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INTRODUCTION

The solutions of many fundamental linear field equations of physics can be expressed explicitly in terms of boundary integrals involving unknown primary and derivative field values (e.g., potential and flux, displacement, and traction) on the boundary. To exploit such relationships, one therefore needs to first formulate and solve a boundary integral equation (BIE) over the boundary field variables (see Boundary Element Methods: Foundation and Error Analysis). The application of BIE techniques in quasi-static problems of solid mechanics, to which the present chapter is devoted, is based on integral equations for linear elasticity, where, in addition, nonlinear effects can be incorporated by means of volume potentials associated with body forces or initial strains. BIE formulations are however known for other physical problems as well, including wave propagation (see Time-Dependent Problems with the Boundary Integral Equation Method, Boundary Element Methods for the Dynamic Analysis of Elastic, Viscoelastic, and Piezoelectric Solids), heat transfer, electromagnetics (see Finite Element Methods for Maxwell's Equations), and fluid flow. The boundary element method (BEM) then consists of applying discretization and interpolation techniques adapted from those initially introduced for finite element methods (FEMs), (see Finite Element Methods, Finite Element Methods for Elasticity with Error-Controlled Discretization and Model Adaptivity).

BIE formulations are rooted in the potential theory; see, for example, [START_REF] Kellogg | Foundations of Potential Theory[END_REF] for scalar problems and [START_REF] Parton | Integral Equations in Elasticity[END_REF] and Kupradze (1979) for elasticity. The theory of Fredholm integral equations allows in many cases to state general results (e.g., existence and uniqueness of solution). Numerical techniques for solving BIEs appeared in the 1960s, and early works in solid mechanics include [START_REF] Rizzo | An integral equation approach to boundary value problems of classical elastostatics[END_REF][START_REF] Cruse | Numerical solutions in three-dimensional elastostatics[END_REF]. The initial motivation for using BEMs was the dimensionality gain in the discretization (e.g., surface elements instead of finite elements). BEMs have been thoroughly investigated since, and monographs on BEMs in solid mechanics have been written by [START_REF] Aliabadi | The Boundary Element Method: Applications in Solids and Structures[END_REF], [START_REF] Antes | The Boundary Integral Approach to Static and Dynamic Contact Problems[END_REF], [START_REF] Balas | Stress Analysis by Boundary Element Methods[END_REF], [START_REF] Banerjee | The Boundary Element Method in Engineering (2nd edn)[END_REF], Beskos (1991), Bonnet (1999a), [START_REF] Chandra | Boundary Element Methods in Manufacturing[END_REF], [START_REF] Cruse | Boundary Element Analysis in Computational Fracture Mechanics[END_REF], [START_REF] Kane | Boundary Element Analysis in Engineering Continuum Mechanics[END_REF], and [START_REF] Pozrikidis | A Practical Guide to Boundary Element Methods with the Software Library BEMLIB[END_REF] among others. Moreover, the mathematical theory underpinning BIE formulations and their discretization is presented in [START_REF] Sauter | Boundary Element Methods[END_REF] and [START_REF] Steinbach | Numerical Approximation Methods for Elliptic Boundary Value Problems[END_REF], while the classical approach to BEM programming is expounded in [START_REF] Beer | The Boundary Element Method with Programming[END_REF]. As a result, BEMs are much better understood now. In particular, the apparent dimensionality advantage is far from clear-cut because BEMs involve fully populated matrices instead of the sparse symmetric matrices associated with FEMs. This feature indeed constitutes a major bottleneck, preventing the application of BEMs in their traditioonal version (where system matrices are fully computed) to large-scale models. The latter have fortunately been made tractable thanks to the advent of accelerated versions of the BEM, based on, for example, fast multipole or hierarchical matrix concepts, see, for example, the books by [START_REF] Gumerov | Fast Multipole Methods for the Helmholtz Equation in Three Dimensions[END_REF] and [START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF] or theses by [START_REF] Yoshida | Applications of fast multipole method to boundary integral equation method[END_REF] or [START_REF] Chaillat | Fast Multipole Method for 3-D elastodynamic boundary integral equations[END_REF]. BEMs are useful, either alone or in combination with FEMs, for problems involving intricate or evolving domain discretizations (fracture mechanics analyses, crack propagation, shape optimization, defect identification), unbounded media, specific shapes for which fundamental solutions satisfying suitable boundary conditions are known, and superficial nonlinear phenomena (e.g., in contact and wear mechanics). Generally speaking, they provide specialized tools rather than general-purpose analysis environments, for which the flexibility of FEMs regarding nonlinear or heterogeneous constitutive properties cannot be matched by the BEMs.

