomial, τ being a constant lag. When the estimation $\hat{\beta}_Q$ is computed, the algorithm is repeated for $y[n]$ multiplied by $e^{-j\beta_Q n^Q}$ which becomes a $(Q - 1)$th PPS. This compensation induces error propagation from the highest order coefficient to the lowest one and it drastically reduces the HAF estimation performance. Moreover, a compromise is necessarily made between the order determination of the PPS model and available signal-to-noise ratios (SNRs). Many techniques based on the HAF are proposed to improve the estimation [15], [17]–[19].

In [10] and [20], a Bayesian approach for estimating monocomponent PPS was proposed. In [10], the amplitude was considered constant and a simultaneous estimation of the polynomial phase parameters and the approximation order Q was achieved. A reversible jump Monte Carlo Markov chain method based on a Metropolis–Hastings algorithm is employed to sample from the marginal posterior distribution of the model parameters.
parameters. This technique is efficient to estimate linear or quadratic FM signals; however, the estimators become very biased when a higher order PPS with a time-varying amplitude is considered.

On the other hand, other techniques which were recently published do not suppose polynomial modeling [21], [22]. In [22], the tracking of the frequency and amplitude evolution is performed from the spectrogram and particle filtering. This supposes a frequency/amplitude evolution model with respect to time \(A_n = A[n] \) and \(F_n = F[n] \). The unknown parameters \(A_n \) and \(F_n \) and the component number \(K_n \) are estimated online. The method is applied to multicomponent signal with linear FM, the amplitude being constant. This method enables the estimation of the signal component number and the detection of their birth and death at high SNRs. However, adapting this algorithm for processing highly nonlinear AM/FM signals needs to determine the adequate proposal density.

B. Contribution of the Paper

We propose a new flexible approach for fitting a wide variety of signals with highly nonlinear AM/FM defined as in (2). It is based on a recent analysis of signals having short-time duration and nonlinear AM/FM [23]–[25]. In those papers, the IA and IF are both approximated by low-order polynomials. A discrete orthonormal polynomial base is derived and contributes in the performance enhancement. The model parameters are estimated using a maximum-likelihood procedure known to possess optimality property. As this leads to a multivariate nonlinear equation to be minimized, a stochastic optimization technique based on the simulated annealing method is used. The variances of the mean-square-estimation errors (MSEs) of the model parameters are close to the derived Cramér–Rao bounds (CRBs) (which are functions of the SNRs). Results obtained through the proposed method show better accuracy at low SNRs (0 dB) when compared to those obtained by using the HAF-based method. Motivated by the efficiency and the optimality of this method, the estimation of highly nonlinear AM/FM signals of long-time duration is addressed in this paper.

Unlike (4), which considered polynomial models requiring a large number of parameters, we use a local approach. The main contribution of this paper is a strategy for extracting short-time segments from a long-time signal. This extraction is not ordered through time; the length, the position, and the number of segments are estimated using any nonnegative time-frequency distribution (TFD) without cross terms. In the proposed algorithm, we start by finding short-time segments whose lengths are suitable for approximating locally both the IA and IF by low-order polynomial models. The lengths vary from one segment to another and segments can overlap.

Fig. 1 illustrates the principle with a signal whose IA and IF are third- and seventh-order polynomials, respectively. Examples of such intervals are shown in Fig. 1. We proceed as described in [24] for the parameter estimation.

II. LOCAL AM/FM MODEL

Let us consider short-duration intervals (segments) where low-order polynomial functions are appropriate for approximating uniformly both IF and IA according to Weierstrass’ theorem. Examples of such intervals are shown in Fig. 1. We proceed as described in [24] for the parameter estimation.

A. Local AM/FM Polynomial Modeling

On each segment, the local IA \(a[k] \), IF \(f[k] \), and instantaneous phase \(\psi[k] \) are defined by

\[
\begin{align*}
 a[k] &= A[n_0 + k], \\
 f[k] &= F[n_0 + k], \\
 \psi[k] &= \Phi[n_0 + k],
\end{align*}
\]

for \(-L/2 \leq k \leq L/2 \) (5)

where \(n_0 \) indicates the segment center, \(k = n - n_0 \) is the time referenced to the segment center, and \(L+1 \) is the segment length assumed to be odd in order to simplify the algorithm implementation. \(a[k] \) and \(f[k] \) verify the same constraints as \(A[n] \) and \(F[n] \)

\[
0 < a[k] \quad \text{and} \quad 0 < f[k] < \frac{F_s}{2}.
\]

