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A New Flexible Approach to Estimate the IA and IF
of Nonstationary Signals of Long-Time Duration

Meryem Jabloun, Francois Leonard, Michelle Vieira, and Nadine Martin, Member, IEEE

Abstract—In this paper, we propose an original strategy for
estimating and reconstructing monocomponent signals having a
high nonstationarity and long-time duration. We locally apply
to short-time duration intervals the strategy developed in our
previous work about nonstationary short-time signals. This
paper describes a nonsequential time segmentation that pro-
vides segments whose lengths are suitable for modeling both the
instantaneous amplitude and frequency locally with low-order
polynomials. Parameter estimation is done independently for each
segment by maximizing the likelihood function by means of the
simulated annealing technique. The signal is then reconstructed
by merging the estimated segments. The strategy proposed is
sufficiently flexible for estimating a large variety of nonstation-
arity and specifically applicable to high-order polynomial phase
signals. The estimation of a high-order model is not necessary.
The error propagation phenomenon occurring with the known
approach, the higher ambiguity function (HAF)-based method, is
avoided. The proposed strategy is evaluated using Monte Carlo
noise simulations and compared with the Cramér–Rao bounds
(CRBs). The signal of a songbird is used as a real example of its
applicability.

Index Terms—Cramér–Rao bounds (CRBs), maximum like-
lihood, nonlinear modulation, nonstationary signal, polynomial
phase signal, simulated annealing, time frequency (TF).

I. INTRODUCTION

THIS paper is concerned with the commonly encountered
problem of estimating signals that show nonlinear ampli-

tude and frequency (AM/FM) modulations and are embedded in
an additive noise. These nonstationary signals are widely used in
various applications including radar, sonar, mechanics, speech,
biomedicine, and communications [1]–[5].

The observed noisy signal is defined as follows:

for (1)

(2)

where represents the noise-free signal and a white
complex Gaussian noise with zero mean and unknown variance

. is the total sample number and is the complex number
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verifying . and are the instantaneous ampli-
tude (IA) and phase, respectively. The instantaneous frequency
(IF) is defined by a numerical derivation of

(3)

The IA and IF are both time-varying functions and IF verifies
in relation to Shannon’s theorem, being

the sampling frequency. To remove the ambiguity in the defini-
tion of the amplitude and phase of the signal model (2), we as-
sume is nondiscontinuous and is real and positive [6].

A. Overview of Existent Techniques

The estimation of nonstationary signals, in particular, poly-
nomial phase signals (PPS), received considerable attention
and many techniques have already been proposed [7]–[16]. We
present some of the current techniques based on polynomial
modeling. The IA and phase are approximated by

for (4)

where and are the real coefficients of the decomposition
of and , respectively. and are approximation or-
ders of and , respectively, and need to be estimated in
many application fields.

In [7], the higher ambiguity function (HAF), which is a sub-
optimal method compared with the maximum-likelihood pro-
cedure, was used to estimate PPS. The HAF technique involves
transforming the th-order PPS given by (4) into a single har-
monic at a frequency proportional to the th-order coefficient

(4). The basic idea comes from the fact that
is a th-order polynomial, being a constant lag. When
the estimation is computed, the algorithm is repeated for

multiplied by which becomes a th PPS.
This compensation induces error propagation from the highest
order coefficient to the lowest one and it drastically reduces the
HAF estimation performance. Moreover, a compromise is nec-
essarily made between the order determination of the PPS model
and available signal-to-noise ratios (SNRs). Many techniques
based on the HAF are proposed to improve the estimation [15],
[17]–[19].

In [10] and [20], a Bayesian approach for estimating mono-
component PPS was proposed. In [10], the amplitude was
considered constant and a simultaneous estimation of the
polynomial phase parameters and the approximation order
was achieved. A reversible jump Monte Carlo Markov chain
method based on a Metropolis–Hastings algorithm is employed
to sample from the marginal posterior distribution of the model

1053-587X/$25.00 © 2007 IEEE
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parameters. This technique is efficient to estimate linear or
quadratic FM signals; however, the estimators become very
biased when a higher order PPS with a time-varying amplitude
is considered.