This chapter is organized as follows. After a brief review of the basic integral identities of solid mechanics (Section 2), the BEM discretization techniques based on collocation and symmetric Galerkin BIE formulations are presented in Sections 3 and 4, respectively, followed by an overview of fast solution techniques (Section 5). Then, BEMs are described for fracture mechanics (Section 6) and small-strain elastoplasticity (Section 7). Next, Section 8 is devoted to shape sensitivity concepts. The chapter closes with a symmetric formulation for BEM-FEM coupling (Section 9).

BASIC INTEGRAL IDENTITIES

This chapter is concerned with equilibrium problems for three-dimensional solid bodies whose constitutive properties involve linear elasticity. In particular, unless stated otherwise (i.e., except for Section 7.4), infinitesimal deformations and strains are assumed, so that the strain tensor 𝜺 is related to the displacement field u via the linearized compatibility equation

𝜺 = 𝛁 u + 𝛁 T u 2 (1)
The relationship between the strain tensor 𝜺 and the stress tensor 𝝈 is then assumed to be of the form

𝝈 = C ∶(𝜺 -𝜺 I ) (2)
where C denotes the fourth-order tensor of elastic moduli and 𝜺 I denotes an initial strain distribution. The latter may account for several possibilities, including (i) residual (e.g., plastic) strain resulting from previous mechanical events, (ii) thermal strain, and (iii) inelastic strain in the context of inelastic constitutive properties and a quasi-static evolution problem. For isotropic elasticity, one has

C ijk𝓁 = 𝜇 [ 2𝜈 1 -2𝜈 𝛿 ij 𝛿 k𝓁 +(𝛿 ik 𝛿 j𝓁 + 𝛿 i𝓁 𝛿 jk ) ] (3) 
where 𝜇 and 𝜈 denote the shear modulus and the Poisson ratio, respectively. Finally, letting f denote a prescribed body force distribution, the local equilibrium is governed by the field equation div 𝝈 + f = 𝟎 (4)

Integral representation of displacement

The usual basis for integral formulations is a reciprocity identity between the unknown state (u, 𝜺, 𝝈) and a known fundamental solution, here chosen to be an elastic field generated by a unit point force applied at a fixed source point x and along a fixed direction k in a fictitious body endowed with the same elastic moduli C. Combining the fundamental field equations (1), (2), and (4), the components u i of the unknown displacement field are governed by C ijab (u a,bj -𝜀 I ab, j )+f i = 0( 5 ) (commas denoting partial differentiations w.r.t. coordinates of the field point x), while the components U k i (x, x) of the fundamental displacement are governed by the equation

C ijab U k a,bj + 𝛿(x -x)𝛿 ik = 0( 6 )
where 𝛿(xx) is the Dirac distribution at point x. Multiplying (5) by U k i (x, x) and ( 6) by u i (x), integrating both equations over the domain Ω of interest, invoking the defining property of 𝛿(xx), integrating by parts the remaining integrals, and subtracting the resulting identities, one obtains the representation formula for the displacement at x:

𝜅(x)u k (x)= ∫ 𝜕Ω {U k i (x, x)t i (x)-T k i (x, x)u i (x)} dS x + ∫ Ω {U k i (x, x)f i (x)+Σ k ab (x, x)𝜀 I ab (x)} dV x (7)
where 𝜅(x)=1 or 0 according to whether the source point x is interior or exterior to the domain Ω (in the latter case, the identity thus obtained is sometimes termed the exterior representation formula)a n dt i , T k i ,a n dΣ k ij denote the components of unknown tractions, fundamental tractions, and fundamental stresses, respectively, with

t i (x)=𝜎 ij (x)n j (x), T k i (x, x)=Σ k ij (x, x)n j (x), Σ k ij (x, x)=C ijab U k a,b (x, x)
Equation ( 7) thus expresses the displacement at a given interior point x, often called the observation point,a sa function of the distributions of body forces and initial strains and the displacement and traction over the boundary.