Fig. 1. Examples of short-time segments adapted to a second-order polynomial modeling: (a) IF and (b) the signal. (S1), (S2), and (S3) are three segments of 55, 63, and 51 samples, respectively. The IA and IF are third- and seventh-order polynomials, respectively.
The local polynomial model is then defined by
\[a[k] = \sum_{m=0}^{p} a_m g_m[k] \]
\[f[k] = \sum_{m=0}^{q} f_m g_m[k] \]
\[\varphi[k] = \varphi_0 + 2\pi \left(\sum_{k=-\frac{L}{2}}^{\frac{L}{2}} f[T] - \sum_{k=-\frac{L}{2}}^{\frac{L}{2}} f[T] \right) \quad (7) \]
where \(p \) and \(q \) are the polynomial approximation orders of \(a[k] \) and \(f[k] \), respectively, and \(g_m[k] \) is a discrete polynomial of order \(m \). The real coefficients of the decomposition of \(a[k] \) and \(f[k] \) on the discrete polynomial base \(\{g_m[k]\}_{m=0,...,\max(p,q)} \) are \(a_m \) and \(f_m \), respectively. In order to reduce the estimation error \([26]\), \(\varphi[k] \) is referenced to the segment center; we have \(\varphi[0] = \varphi_0 \) where \(\varphi_0 \) is the original phase related to the considered segment. Therefore, we have to estimate for each local model a vector of \(p + q + 3 \) parameters
\[\theta = [a_0, a_1, \ldots, a_p, \varphi_0, f_0, f_1, \ldots, f_q]^T. \quad (8) \]
To reduce the number of parameters to be estimated for each segment, the polynomial approximation orders \(p \) and \(q \) are limited. The segment length \(L+1 \) is selected in Section III-A such as \(p \) and \(q \) satisfying
\[0 \leq \min(p,q) \leq \max(p,q) \leq 3. \quad (9) \]

In \([24]\), we calculated an orthonormal discrete polynomial base \(g_m^D[k] \) by applying the Gram–Schmidt procedure. The first three polynomials are reproduced in Section A of the Appendix. The comparison with other polynomial bases shows that the orthonormality property enhances the estimation efficiency by significantly reducing the parameter coupling. Recently, we found the base \(g_m^{DP}[k] \) is linearly related to the discrete Legendre polynomial one \(g_m^{LD}[k] \) \([27]\)
\[g_m^D[k] = (-1)^m g_m^{LD} \begin{bmatrix} k + \frac{L}{2} \end{bmatrix}. \quad (10) \]
\[g_m^{LD}[k] \text{ is given for } 0 \leq i \leq L+1 \text{ by } \]
\[g_m^{LD}[k] = \frac{1}{C_i^m} \sum_{u=0}^{m} (-1)^u \binom{m}{u} \binom{m}{u} \frac{i^u}{(L+1)^{i+u}} \quad (11) \]
where \(i^u = i(i-1) \cdots (i-u+1) \) is the backward factorial function of order \(u, (C_i^m)^2 = \binom{L+2m}{i+1} \binom{L+2m}{i+1} \) is the square of the scaling normalization coefficient, and \(\binom{m}{u} = m!/(u!(m-u)!) \) is the binomial coefficient.

B. Maximum-Likelihood Estimation

To benefit from the optimality, a maximum-likelihood procedure is locally used for parameter estimation. This is equivalent to minimization of the least-square (LS) function for Gaussian noises and thus results in the following nonlinear equation:
\[\hat{\theta} = \arg \min_{\theta} \ell_{LS}(\theta), \quad (12) \]
with
\[\ell_{LS}(\theta) = \sum_{k=\frac{-L}{2}}^{\frac{L}{2}} \left| y[k] - s[k] \right|^2. \quad (13) \]
\(y[k] \) and \(s[k] \) are the local noisy signal and the local noise-free signal, respectively
\[y[k] = y[n_0 + k], \quad s[k] = s[n_0 + k] = a[k]e^{j\varphi[k]}, \quad \text{ for } \frac{-L}{2} \leq k \leq \frac{L}{2}. \quad (14) \]
The LS function \(\ell_{LS}(\theta) \) is multidimensional and nonlinear with respect to \(\theta \). The estimation of \(\theta \) by direct minimization is extremely difficult and classical optimization techniques such as gradient descent, Gauss–Newton, and expectation–maximization (EM) algorithms do not ensure convergence to the global minimum in the presence of many local extrema. To overcome this problem, there is a variety of meta-heuristic approaches for escaping local extrema. We use the simulated annealing, which Monte Carlo simulations in \([23]\) and \([24]\) have shown perform well in terms of low bias and small MSEs. The main steps of the simulated-annealing-based algorithm are detailed in Section B of the Appendix.

III. TIME-SEGMENTATION STRATEGY

This section details the strategy used to obtain short-duration segments adapted to a low-order polynomial approximation for both the local IA and IF. The merging process of all local models is also described.

First, a rough approximation of \(F[n] \) denoted by \(F_0[n] \) is determined using any nonnegative TFD without cross terms \([28]\). Let us denote by \(S_y[n, \nu] \) the TFD of the noisy signal \(y[n] \) defined in the time \((n)\) and frequency \((\nu)\) domain. Since \(y[n] \) is a single component, the time-frequency (TF) plan is composed of one ridge of energy. This ridge creates a TF trajectory, which we consider as the IF approximation \(F_0[n] \)
\[\forall n = 0, \ldots, N-1 \quad F_0[n] = \arg \max_{\nu} \left| S_y[n, \nu] \right| \quad (15) \]
where \(\left| \right| \) is the modulus. There are then two main steps to perform the whole signal estimation.