On the other hand, other techniques which were recently pub-
lished do not suppose polynomial modeling [21], [22]. In [22],
the tracking of the frequency and amplitude evolution is per-
formed from the spectrogram and particle filtering. This sup-
poses a frequency/amplitude evolution model with respect to
time and . The unknown parameters

and and the component number are estimated online.
The method is applied to multicomponent signal with linear FM,
the amplitude being constant. This method enables the estima-
tion of the signal component number and the detection of their
birth and death at high SNRs. However, adapting this algorithm
for processing highly nonlinear AM/FM signals needs to deter-
mine the adequate proposal density.

B. Contribution of the Paper

We propose a new flexible approach for fitting a wide variety
of signals with highly nonlinear AM/FM defined as in (2). It is
based on a recent analysis of signals having short-time duration
and nonlinear AM/FM [23]–[25]. In those papers, the IA and
IF are both approximated by low-order polynomials. A discrete
orthonormal polynomial base is derived and contributes in the
performance enhancement. The model parameters are estimated
using a maximum-likelihood procedure known to possess opti-
mality property. As this leads to a multivariate nonlinear equa-
tion to be minimized, a stochastic optimization technique based
on the simulated annealing method is used. The variances of the
mean-square-estimation errors (MSEs) of the model parameters
are close to the derived Cramér–Rao bounds (CRBs) (which are
functions of the SNRs). Results obtained through the proposed
method show better accuracy at low SNRs (0 dB) when com-
pared to those obtained by using the HAF-based method. Mo-
tivated by the efficiency and the optimality of this method, the
estimation of highly nonlinear AM/FM signals of long-time du-
ration is addressed in this paper.

Unlike (4), which considered polynomial models requiring a
large number of parameters, we use a local approach. The main
contribution of this paper is a strategy for extracting short-time
segments from a long-time signal. This extraction is not ordered
through time; the length, the position, and the number of seg-
ments are estimated using any nonnegative time-frequency dis-
tribution (TFD) without cross terms. In the proposed algorithm,
we start by finding short-time segments whose lengths are suit-
able for approximating locally both the IA and IF by low-order
polynomial models. The lengths vary from one segment to an-
other and segments can overlap.

Fig. 1 illustrates the principle with a signal whose IA and IF
are third- and seventh-order polynomials, respectively. Exam-
ples of the short-time segments considered are shown in Fig. 1
as adapted to a second-order polynomial approximation; ,

, and are three segments of 55, 63, and 51 samples,
respectively. The estimation of the local-model parameters is
subsequently achieved for each segment using the procedure de-
veloped in [23]–[25]. The estimation and reconstruction of the
entire signal is accomplished by the merging of all the estimated

Fig. 1. Examples of short-time segments adapted to a second-order polynomial
modeling: (a) IF and (b) the signal. (S1), (S2), and (S3) are three segments of
55, 63, and 51 samples, respectively. The IA and IF are third- and seventh-order
polynomials, respectively.

segments. We emphasize the flexibility and the potential of the
strategy proposed for dealing with a wide range of nonlinear
AM/FM signals. Only low-order models with a low number of
parameters are used and the effect is a significant improvement
of the estimation accuracy.

This paper is structured as follows. In Section II, the
short-time duration model proposed in [23]–[25] is recalled.
The time-segmentation strategy and the merging process are
detailed in Section III. The performance of the proposed
approach and a comparison to the HAF-based method are
presented in Section IV. An application to a real signal is also
given in Section V. Finally, Section VI summarizes our work
and describes the direction that future work could take.

II. LOCAL AM/FM MODEL

Let us consider short-duration intervals (segments) where
low-order polynomial functions are appropriate for approx-
imating uniformly both IF and IA according to Weierstrass’
theorem. Examples of such intervals are shown in Fig. 1. We
proceed as described in [24] for the parameter estimation.