Obviously, the representation formula (7) requires that the fundamental solution is defined in Ω. Since the field equation ( 6) does not define U k i uniquely, one may in addition prescribe conditions for U k i or T k i on a boundary 𝜕 Ω chosen in such a way that Ω ⊆ Ω, where Ω denotes the domain enclosed by 𝜕 Ω. The simplest, and most commonly used, choice is Ω=ℝ 3 with decay conditions at infinity, which define the well-known Kelvin fundamental solution, given by

U k i (x, x)= 1 16𝜋𝜇(1 -𝜈)r [r ,i r ,k +(3 -4𝜈)𝛿 ik ] (8) 
T k i (x, x)=-1 8𝜋(1 -𝜈)r 2 [3r ,i r ,k r ,j n j (x) +(1 -2𝜈)(𝛿 ik r ,j n j (x)+r ,i n k (x)-r ,k n i (x))]

(9)

with r = |x -x| and r ,a = 𝜕r∕𝜕x a =(x axa )∕r.O t h e r fundamental solutions are defined in terms of (usually) homogeneous boundary conditions on 𝜕 Ω. They can sometimes be used to advantage in equation ( 7), in order to selectively eliminate contributions in the surface integrals. However, such fundamental solutions are known explicitly only in a few cases, and their mathematical complexity increases quite rapidly with the complexity of the underlying configuration Ω. Fundamental solutions are in particular known for a homogeneous traction-free half-space (see [START_REF] Mindlin | Force at a point in the interior of a semi-infinite solid[END_REF] for the three-dimensional case) a layered, traction-free half-space [START_REF] Chan | Force at a point in the interior of a layered elastic half-space[END_REF], a bimaterial full space with perfect bonding at a plane interface [START_REF] Rongved | Force interior to one of two joined semi-infinite solids[END_REF][START_REF] Guzina | Static fundamental solutions for a bi-material full-space[END_REF], and an elastic layer bounded by two parallel traction-free planes [START_REF] Benitez | Three-dimensional elastostatics of a layer and a layered medium[END_REF], assuming isotropic elasticity in all cases. In addition, fundamental solutions are known for anisotropic elasticity, in the form of a Fourier angular integral for general anisotropy [START_REF] Mura | Micromechanics of Defects in Solids[END_REF] and in explicit form for some special cases of anisotropy (see, e.g., Willis, 1965 or Pan and[START_REF] Pan | Point force solution for an infinite transversely isotropic solid[END_REF].

It is essential to note that the fundamental solutions U k i (x, x) and T k i (x, x), respectively, behave like O(1∕r) and O(1∕r 2 ) for x close to x, a feature that is apparent in (8), (9) for the Kelvin solution. In the context of BEMs O(1∕r) and O(1∕r 2 ), fundamental solutions are often referred to as being weakly singular and strongly singular, respectively.

Displacement boundary integral equation

Since the boundary conditions of a well-posed problem are such that either u or t (or some combination thereof) is known, equation ( 7) is not fully explicit in that it requires solving for the missing information on the boundary. It is therefore necessary, for that purpose, to set up equations that do not involve interior field values. However, merely selecting x ∈ 𝜕Ω in (7), apparently an obvious solution to this issue, is not a valid procedure because the (1∕r 2 ) singularity of T k i makes the corresponding surface integral potentially divergent for x ∈ 𝜕Ω. Another possibility, namely to select x ∈ Ω=ℝ 3 ∖closure(Ω) (i.e., x exterior to Ω), is known to lead to ill-conditioned equations.