A. Segment Extraction

To extract the first segment to be processed, the point of the signal with the highest energy content is located in the TF plan by finding the peak coordinates \(n_0 \) and \(\nu_0 \) of the TFD energy
\[[n_0, \nu_0] = \arg \max_{n, \nu} \left| S_y[n, \nu] \right|. \quad (16) \]
Then, the time interval \([n_0 - (L/2), n_0 + (L/2)]\) is centered on this energy peak and the segment length \(L+1 \) is selected in such a way that a simple LS fitting of \(F_0[n] \) on \([n_0 - (L/2), n_0 + (L/2)]\), with a low-order polynomial \((9)\), is possible with a reasonable LS error. This step is detailed in Table I. Then, the estimation of the local frequency \(f[k] \) and amplitude \(a[k] \) is carried out as described in Section II using \((7)\) and \((12)-(14)\). The local decomposition of \(F_0[n] \) is on the chosen polynomial base provides
TABLE I
SEGMENT DEFINITION

- Set $L = E[r_0^{-1}], E[.]$ being the nearest even number. n_0 is given by (16).
- Select a set of successively increasing window lengths $L \leq L_1 \leq L_2 \leq \ldots \leq L_{Max}$, where $L_{i+1} = L_i + 2$. Let $S_1, S_2, \ldots, S_{Max}$ be the segments centered around n_0, whose lengths are $L_1, L_2, \ldots, L_{Max}$ respectively.
 1. Start with $i = 1$ and $q = 0$.
 2. Fit $F_0[n]$ on S_i, with a polynomial $P_{q\varphi}[n]$ of order q, by simple LS fitting. Evaluate LS error $e_{LS}(S_i) = \sum_{n \in S_i} |p_{q\varphi}[n] - F_0[n]|^2$.
 3. If $e_{LS}(S_i) \leq \epsilon$ increase $i = i + 1$. Otherwise increase $q = q + 1$. Stop if $q > 3$ or $L_i > L_{Max}$.
 4. S_{i-1} and $q = q-1$ are the segment and the frequency approximation-order outputs respectively.

Remark: By experiment, we recommend using $L_1 \geq 15$, $L_{Max} \leq 61$ and $\epsilon \approx 0.1$ for most investigated signals.

a good initialization of the model parameters (see Section B of the Appendix). To find the next segment, we remove $\hat{s}_i[k]$ the estimate of $s_i[k]$ (14) from the noisy signal $y[n]$:

$$y_n[n] = y[n] - \hat{s}_i[n - n_0], \quad \text{for } n = n_0 - \frac{L}{2}, \ldots, n_0 + \frac{L}{2}$$

else.

We compute $S_{n}[n, \nu]$ the TFD of the residue $y[r]$, which provides the next energy peak (16). Then, the length of a new segment is determined in the same way as the first one (Table 1).

The time position and length of a new segment are dependent from the residue $y[r]$ but the LS estimation of local models (12) is not.

Experience has shown that the segment length should at least be about 15 samples, to ensure low bias and a good estimation efficiency when applying the simulated annealing algorithm. To reduce the algorithm execution time, the segment length should be limited in average to 60 samples; the global minimum is easier to find in a small segment.

B. Merging of Segments

Since the presented process is nonsequential in time and overlaps are allowed between segments, local phases and local amplitudes are merged by means of a weighted sum. The procedure of computing the weights for the merging procedure is explicit in Section C of the Appendix. For this purpose, we use Hamming windows for which the significant weight (see Fig. 2) is placed at the segment center where the error estimation is minimized [24], [25]. Contrary to the Hanning window, the sides of the Hamming window are not equal to zero, which ensures that the estimation on the segment sides is not completely neglected. Since the whole phase estimate results in a weight mean of all the local phases estimated, this ensures respect for the phase continuity constraint assumed in Section I. We proceed similarly for the local amplitudes. Nevertheless, if the difference between the estimated phases in two successive segments is higher than a given threshold Γ_φ we consider that a phase discontinuity occurs and the algorithm is consequently stopped.

This threshold is an upper bound on the difference between the estimated phases in two successive segments to ensure the phase continuity. $\Gamma \varphi$ is experimentally determined and it is typically equal to $\pi / 6$.

C. Discussion

Three particularities of the segmentation strategy contribute considerably to reducing the estimation errors. The first is that this nonsequential strategy starts by estimating the parts of the
signal that have the highest energy content. The estimation process on segments where the SNR is locally very low does not affect segments where the SNR is locally high. The second particularity is that segment estimation is done independently of the other segments, thus avoiding error propagation between segments. Making the points of the signal that have the highest energy content coincide with the center of the segments helps to reduce the estimation error [26]. This, of course, constitutes the third particularity. Moreover, this strategy is easy to implement and presents a tradeoff between accuracy and low central processing unit (CPU) time.

Fig. 3(a) illustrates the nonsequential time segmentation of the signal given in Fig. 1. In Fig. 3(b), the estimated IF and IA of this signal are plotted. Since the SNR is time-varying because the signal changes, we indicate a mean SNR equal to 15 and 7 dB (—) and 20 and 8 dB (· · ·) versus original curves (—).}

IV. PERFORMANCE ANALYSIS

In this section, the proposed algorithm is applied to PPS signals and to nonpolynomial AM/FM signals. Comparisons with CRBs and the HAF-based method are also discussed. We use the spectrogram as a nonnegative TFD for the segmentation strategy.