A. Local AM/FM Polynomial Modeling

On each segment, the local IA , IF , and instantaneous
phase are defined by

for (5)

where indicates the segment center, is the time
referenced to the segment center, and is the segment length
assumed to be odd in order to simplify the algorithm implemen-
tation. and verify the same constraints as and

and (6)
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The local polynomial model is then defined by

(7)

where and are the polynomial approximation orders of
and , respectively, and is a discrete polynomial of
order . The real coefficients of the decomposition of and

on the discrete polynomial base are
and , respectively. In order to reduce the estimation error

[26], is referenced to the segment center; we have
where is the original phase related to the con-

sidered segment. Therefore, we have to estimate for each local
model a vector of parameters

T (8)

To reduce the number of parameters to be estimated for each
segment, the polynomial approximation orders and are lim-
ited. The segment length is selected in Section III-A such
as and satisfying

(9)

In [24], we calculated an orthonormal discrete polynomial
base by applying the Gram–Schmidt procedure. The first
three polynomials are reproduced in Section A of the Appendix.
The comparison with other polynomial bases shows that the or-
thonormality property enhances the estimation efficiency by sig-
nificantly reducing the parameter coupling. Recently, we found
the base is linearly related to the discrete Legendre poly-
nomial one [27]

(10)

is given for by

(11)

where is the backward factorial
function of order ,

is the square of the scaling normalization coefficient, and
is the binomial coefficient.

B. Maximum-Likelihood Estimation

To benefit from the optimality, a maximum-likelihood proce-
dure is locally used for parameter estimation. This is equivalent
to minimization of the least-square (LS) function for Gaussian
noises and thus results in the following nonlinear equation:

(12)

with

(13)

and are the local noisy signal and the local noise-free
signal, respectively

for

(14)
The LS function (13) is multidimensional and nonlinear
with respect to (8). The estimation of by direct minimization
is extremely difficult and classical optimization techniques such
as gradient descent, Gauss–Newton, and expectation–maxi-
mization (EM) algorithm do not ensure convergence to the
global minimum in the presence of many local extrema. To
overcome this problem, there is a variety of meta-heuristic
approaches for escaping local extrema. We use the simulated
annealing, which Monte Carlo simulations in [23] and [24]
have shown perform well in terms of low bias and small MSEs.
The main steps of the simulated-annealing-based algorithm are
detailed in Section B of the Appendix.

III. TIME-SEGMENTATION STRATEGY

This section details the strategy used to obtain short-duration
segments adapted to a low-order polynomial approximation for
both the local IA and IF. The merging process of all local models
is also described.

First, a rough approximation of denoted by is de-
termined using any nonnegative TFD without cross terms [28 ].
Let us denote by the TFD of the noisy signal de-
fined in the time and frequency domain. Since is
a single component, the time-frequency (TF) plan is composed
of one ridge of energy. This ridge creates a TF trajectory, which
we consider as the IF approximation

(15)

where is the modulus. There are then two main steps to per-
form the whole signal estimation.

A. Segment Extraction

To extract the first segment to be processed, the point of the
signal with the highest energy content is located in the TF plan
by finding the peak coordinates and of the TFD energy

(16)

Then, the time interval is centered
on this energy peak and the segment length is selected in
such a way that a simple LS fitting of on

, with a low-order polynomial (9), is possible with a rea-
sonable LS error. This step is detailed in Table I. Then, the esti-
mation of the local frequency and amplitude is carried
out as described in Section II using (7) and (12)–(14). The local
decomposition of on the chosen polynomial base provides
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TABLE I
SEGMENT DEFINITION

a good initialization of the model parameters (see Section B of
the Appendix). To find the next segment, we remove the
estimate of (14) from the noisy signal

for
else.

(17)
We compute the TFD of the residue , which pro-
vides the next energy peak (16). Then, the length of a new seg-
ment is determined in the same way as the first one (Table I).
The time position and length of a new segment are dependent
from the residue but the LS estimation of local models
(12) is not.

Experience has shown that the segment length should at least
be about 15 samples, to ensure low bias and a good estimation
efficiency when applying the simulated annealing algorithm. To
reduce the algorithm execution time, the segment length should
be limited in average to 60 samples; the global minimum is
easier to find in a small segment.