The standard procedure consists in finding a mathematically valid formulation for (7) with the observation point on 𝜕Ω. Among the possible approaches for doing so, the ones most often used are as follows, denoting by y a generic observation point on 𝜕Ω. The limit-to-the-boundary approach (Figure 1a), where the limiting form of the representation (7) for x = y + 𝜒n(y) as 𝜒 → 0 is sought, is used in classical monographs on potential theory (e.g., [START_REF] Kellogg | Foundations of Potential Theory[END_REF] for scalar problems or Kupradze, 1979 in elasticity), and has been investigated in connection with BEMs by, for example, [START_REF] Gray | Hypersingular integrals in boundary element fracture analysis[END_REF]. The limiting form of (7) thus obtained involves a free term and a singular surface integral, which is convergent according to a specific definition. Usually, Cauchy principal value (CPV) integrals are used for that purpose, in which case (7) leads to

1 2 u k ( y)+- ∫ 𝜕Ω T k i (y, x)u i (x) dS x -∫ 𝜕Ω U k i (y, x)t i (x) dS x = ∫ Ω {U k i (y, x)f i (x)+Σ k ab (y, x)𝜀 I ab (x)} dV x ( 10 
)
where the symbol -∫ indicates a CPV integral. The direct approach [START_REF] Guiggiani | A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method[END_REF][START_REF] Guiggiani | Formulation and numerical treatment of boundary integral equations with hypersingular kernels[END_REF] consists in removing a small exclusion neighborhood of characteristic size 𝜀 and specified shape around the singular point y and seek the limiting form of the exterior representation (7) for the punctured domain Ω 𝜀 thus defined and its boundary 𝜕Ω 𝜀 and with x = y (Figure 1b). If the exclusion neighborhood chosen is spherical, the same limiting form (10) is found for the continuous integral equation. Finally, the indirect regularization approach [START_REF] Rizzo | An advanced boundary integral equation method for three-dimensional elasticity[END_REF][START_REF] Bui | Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique[END_REF] consists of using additional identities obtained by substituting simple solutions into (7). Here, applying (7) to the rigid-body displacement v(x) defined by v(x)=u( y) and subtracting the resulting identity from (7), both written for the punctured domain Ω 𝜀 to ensure the mathematical validity of the process, one easily obtains the displacement integral equation in the regularized form as

κu k (y)+ ∫ 𝜕Ω { T k i ( y, x)[u i (x)-u i ( y)] -U k i (y, x)t i (x) } dS x = ∫ Ω { U k i (y, x)f i (x) +Σ k ab (y, x)𝜀 I ab (x) } dV x ( 11 
)
with κ = 0( Ω bounded) or κ = 1( ℝ 3 ∖Ω bounded). This integral equation is regularized, that is, all singular integrals over 𝜕Ω are convergent in the ordinary sense, provided u has C 0,𝛼 Hölder regularity at x = y. In particular, all domain integrals in (11) are convergent in the ordinary sense, that is, no regularization is needed for them.

Representation formulas for strains and stresses on the boundary

The displacement BIE (10) or ( 11) is sufficient for solving ordinary elasticity boundary value problems. However, neither the integral equations nor the representation formulas obtained up to now allow the direct computation of derivative quantities (i.e., displacement gradients, strains, stresses, etc.) when the observation point y is located on the domain boundary. Nevertheless, there are situations in which the availability of either an integral equation or a representation formula expressing such derivative quantities at boundary points is desirable, including (i) accurate evaluation of tangential stresses on the boundary, (ii) problems involving cracks (Section 6), (iii) symmetric Galerkin integral equation formulations (Section 4), (iv) the computation of local error indicators on the boundary, and (v) elastic-plastic problems where the plastic region reaches the boundary (Section 7).