A. CRBs

We give the appropriate CRBs to study statistically the algorithm performance when applied to PPS. We, therefore, consider a signal given by (2), where IA and the phase are given by (4). Three types of CRBs are defined: classical, local, and global CRBs.

1) Classical CRB: In [29], the CRBs denoted by CRB_C are derived for polynomial amplitudes and frequencies. The CRBs are time-varying functions and they make use of the entire signal samples

$$\text{CRB}_C(A[n]) = \frac{\sigma^2}{2} b^T (A^T A)^{-1} b$$

$$\text{CRB}_C(F[n]) = \frac{\sigma^2}{2} h^T (\Phi^T \Phi)^{-1} h$$

for $0 \leq n \leq N - 1$

with

$$A = [b_0 e^{j\phi_0}, b_1 e^{j\phi_1}, \ldots, b_P e^{j\phi_P}]$$

$$\Phi = [j b_0 s_1, b_0 s_1, \ldots, b_P s_P]$$

$$b = [1, n, n^2, \ldots, n^m]^T$$

$$h = \frac{1}{2\pi} \left[0, 1, 2n, \ldots, Q n^{(Q-1)}\right]^T$$

$$b_m = [0^m, 1^m, 2^m, \ldots, (N-1)^m]^T$$

$$e^{j\phi} = [e^{j\phi_0}, e^{j\phi_1}, \ldots, e^{j\phi_P}]^T$$

$$s = [s[0], s[1], \ldots, s[N-1]]^T.$$

(· · ·) denotes element-by-element multiplication. $(\cdot)^T$ and $(\cdot)^*$ are the transpose and the transpose conjugate. Φ and A are matrices of $N \times (Q+1)$ and $N \times (P+1)$ size, respectively. It is important to note that the CRB formulas use the variance value σ^2 of the noise (1) and the order values of polynomial approximations of both the amplitude and the phase $(P$ and Q). Therefore, orders are assumed to be known when we calculate these bounds.

2) Local CRB: In [23], we calculate the appropriate CRBs, denoted by $\text{crb}_L(\theta)$, for local-model parameters θ (8) of short-time signals whose amplitudes and frequencies are modeled as given by (7), and for an orthonormal discrete polynomial base

$$\text{crb}_L(\theta) = \frac{\sigma^2}{2} \begin{pmatrix} I_P & 0 \\ 0 & (\Phi^T \Phi)^{-1} \end{pmatrix}$$

where

$$\Phi_L = j[\eta_{-1} s_1, \eta_{-1} s_2, \ldots, \eta_{-1} s_P]$$

$$\eta_m = \left[\eta_m \left[- \frac{L}{2} \right], \ldots, \eta_m \left[\frac{L}{2} \right] \right]^T$$

$$s = \left[s_1 \left[- \frac{L}{2} \right], \ldots, s_1 \left[\frac{L}{2} \right] \right]^T.$$
I_p is the identity matrix of $p \times p$ size and Φ_l is a matrix of $(L + 1) \times (q + 1)$ size. $s_l[k]$ is defined in (12) while $\eta_m[k]$ is given by $\eta_m[k] = 1$ and

$$\eta_m[k] = 2\pi \left(\sum_{k=-\frac{L}{2}}^{\frac{L}{2}} g_m[k] - \sum_{k=-\frac{L}{2}}^{0} g_m[k] \right)$$

for $k \in [-(L/2), (L/2)]$ and $0 \leq m \leq q$. $g_m[k]$ is introduced in (7) and σ^2 is the local noise variance on the segment considered. In [23] and [24], we show the MSE of the parameter estimation (θ) closed to the crbs (θ) (20) for SNR varying from 0 to 25 dB whereas the HAF-obtained results are far from these CRBs.

The CRBs of the local IA $a[k]$ and IF $f[k]$ are written as

$$\text{CRB}_I(a[k]) = \frac{\sigma^2}{2} \sum_{m=0}^{p} g_m[k]^2$$

$$\text{CRB}_I(f[k]) = \frac{\sigma^2}{2} \eta \begin{bmatrix} \Phi_l \end{bmatrix}^{-1} \eta$$

(22)

where $\eta = [0, g_l[k], g_1[k], \ldots, g_q[k]]^T$. In this paper, the CRBs are used to study the estimation accuracy of local models related to the considered segments.

3) Global CRB: Finally, by assuming that each segment estimation process is independent of the others, we derive new available bounds,\(^2\) that we call CRBG, which take into account the segmentation process and the smoothing strategy (weighted sum; see Section III-B).