B. Merging of Segments

Since the presented process is nonsequential in time and over-
laps are allowed between segments, local phases and local am-
plitudes are merged by means of a weighted sum. The procedure
of computing the weights for the merging procedure is explicit
in Section C of the Appendix. For this purpose, we use Ham-
ming windows for which the significant weight (see Fig. 2) is
placed at the segment center where the error estimation is mini-
mized [24], [25]. Contrary to the Hanning window, the sides of
the Hamming window are not equal to zero, which ensures that
the estimation on the segment sides is not completely neglected.
Since the whole phase estimate results in a weight mean of all
the local phases estimated, this ensures respect for the phase
continuity constraint assumed in Section I. We proceed similarly
for the local amplitudes. Nevertheless, if the difference between
the estimated phases in two successive segments is higher than
a given threshold1 , we consider that a phase discontinuity
occurs and the algorithm is consequently stopped.

1This threshold is an upper bound on the difference between the estimated
phases in two successive segments to ensure the phase continuity. � is exper-
imentally determined and it is typically equal to �=6.

Fig. 2. Merging strategy using Hamming windows for the phase smoothing:
Two cases (a) and (b) are possible. (a) Two segments are merged. (b) Three
segments are merged.

TABLE II
NONSEQUENTIAL TIME-SEGMENTATION ALGORITHM

The steps involved in the whole signal estimation are de-
scribed in Table II.

C. Discussion

Three particularities of the segmentation strategy contribute
considerably to reducing the estimation errors. The first is that
this nonsequential strategy starts by estimating the parts of the
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Fig. 3. (a) Nonsequential time segmentation of the signal in Fig. 1. Each seg-
ment bears a mention of the starting time, ending time, and processing order (in
a box). (b) Estimation of IF (seventh-order polynomial) and IA (cubic polyno-
mial) for the same signal based on the mean of 50 Monte Carlo realizations at a
mean SNR equal to 15 dB (- - ) and 7 dB (� � �) versus original curves ( —).

signal that have the highest energy content. The estimation
process on segments where the SNR is locally very low does
not affect segments where the SNR is locally high. The second
particularity is that segment estimation is done independently
of the other segments, thus avoiding error propagation between
segments. Making the points of the signal that have the highest
energy content coincide with the center of the segments helps
to reduce the estimation error [26]. This, of course, constitutes
the third particularity. Moreover, this strategy is easy to imple-
ment and presents a tradeoff between accuracy and low central
processing unit (CPU) time.

Fig. 3(a) illustrates the nonsequential time segmentation of
the signal given in Fig. 1. In Fig. 3(b), the estimated IF and IA
of this signal are plotted. Since the SNR is time-varying because
of the IA changes, we indicate a mean SNR equal to 15 and
7 dB. The IF estimates are very close to the originals at both
SNR values. However, the IA estimate at 7 dB deviates slightly
from the original IA.

As can be seen, we do not need to estimate degrees and coeffi-
cients for the whole AM/FM signal models and local variations
of IA and IF are closely tracked. The signal model given by (2)
is preserved, since smoothing is applied only to the phase and
the amplitude and the signal estimate is reconstructed in
step 8) of Table II using (2).

IV. PERFORMANCE ANALYSIS

In this section, the proposed algorithm is applied to PPS sig-
nals and to nonpolynomial AM/FM signals. Comparisons with
CRBs and the HAF-based method are also discussed. We use
the spectrogram as a nonnegative TFD for the segmentation
strategy.

A. CRBs

We give the appropriate CRBs to study statistically the algo-
rithm performance when applied to PPS. We, therefore, consider
a signal given by (2), where IA and the phase are given by (4).
Three types of CRBs are defined: classical, local, and global
CRBs.