Assuming for the moment that initial strains are absent, a straightforward application of compatibility equation (1) or constitutive equation ( 2) to (7) yields a representation formula for the linearized strain or the stress. For example, the stress tensor components at x are given by

𝜅(x)𝜎 ij (x)= ∫ 𝜕Ω { Σ a ij (x, x)t a (x)-D ijab (x, x)u a (x) × n b (x) } dS x + ∫ Ω Σ a ij (x, x)f a (x) dV x (12)
having utilized the identity C ijk𝓁 U k a, l (x, x)=Σ a ij (x, x),which stems from symmetry properties of the fundamental solution (the tilde in () , l denoting a partial derivative w.r.t. the 𝓁-coordinate of x), and with the new kernel D ijab (x, x) defined by

D ijab (x, x)=C ijk𝓁 Σ k ab, l (x, x)
Since the interior integral representation formulas for derivative quantities, such as (12), have a nonintegrable singularity for x ∈ 𝜕Ω, they cannot directly be used in that case. Instead, one has to resort to a more involved procedure, based on either a careful limiting process or a regularization, in order to formulate mathematically valid integral representation formulas for observation points on the boundary. Obtaining such identities is the subject of an abundant literature, as witnessed in the survey paper by [START_REF] Tanaka | Regularization techniques applied to boundary element methods[END_REF]. For example, combining an integration by parts procedure [START_REF] Sladek | Three-dimensional curved crack in an elastic body[END_REF]) and a regularization approach [START_REF] Bonnet | Regularized boundary integral equations for three-dimensional bounded or unbounded elastic bodies containing curved cracks of arbitrary shape under dynamic loading[END_REF][START_REF] Bonnet | Regularization of the displacement and traction BIE for 3D elastodynamics using indirect methods[END_REF][START_REF] Krishnasamy | Hypersingular boundary integral equations: their occurrence, interpretation, regularization and computation[END_REF], one obtains the following representation formula for stresses at boundary points:

1 2 𝜎 ij (x)=C ijk𝓁 ∫ 𝜕Ω [D 𝓁b u a (x)-D 𝓁b u a ( y)]Σ k ab (y, x) dS x -∫ 𝜕Ω [t a (x)-t a (y)]Σ a ij (x, y) dS x + ∫ Ω Σ a ij (x, x)f a (x) dV x + D 𝓁b u a ( y)C ijk𝓁 A k ab ( y,𝜕Ω) -t a (y)A a ij (y,𝜕Ω) ( 13 
)
where it is assumed that the Kelvin fundamental solution (8), ( 9) is used and with

A k ij (x, S)= -1 8𝜋(1 -𝜈) [(1 -2𝜈)(𝛿 ik I j + 𝛿 sk I i -𝛿 ij I k ) + 3J ijk ] (14) I a (x, S)= ∫ S ( 1 r r ,n -K ) n a dS x r -∫ 𝜕S 𝜈 a ds x r (15) 3J abc (x, S)=𝛿 ac I b (x, S)+𝛿 bc I a (x, S) + ∫ S (r ,b r ,p D pa n c -D a (n b n c )-D b (n a n c )) dS x r + ∫ S (2n a n b -r ,a r ,b )n ,c K dS x r + 𝛿 ab ∫ S n c r ,n dS x r 2 -2 ∫ S n a n c n b r ,n dS x r 2 + ∫ 𝜕S (𝜈 a n c n b + 𝜈 b n c n a -r ,a r ,b 𝜈 c ) ds x r + ∫ 𝜕S (𝜈 p n a -𝜈 a n p )r ,p r ,b n c ds x r ( 16 
)
In equations ( 13)-( 16), the notation D i f stands for the tangential part of the Cartesian derivative f ,i (i.e.,

D i f ∶= f ,i -n i n j f ,j ), D ij f ∶= n i f ,j -n j f ,i = n i D j f -n j D i f is another combination of tangential derivatives, K ∶= D i n i is (minus twice) the mean curvature of the surface, r ,n ∶= (x i -y i )n i (x)
∕r is the normal derivative of the distance function, and 𝝂 denotes the unit normal to the edge 𝜕S of S lying in the plane tangent to S and pointing outside of S.