CRBs (18) differ basically from CRBs (22), and hence from CRBGs, through the model definitions. CRBs are established for the whole polynomial-phase model (4), in which the entire set of samples and a canonical-polynomial base are used. As known [30], these bounds are the lowest and are very optimistic in highly nonlinear cases whereas CRBGs are calculated using CRBs (22), and consequently, they are better adapted to the estimation process we developed. In fact, CRBs are derived for a local (and short-time) signal model (7), for which the local frequency is modeled instead of the local phase and an orthonormal polynomial base is used. Moreover, the local phase is obtained by a numerical integration of the local frequency and the phase origin is placed at the middle of the segment.

In Section IV-B, CRBG is shown to be the closest to the estimation variance. Nevertheless, we should be careful when we compare these bounds since they are derived for unbiased estimators, and it is well known that biased estimators can reach lower bounds. Biased estimates can have smaller MSEs than unbiased ones.

B. Simulation Results

In this section, the proposed algorithm is evaluated using numerical examples including a high-order PPS and a nonpolynomial phase signal. Obtained results are compared with the appropriate CRB. A comparison with the results obtained using the HAF-based method is also given.

\(^2\)CRBG are calculated using the following formula, where x and z are independent estimators and $(\alpha, \beta) \in \mathbb{R}^2$

$$\text{variance}(ax + \beta z) = \alpha^2 \text{variance}(x) + \beta^2 \text{variance}(z).$$

Fig. 4. Noisy signal of (23) and the time-varying SNR (decibels) which is computed by using a sliding window of 20 samples.

Fig. 5. MSE of the IA and IF estimates of the signal of (23) at a mean SNR = 15 dB: (–––) HAF-based method, (– – –) the proposed method, (– – –) the CRB, and (– – – –) the CRBG.

1) Comparison With the HAF Technique: We consider a signal given by (1) where IF and IA are third- and second-order polynomials written as follows:

$$F[n] = 0.2483 - 7.6474 \times 10^{-4} (n-250) + 1.6796 \times 10^{-7} (n-250)^2 + 1.2057 \times 10^{-8} (n-250)^3$$

$$A[n] = 0.9747 - 0.0058 (n-250) + 3.9447 \times 10^{-5} (n-250)^2,$$

for $0 \leq n < 500$.

(23)

The noisy signal and the time-varying SNR are reported in Fig. 4. The phase $\Phi[0]$ is considered to be known only when using the HAF-based method; otherwise, this method is unable to correctly estimate the phase $\Phi[n]$ and the amplitude $A[n]$. The mean SNR is 15 dB and the sample number is 500. We run 100 Monte Carlo noise simulations. The variance of the AM and FM estimation is depicted in Fig. 5 and compared to the CRBG and CRBF which is calculated using (18) with the true order values. We can see that the proposed algorithm performs better than the HAF. Indeed, the HAF-based method presents a
large bias and MSE especially on the right side of the window, whereas the SNR is low (see Fig. 4). Since the phase \(\phi [0] \) is given for the HAF-based method, the biases are not high on the left side of the time window.

Moreover, a comparison between the proposed approach and the HAF-based method including CRB curves as a function of the mean SNRs is shown in Fig. 6. We run 100 Monte Carlo noise simulations for each mean SNR and we evaluate the estimates of the amplitude parameter \(\alpha_1 \) and the phase one \(\beta_2 \) (4) of the signal given by (23). Fig. 6 shows that both the MSE and bias of these parameter estimates are smaller with the approach proposed than with the HAF method.

Before discussing the deviation from the different CRBs, we apply the HAF-based method to the signal shown in Fig. 1, which was randomly generated. Readers are reminded that the IA is a cubic polynomial and IF is a seventh-order polynomial (the phase order is 8). The sample number is 500 and the sampling frequency is 1 Hz. Since the HAF is an estimation technique that provides the phase coefficient sequentially, the efficiency decreases as far as the order of the polynomial approximation increases. The errors of the highest order coefficient affect the estimate of the lower order coefficients. In Fig. 7, we can see this propagation phenomenon error.

On the contrary, the local maximum-likelihood estimators, which are used in the algorithm proposed, require the joint estimation of all the phase and amplitude coefficients simultaneously. Using a discrete polynomial orthonormal base improves the estimation by decoupling the parameter estimation [23], [24]. Furthermore, error propagation is avoided since each segment is estimated separately. Consequently, when the signal displayed in Fig. 1 is processed by the proposed algorithm, better results are obtained, as shown in Fig. 8(a) and (b). The right column of Fig. 8(a) shows good performance at low SNR. The MSE, obtained in the estimation of FM and AM, and the biases are based on 50 Monte Carlo noise simulations for each mean SNR. A total of 11 segments are treated (see Fig. 3).

Naturally, this takes more execution time than the HAF-based method. The CRB_G and the CRB_P, see (18), computed using the true order values 7 and 3 of the polynomial FM and AM, respectively, are also depicted, at mean SNR equal to 15 and 7 dB.