1) Classical CRB: In [29 ], the CRBs denoted by CRB are
derived for polynomial amplitudes and frequencies. The CRB s
are time-varying functions and they make use of the entire signal
samples

CRB

CRB

for

(18)
with

T

T

T

T

T (19)

denotes element-by-element multiplication. T and are
the transpose and the transpose conjugate. and are matrices
of and size, respectively. It is important
to note that the CRB formulas use the variance value of the
noise (1) and the order values of polynomial approximations of
both the amplitude and the phase ( and ). Therefore, orders
are assumed to be known when we calculate these bounds.

2) Local CRB: In [23 ], we calculate the appropriate CRBs,
denoted by crb , for local-model parameters (8) of short-
time signals whose amplitudes and frequencies are modeled as
given by (7), and for an orthonormal discrete polynomial base

crb (20)

where

T

T

(21)
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is the identity matrix of size and is a matrix of
size. is defined in (12) while is

given by and

for and . is introduced in
(7) and is the local noise variance on the segment considered.
In [23] and [24], we show the MSE of the parameter estimation

closed to the crb (20) for SNR varying from 0 to 25 dB
whereas the HAF-obtained results are far from these CRBs.

The CRBs of the local IA and IF are written as

CRB

CRB

for

(22)
where T. In this paper, the CRB s
are used to study the estimation accuracy of local models related
to the considered segments.

3) Global CRB: Finally, by assuming that each segment es-
timation process is independent of the others, we derive new
available bounds,2 that we call CRB , which take into account
the segmentation process and the smoothing strategy (weighted
sum; see Section III-B).

CRB s (18) differ basically from CRB s (22), and hence
from CRB s, through the model definitions. CRB s are estab-
lished for the whole polynomial-phase model (4), in which the
entire set of samples and a canonical–polynomial base are used.
As known [30 ], these bounds are the lowest and are very opti-
mistic in highly nonlinear cases whereas CRB s are calculated
using CRB s (22), and consequently, they are better adapted to
the estimation process we developed. In fact, CRB s are de-
rived for a local (and short-time) signal model (7), for which
the local frequency is modeled instead of the local phase and an
orthonormal polynomial base is used. Moreover, the local phase
is obtained by a numerical integration of the local frequency and
the phase origin is placed at the middle of the segment.

In Section IV-B, CRB is shown to be the closest to the es-
timation variance. Nevertheless, we should be careful when we
compare these bounds since they are derived for unbiased es-
timators, and it is well known that biased estimators can reach
lower bounds. Biased estimates can have smaller MSEs than un-
biased ones.

B. Simulation Results

In this section, the proposed algorithm is evaluated using nu-
merical examples including a high-order PPS and a nonpolyno-
mial phase signal. Obtained results are compared with the ap-
propriate CRB. A comparison with the results obtained using
the HAF-based method is also given.

2CRB are calculated using the following formula, where x and z are inde-
pendent estimators and (�; �) 2

variance(�x+ �z) = � variance(x) + � variance(z):

Fig. 4. Noisy signal of (23) and the time-varying SNR (decibels) which is com-
puted by using a sliding window of 20 samples.

Fig. 5. MSE of the IA and IF estimates of the signal of (23) at a mean SNR
= 15 dB: (� � �) HAF-based method, ( —) the proposed method, (���) the
CRB , and (���) the CRB .

1) Comparison With the HAF Technique: We consider a
signal given by (1) where IF and IA are third- and second-order
polynomials written as follows:

for (23)

The noisy signal and the time-varying SNR are reported in
Fig. 4. The phase is considered to be known only when
using the HAF-based method; otherwise, this method is unable
to correctly estimate the phase and the amplitude .
The mean SNR is 15 dB and the sample number is 500. We run
100 Monte Carlo noise simulations. The variance of the AM
and FM estimation is depicted in Fig. 5 and compared to the
CRB and CRB which is calculated using (18) with the true
order values. We can see that the proposed algorithm performs
better than the HAF. Indeed, the HAF-based method presents a
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Fig. 6. MSE and bias of the amplitude parameter � and phase parameter �
(4) of the signal of (23) versus SNRs: (� � �) HAF-based method, (- - ) the pro-
posed method, and ( —) the appropriate CRBs.

large bias and MSE especially on the right side of the window,
whereas the SNR is low (see Fig. 4). Since the phase is
given for the HAF-based method, the biases are not high on the
left side of the time window.

Moreover, a comparison between the proposed approach and
the HAF-based method including CRB curves as a function of
the mean SNRs is shown in Fig. 6. We run 100 Monte Carlo
noise simulations for each mean SNR and we evaluate the esti-
mates of the amplitude parameter and the phase one (4)
of the signal given by (23). Fig. 6 shows that both the MSE and
bias of these parameter estimates are smaller with the approach
proposed than with the HAF method.

Before discussing the deviation from the different CRBs, we
apply the HAF-based method to the signal shown in Fig. 1,
which was randomly generated. Readers are reminded that the
IA is a cubic polynomial and IF is a seventh-order polynomial
(the phase order is 8). The sample number is 500 and the sam-
pling frequency is 1 Hz. Since the HAF is an estimation tech-
nique that provides the phase coefficient sequentially, the effi-
ciency decreases as far as the order of the polynomial approxi-
mation increases. The errors of the highest order coefficient af-
fect the estimate of the lower order coefficients. In Fig. 7, we
can see this propagation phenomenon error.

On the contrary, the local maximum-likelihood estimators,
which are used in the algorithm proposed, require the joint
estimation of all the phase and amplitude coefficients simultane-
ously. Using a discrete polynomial orthonormal base improves
the estimation by decoupling the parameter estimation [23],
[24]. Furthermore, error propagation is avoided since each
segment is estimated separately. Consequently, when the signal
displayed in Fig. 1 is processed by the proposed algorithm,
better results are obtained, as shown in Fig. 8(a) and (b). The
right column of Fig. 8(a) shows good performance at low SNR.
The MSE, obtained in the estimation of FM and AM, and the
biases are based on 50 Monte Carlo noise simulations for each
mean SNR. A total of 11 segments are treated (see Fig. 3).

Fig. 7. HAF transform of the signal in Fig. 1 as calculated for the phase co-
efficients, which are proportional to the peak of the HAF transform [7]. The
coefficients are plotted with respect to their order [� in (4)]. The SNR is 1.

Naturally, this takes more execution time than the HAF-based
method. The CRB and the CRB , see (18), computed using
the true order values 7 and 3 of the polynomial FM and AM,
respectively, are also depicted, at mean SNR equal to 15 and
7 dB.

To explain the differences in the performance over time and
discuss the deviation from the CRBs, Fig. 9 shows a zoom of
the right side of Fig. 8(a) for the time interval . Three
more curves are superimposed. One curve is the CRB cal-
culated for an FM polynomial order equal to 9 and that of an
AM equal to 4. This serves to illustrate that, as shown in Fig. 9,
under- or overevaluated orders modify the CRB behavior. We
emphasize that it is not necessary to estimate these orders in
order to employ the proposed approach, contrary to the tech-
niques presented in Section I-A. The CRB from (22), related to
each segment processed (three segments , ,
and ), are plotted. For each local model, the local CRB
is calculated using both the appropriate low order (equal to two
in this case) and the local SNR related to the considered seg-
ments (reported in Fig. 9). We note that the SNR is not con-
stant over time due to the AM changes and it can be locally
lower than the theoretical SNR (mean SNR). Finally, assuming
each segment estimation process is independent of the others,
we plot the CRB values that take into account the segmenta-
tion process and the smoothing strategy.

Based on all the different curves and on Fig. 9, we conclude
that the local estimation of IA and IF is biased, the IA biases
being larger than the IF biases. Both the IA MSE and the IF
MSE obtained are locally close to the CRB and consequently
close to the CRB . The estimation accuracy and robustness are
especially high at the sides of the whole time window. Since the
CRB s are calculated using the all signal samples and estab-
lished for unbiased estimators, they are very optimistic, espe-
cially in the middle of the window.
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Fig. 8. (a) MSE obtained in the estimation of the frequency and amplitude of
the highly nonstationary signal in Fig. 1 using ( —) the algorithm proposed,
(���) the CRB , and (���) the CRB , at mean SNR= 15 dB (left column) and
at 7 dB (right column). The CRB values are calculated at the true orders: the
FM is a seventh-order polynomial and the AM is a third polynomial. (b) Biases
( —) at mean SNR= 15 dB (left column) and at 7 dB (right column) using the
proposed algorithm.