To explain the differences in the performance over time and discuss the deviation from the CRBs, Fig. 9 shows a zoom of the right side of Fig. 8(a) for the time interval \([306, 456]\). Three more curves are superimposed. One curve is the CRB_P calculated for an FM polynomial order equal to 9 and that of an AM equal to 4. This serves to illustrate that, as shown in Fig. 9, under- or overevaluated orders modify the CRB_P behavior. We emphasize that it is not necessary to estimate these orders in order to employ the proposed approach, contrary to the techniques presented in Section I-A. The CRB_I from (22), related to each segment processed (three segments \([306, 368]\), \([347, 409]\), and \([394, 456]\)), are plotted. For each local model, the local CRB is calculated using both the appropriate low order (equal to two in this case) and the local SNR related to the considered segments (reported in Fig. 9). We note that the SNR is not constant over time due to the AM changes and it can be locally lower than the theoretical SNR (mean SNR). Finally, assuming each segment estimation process is independent of the others, we plot the CRB_G values that take into account the segmentation process and the smoothing strategy.

Based on all the different curves and on Fig. 9, we conclude that the local estimation of IA and IF is biased, the IA biases being larger than the IF biases. Both the IA MSE and the IF MSE obtained are locally close to the CRB_I and consequently close to the CRB_G. The estimation accuracy and robustness are especially high at the sides of the whole time window. Since the CRB_P is calculated using the all signal samples and established for unbiased estimators, they are very optimistic, especially in the middle of the window.
2) Application to Nonpolynomial AM/FM Signals: We consider a sinusoidal AM/FM signal. The signal model is given by (1) where

\[F[n] = 0.1011 + 0.0093 \cos(2\pi 0.3840 n) \]
\[A[n] = 0.1485 + 0.0294 \sin(2\pi 0.2786 n), \]

for \(0 \leq n \leq 500 \).

The phase here is nonpolynomial. Fig. 10 shows the reconstructed curves of AM and FM at mean SNR equal to 15 and 7 dB while Fig. 11 shows the modulation MSE. The CRB\(_P\) are calculated for polynomial approximations with an order equal to 7 for AM and FM. A total of 22 segments of an average
of 30 samples is processed and merged in order to reconstruct the modulations in their entirety. From Fig. 10, we observe that polynomial models of higher orders are not necessary for estimating the total modulations on the whole time duration. The segmentation process and estimation algorithm proposed are robust in the presence of low SNRs. Other simulations are given in [23] and [24].

V. REAL-WORLD SIGNAL

Many acoustic research projects [31] study the sound production in songbirds and try to build mechanical models. Actually, birds generate sound by air-flow-induced vibration of structures in their vocal organ, “the syrinx.” The syringeal muscles control gating and frequency in the signal. They can contract extremely fast to modulate the tension and position of the labia, and hence, produce the frequency of the sound emitted. Since songbirds can modulate the amplitude and frequency of their diverse songs over various time scales [31], [32], TF analysis tools applied for the sound help to identify candidates for generators and modulators in the sound production mechanism. The commonly used tool was the spectrogram, but this was limited in the resolution.

In this section, we focus on a canary sound shown in Fig. 12. The frequency sampling of the recorded data is 44 kHz and the SNR is high. The total sample number is 10 000. This is a signal with multiple nonlinear components because of the labia collisions. The IFs decrease exponentially and tend to superimpose on the time intervals [0.09 s, 0.11 s] and [0.20 s, 0.22 s]. The modulation rate is over 4 kHz for each component. Fig. 12(b) depicts the fundamental frequency of the labia oscillations in the syrinx. The presence of the first two harmonically related energy components of 1.7 and 2.7 kHz fundamental corresponds to a tuned filter of the trachea and beak. We propose here to improve the estimation accuracy by applying the nonsequential segmentation algorithm to only estimate the highest energy component. The estimation of all the components will be investigated in future works. Fig. 13 shows a good estimate of the highest energy component and the residual signal, respectively. Because of the large sample number, 300 segments are processed.

VI. CONCLUSION

A new method for processing signals with highly nonlinear AM/FM was presented. The proposed approach assumes that the signal nonstationarity could be piecewise modeled by low-order polynomials on short-time windows called segments. To reduce the estimation error, the first segment corresponded to the highest energy part of the signal. Then, a segmentation process was followed in positive or negative time progression in order to estimate the next high-energy part of the signal.

For each segment, low-order polynomials were used for estimating both AM and FM. The polynomial orders were limited to three. The model parameters were then estimated using the maximum-likelihood procedure, which locally preserves the optimality. Since this produces a highly complex equation, a stochastic optimization technique called simulated annealing is applied [23]–[25]. The estimated segments were then merged in order to reconstruct the whole AM/FM signal.

To demonstrate the estimation accuracy of the merging process, the CRBs were given and a comparison to the HAF.
was presented. The estimation accuracy of the nonsequential segmentation algorithm was higher than that of the HAF-based method. We show that the proposed method performs well with sinusoidal AM/FM signals and high-order PPS. This approach was applied to a multicomponent real signal to separate the component with the highest energy content from the others. The estimation of all the components will be addressed in future work [33], [34]. Two strategies for estimating the multicomponent signals. The originality of the nonsequential segmentation algorithm is that it is able to fit a wide range of frequency and amplitude waveforms by merging local polynomial models. However, a limit on the validity is imposed by the guarantee to provide low-order polynomial models on segments of reasonable length. Indeed, if the signal modulations become more rapid, we ideally have to change the models in (7) instead of increasing the polynomial order of the local models. Since the algorithm is scalable and easy to implement, other models such as sinusoidal functions and splines will be studied in further work.

APPENDIX

A. Discrete Orthonormal Polynomial Base

Let \(\{g_m[k]\}_{m=0}^{\max(p,q)} \) be an orthonormal polynomial base written as

\[
g_m[k] = b_{m,0}k^0 + b_{m,1}k^1 + \cdots + b_{m,m-1}k^{m-1} + b_{m,m}k^m
\]

for \(0 \leq m \leq \max(p,q) \) and \(k \in [-L/2, L/2] \). We apply the Gram–Schmidt procedure

\[
\langle g_m, g_i \rangle = \sum_{k=-L/2}^{L/2} g_m[k]g_i[k] = \delta_{m,i} \tag{25}
\]

where \(g_i = [g_m[-L/2], \ldots, g_m[L/2]]^T \) and \(\delta_{m,i} \) is the Kronecker symbol. We obtain the following values for an order \(m \leq 3 \):

\[
b_{1,0} = b_{2,1} = b_{3,0} = b_{3,2} = 0
\]

\[
b_{2,0} = \frac{-\sqrt{5L(L+2)}}{2\sqrt{(L+3)(L+1)(L-1)}}
\]

TABLE III

| 1) Initialization \(\theta = \theta^{(0)} \).
| Evaluate \(\hat{s}_1[k] \) for \(\theta \) using (7) and (14).
| Set \(\hat{s}_1[k] = y_1[k] - \hat{s}_1[k] \).
| 2) Repeat until \(\hat{s}_1[k] \) is a white process (33).
| 2.1. Set \(\sigma_e^2 = \sigma_e^{(0)} \) and \(\tau = \tau^{(0)} \).
| 2.2. Iterations from \(t = 1 \) to \(T \)
| a. Generate \(\theta_c = \theta + \Delta \theta \) from a Gaussian distribution \(N(\theta, \alpha_c^2) \).
| b. Draw \(\xi \sim U(0, 1) \), if \(\xi < \exp((\xi_{LS}(\theta) - \xi_{LS}(\theta_c))/\alpha_c) \), set \(\theta = \theta_c \), otherwise \(\theta \) is not modified.
| c. Sample \(u \sim B(\rho) \). If \(u = 1 \), set \(\sigma_e^2 = (1 - e_u) \sigma_e^2 \) and \(\tau = (1 - e_u)\tau \).
| d. Evaluate \(\hat{s}_1[n] \) for \(\theta \) using (7) and (14). Set \(\hat{s}_1[n] = y_1[n] - \hat{s}_1[n] \). Go to 2.2.
| 2.3. Go to 2.

\[
b_{2,2} = \frac{6v^5}{\sqrt{(L+3)(L+2)(L+1)(L-1)}}
\]

\[
b_{1,1} = \frac{2v^3}{\sqrt{L(L+1)(L+2)}}
\]

\[
b_{3,3} = \frac{1}{\sqrt{\sum_k k^6 - (\sum_k k^4)^2 / \sum_k^2}}
\]

\[
b_{0,0} = \frac{1}{\sqrt{L+1}}
\]

\[
b_{3,1} = -b_{3,3} \sum_k k^4 \sum_k^2
\]

where the symbol \(\sum \) denotes the discrete sum from \(k = -L/2 \) to \(L/2 \). See [24] for more details.

B. Main Steps of the Simulated Annealing Algorithm

Table III shows the main steps of the simulated annealing algorithm.

\(\theta \) is the parameter vector (8), \(\sigma_e^2 \) is the range search for the parameter values, and \(\tau \) is the temperature useful for monitoring the algorithm towards the best solution. \(\theta^{(0)}, \sigma_e^{(0)} \), and \(\tau^{(0)} \) are the initialization of \(\theta, \sigma_e^2 \), and \(\tau \), respectively. Both \(\theta \) and \(\sigma_e^2 \) are reduced linearly (step b in Table III) in a random way. \(U \) and \(B \) are uniform and Bernoulli distribution laws, \(\xi_{LS} (\theta) \) is the LS function defined in (12). \(\hat{s}_1[k] \) is the estimation of \(s_1[k] \). Both \(\hat{s}_1[k] \) and \(y_1[k] \) are defined in (12). See [35] for more details.

The parameters are initialized as follows:

\[
\hat{\alpha}^{(0)} = \langle A^{(0)}[n], g_1[n] \rangle \tag{26}
\]

\[
\hat{f}^{(0)} = \langle F^{(0)}[n], g_1[n] \rangle \tag{27}
\]

with

\[
A^{(0)}[n] = S_y(n, F^{(0)}[n]) \tag{28}
\]

\(F^{(0)}[n] \) is given in Section II and \(S_y(n, \nu) \) is defined in (15). \(\phi^{(0)} \) is the angle of the Fourier transform of the signal \(\tilde{y}_0[n] \) calculated for a frequency \(\nu_c = \arg \max_{\nu} S_y(0, \nu) \). We have

\[
\theta^{(0)} = \left[\alpha_0^{(0)}, \alpha_1^{(0)}, \ldots, \alpha_q^{(0)}, \phi^{(0)}, f_0^{(0)}, f_1^{(0)}, \ldots, f_q^{(0)} \right]^T.
\]
C. Weight Computing for Merging Process