Fig. 9. Zoom in the right column of Fig. 8 (SNR= 7 dB): (- - ) MSE and
(� � �) CRB for each segment, (���) CRB calculated for the true orders,
(���) CRB calculated for FM order = 9 and AM order = 4, and (���)
CRB derived after segmentation and smoothing strategies.

Fig. 10. Original curves of a sinusoidal AM/FM signal ( —) and the recon-
structed ones: (- - ) at 15 dB and (� ��) at 7 dB using the proposed algorithm.

Fig. 11. MSE (- - ) of the sinusoidal AM and FM estimates. The CRBs are
calculated at a mean SNR= 15 dB (left column) and SNR= 7 dB (right column)
for a polynomial approximation of the seventh-order for both AM and FM.

2) Application to Nonpolynomial AM/FM Signals: We con-
sider a sinusoidal AM/FM signal. The signal model is given by
(1) where

for (24)

The phase here is nonpolynomial. Fig. 10 shows the recon-
structed curves of AM and FM at mean SNR equal to 15 and
7 dB while Fig. 11 shows the modulation MSE. The CRB are
calculated for polynomial approximations with an order equal
to 7 for AM and FM. A total of 22 segments of an average
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Fig. 12. Canary song: (a) AM/FM signal, (b) power spectral density and (c)
spectrogram calculated using a fast Fourier transform of 256 points, a sliding
Hanning window of 256-point length, and an overlap of 255.

of 30 samples is processed and merged in order to reconstruct
the modulations in their entirety. From Fig. 10, we observe that
polynomial models of higher orders are not necessary for es-
timating the total modulations on the whole time duration. The
segmentation process and estimation algorithm proposed are ro-
bust in the presence of low SNRs. Other simulations are given
in [23] and [24].

V. REAL-WORLD SIGNAL

Many acoustic research projects [31] study the sound produc-
tion in songbirds and try to build mechanical models. Actually,
birds generate sound by air-flow-induced3 vibration of struc-
tures in their vocal organ, “the syrinx.”4 The syringeal muscles
control gating and frequency in the signal. They can contract
extremely fast to modulate the tension and position of the labia,
and hence, produce the frequency of the sound emitted. Since
songbirds can modulate the amplitude and frequency of their
diverse songs over various time scales [31], [32], TF analysis
tools applied for the sound help to identify candidates for gen-
erators and modulators in the sound production mechanism. The
commonly used tool was the spectrogram, but this was limited
in the resolution.

In this section, we focus on a canary sound shown in Fig. 12.
The frequency sampling of the recorded data is 44 kHz and the
SNR is high. The total sample number is 10 000. This is a signal
with multiple nonlinear components because of the labia colli-
sions. The IFs decrease exponentially and tend to superimpose
on the time intervals [0.09 s, 0.11 s] and [0.20 s, 0.22 s]. The
modulation rate is over 4 kHz for each component. Fig. 12(b)
depicts the fundamental frequency of the labia oscillations in the
syrinx. The presence of the first two harmonically related energy
components of 1.7 and 2.7 kHz fundamental corresponds to a
tuned filter of the trachea and beak. We propose here to improve

3The air-sacs play an important role in vocalization; they provide the pressure
difference of bronchial to induce oscillation of the labia in the syrinx.

4An organ unique to birds, the syrinx has nonlinear mechanical properties.

Fig. 13. (a) Estimated FM and AM of the highest energy component of the
signal. (b) Spectrogram of the residual signal after removing the highest energy
component of the canary song calculated with a fast Fourier transform of 1024
points, a sliding window of 256, and an overlap of 255.

the estimation accuracy by applying the nonsequential segmen-
tation algorithm to only estimate the highest energy component.
The estimation of all the components will be investigated in fu-
ture works. Fig. 13 shows a good estimate of the highest energy
component and the residual signal, respectively. Because of the
large sample number, 300 segments are processed.

VI. CONCLUSION

A new method for processing signals with highly nonlinear
AM/FM was presented. The proposed approach assumes that
the signal nonstationarity could be piecewise modeled by low-
order polynomials on short-time windows called segments. To
reduce the estimation error, the first segment corresponded to the
highest energy part of the signal. Then, a segmentation process
was followed in positive or negative time progression in order
to estimate the next high-energy part of the signal.

For each segment, low-order polynomials were used for es-
timating both AM and FM. The polynomial orders were lim-
ited to three. The model parameters were then estimated using
the maximum-likelihood procedure, which locally preserves the
optimality. Since this produces a highly complex equation, a
stochastic optimization technique called simulated annealing is
applied [23]–[25]. The estimated segments were then merged in
order to reconstruct the whole AM/FM signal.

To demonstrate the estimation accuracy of the merging
process, the CRBs were given and a comparison to the HAF
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was presented. The estimation accuracy of the nonsequential
segmentation algorithm was higher than that of the HAF-based
method. We show that the proposed method performs well with
sinusoidal AM/FM signals and high-order PPS. This approach
was applied to a multicomponent real signal to separate the
component with the highest energy content from the others.
The estimation of all the components will be addressed in
future work [33], [34]. Two strategies for estimating the multi-
component signals are possible. One possibility is to iteratively
reconstruct the signal component by component, each compo-
nent being estimated by using the nonsequential algorithm and
then removed. The second is to estimate all the components
at the same time on local segments having short-time duration
and then to apply the merging process.

We can reasonably conclude that the proposed method offers
many advantages. For example, no model order needs to be
estimated for any of the modulations. On one hand, this avoids
an order selection for the entire-phase model, which can be
of a high order in the case of strong nonstationarity. On the
other hand, the maximum-likelihood estimation of each local
model avoids the error propagation phenomenon, which is
common with the existing HAF technique. Estimating each
segment separately ensures more robustness despite the SNR
variations. The proposed method also provides an estimate of
the component with the highest energy content when applied to
multicomponent signals. The originality of the nonsequential
segmentation algorithm is that it is able to fit a wide range of
frequency and amplitude waveforms by merging local polyno-
mial models. However, a limit on the validity is imposed by the
guarantee to provide low-order polynomial models on segments
of reasonable length. Indeed, if the signal modulations become
more rapid, we ideally have to change the models in (7) instead
of increasing the polynomial order of the local models. Since
the algorithm is scalable and easy to implement, other models
such as sinusoidal functions and splines will be studied in
further work.

APPENDIX

A. Discrete Orthonormal Polynomial Base

Let be an orthonormal polynomial
base written as

for and . We apply the
Gram–Schmidt procedure

(25)

where T and is the Kro-
necker symbol. We obtain the following values for an order

:

TABLE III
SIMULATED-ANNEALING-BASED ALGORITHM

where the symbol denotes the discrete sum from
to . See [24] for more details.

B. Main Steps of the Simulated Annealing Algorithm

Table III shows the main steps of the simulated annealing
algorithm.

is the parameter vector (8), is the range search for the pa-
rameter values, and is the temperature useful for monitoring
the algorithm towards the best solution. , , and are
the initialization of , , and , respectively. Both and
are reduced linearly (step b in Table III) in a random way. and

are uniform and Bernoulli distribution laws. is the LS
function defined in (12). is the estimation of . Both

and are defined in (12). See [35] for more details.
The parameters are initialized as follows:

(26)

(27)

with

(28)

is given in Section II and is defined in (15).
is the angle of the Fourier transform of the signal cal-

culated for a frequency . We have

T
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C. Weight Computing for Merging Process

Let and be two segments and be their overlap.
We note and the Hamming window values and

and the estimated phases where and denote
values related to the estimated segment and , respectively.
The phase merging is given by

(29)

By assuming that each segment estimation process is indepen-
dent of the others, the estimation variance is obtained for

by

(30)
and so, we have for

CRB CRB

CRB (31)
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