Let \(S_1 \) and \(S_2 \) be two segments and \(S_1 \cap S_2 \) be their overlap. We note \(H_1[n] \) and \(H_2[n] \) the Hamming window values and \(\Phi_1[n] \) and \(\Phi_2[n] \) the estimated phases where \(\phi_1 \) and \(\phi_2 \) denote values related to the estimated segment \(S_1 \) and \(S_2 \), respectively. The phase merging is given by

\[
\Phi[n] = \frac{H_1[n] \Phi_1[n] + H_2[n] \Phi_2[n]}{\sqrt{H_1[n]^2 + H_2[n]^2}}.
\]

(29)

By assuming that each segment estimation process is independent of the others, the estimation variance is obtained for \(n \in S_1 \cap S_2 \) by

\[
\text{var} (\Phi[n]) = \frac{H_1[n]^2 \text{var} (\Phi_1[n]) + H_2[n]^2 \text{var} (\Phi_2[n])}{H_1[n]^2 + H_2[n]^2},
\]

(30)

and so, we have for \(n \in S_1 \cap S_2 \)

\[
\text{var} (\Phi[n]) \geq \frac{H_1[n]^2 \text{CRB}_1 (\Phi_1[n]) + H_2[n]^2 \text{CRB}_2 (\Phi_2[n])}{H_1[n]^2 + H_2[n]^2} = \text{CRB}_\text{C}(\Phi[n]).
\]

(31)

ACKNOWLEDGMENT

The authors would like to thank Dr. C. Eleman for his help in the explanation of the sound production mechanism of songbirds and his suggestions to ameliorate this paper.

REFERENCES

Meryem Jabloun was born in Tunisia in 1978. She received the Eng. and M.Sc. degrees in digital signal processing and telecommunications from the Ecole Nationale Superieure de l’Electronique et des Applications (ENSEA), University of Cergy Pontoise, France, in 2003. Currently, she is working towards the Ph.D. degree at the Laboratoire des Images et des Signaux (LIS), GIPSA lab-Grenoble, Saint Martin d’Heres, France.

Her research interests are the analysis and interpretation of nonstationary signals and models of polynomial phase signals.

Francois Leonard received the M.S. degree in physics from the Ecole polytechnique de Montreal, Montreal, QC, Canada, in 1981.

In 1981, he joined a research team working on wind turbines at the Hydro-Quebec Research Institute, Varennes, QC, Canada, as a Specialist in instrumentation and signal processing. Among other work, he has developed a special modal tool for estimating the low damping modes of wind turbines, the so-called Zmodal. During 1987–1989, he wrote the code for a monitoring system now deployed on every large hydro-turbine at Hydro-Quebec. From 1990 to 1995, he worked on hydro-turbine vibration diagnosis and the krigging of the data base cumulated in monitoring systems. Since then, he has worked on the vibro-acoustical monitoring of electrical equipment, vibro-acoustical crack detection in insulation porcelain, and partial-discharge detection and location in underground power cable networks. He wrote the signal-processing algorithm behind many of the leading-edge commercial products originating from Hydro-Quebec.

Michelle Vieira was born in France, in 1972. She received the M.Sc. and Ph.D. degrees in telecommunication engineering and digital signal processing from the University of Nice Sophia-Antipolis, France, in 1995 and 1999, respectively.

She joined the University of Joseph Fourier where she is currently an Associate Professor. She is also affiliated with the Image and Signal Laboratory (LIS), GIPSA lab-Grenoble, Saint Martin d’Heres, France. Her research interests include the digital signal processing for fault diagnosis and for time-frequency characterization.

Nadine Martin (M’06) received the Eng. and Ph.D. degrees from the Institut National Polytechnique de Grenoble, France, in 1980 and 1984, respectively.

Currently, she is a Senior Researcher at the CNRS-National Center of Scientific Research, and in charge of the research team SD-Surveillance Signal and Diagnostic, a team within the Signal and Image Department, GIPSA lab-Grenoble Image Speech Signal and Automatic, Grenoble, France. In the signal processing domain, her research interests are the analysis and the interpretation of nonstationary signals. Currently, she is working on signal detection, models of polynomial phase signals, and on time-frequency decision based on random models. In addition of seismic and acoustic signals, vibratory signals are more particularly studied in relation with the physical models. In 2004 and 2005, she was a Scientific Advisor for an automotive industry. She is managing a project on an automatic spectral analyzer (TetraS). She is the author of more than 90 papers and of a French patent extended to the international community in 2005. She was a co-organizer of a predoctoral course on recent advances in signal processing (Les Houches 1993).

Dr. Martin was a member of the National Council of Universities (CNU) in 2002. She was a co-organizer of the Fourth European Signal Processing Conference (EUSIPCO’88), he Sixth French Symposium on Signal and Image Processing (GRETSI 1997), and a special session on diagnostics and signal processing at IEEE-SDEMPED 1997.