The stress representation formula ( 13) is regularized in that the differences [D 𝓁b u a (x)-D 𝓁b u a (y)] and [t a (x)-t a ( y)] partially cancel the corresponding singular factor, so that overall the surface integrals are convergent in the ordinary sense. The regularization is effective only provided 𝛁 u (and hence 𝝈) is continuous at y (technically, one needs to assume that 𝛁 u has C 0,𝛼 Hölder regularity at x = y). This smoothness requirement is clearly sufficient, and numerical implementations are generally designed so as not to violate it, despite the severe constraints entailed (Section 6). Still, its necessary character has been the subject of some controversy [START_REF] Cruse | Non-singular somigliana stress identities in elasticity[END_REF][START_REF] Martin | Hypersingular integrals: how smooth must the density be?[END_REF][START_REF] Martin | Smoothness relaxation strategies for singular and hypersingular integral equations[END_REF]. Representation formulas of strain or stress on the boundary have been obtained using many strategies, including the direct approach, so that many equivalent forms have been proposed. A selection of references includes studies on fundamental issues [START_REF] Frangi | Free terms and compatibility conditions for 3D hypersingular boundary integral equations[END_REF][START_REF] Schwab | Kernel properties and representations of boundary integral operators[END_REF], the development of direct approaches for defining BIEs with hypersingular kernels [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF][START_REF] Guiggiani | Hypersingular formulation for boundary stress evaluation[END_REF][START_REF] Guiggiani | Formulation and numerical treatment of boundary integral equations with hypersingular kernels[END_REF][START_REF] Frangi | Fracture propagation in 3D by the symmetric Galerkin boundary element method[END_REF]Guiggiani, 1999, 2000), and other works of interest [START_REF] Hildenbrand | Numerical computation of hypersingular integrals and application to the boundary integral equation for the stress tensor[END_REF][START_REF] Toh | Hypersingular and finite part integrals in the boundary element method[END_REF].

THE BOUNDARY ELEMENT METHOD IN ELASTICITY: COLLOCATION

BEM discretization

To introduce the BEM discretization in its simplest form, let us consider the regularized integral equation ( 11) without body forces and initial strains, that is

κu k ( y)+ ∫ 𝜕Ω {T k i ( y, x)[u i (x)-u i (y)] -U k i (y, x)t i (x)} dS x = 0 ( y ∈ 𝜕Ω) (17)
where y ∈ 𝜕Ω is generally referred to as a collocation point 

(
𝝃 =(𝜉 1 ,𝜉 2 )∈[-1, 1] 2 or the triangle 0 ≤ 𝜉 1 + 𝜉 2 ≤ 1,𝜉 1 ≥ 0,𝜉 2 ≥ 0)
. Each physical element E e of the approximate boundary is mapped onto its parent element Δ e (Figure 2) through

𝝃 ∈Δ e → x(𝝃)= N e ∑ q=1 N q (𝝃)x q 𝝃 ∈Δ e ( 18 
)
in terms of N e geometrical nodes x q of 𝜕Ω and N e shape functions N q (𝝃), which are usually taken as interpolation polynomials originally introduced for the FEM in two dimensions. Then, the natural basis (a 1 , a 2 ), metric tensor g,a n d unit normal n on E e are given by

a 𝛼 (𝝃)= N ∑ q=1 N q ,𝛼 (𝝃)x q g 𝛼𝛽 (𝝃)=a 𝛼 (𝝃) ⋅ a 𝛽 (𝝃) J(𝝃)n(𝝃)=a 1 ∧ a 2 J 2 (𝝃)=(g 11 g 22 -g 2 12 )(𝝃)
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The unknown boundary fields (u, t) are also interpolated in terms of nodal values u k = u(z k ) and t k = t(z k ) at interpolation nodes z k . In general, the set of interpolation nodes may differ from the set of the geometrical nodes, and the set of interpolation functions does not necessarily coincide with the set of shape functions. The presentation is here limited to the simplest case, referred to as isoparametric interpolation, where all these sets coincide, in which case, the unknowns are interpolated using

u(y)= N e ∑ q=1 N q (𝝃)u q t( y)= N e ∑ q=1 N q (𝝃)t q (𝝃 ∈Δ e ) (20)
Usually, the integral equation ( 17) is collocated at all nodes of the mesh (i.e., for y = y Q ,1≤ Q ≤ N N ), and thus takes after the discretization process the following form:

0 = ∑ e∈ Ī(y Q ) { -u Q i Âki (y Q , e)+ N e ∑ p=1 { A ki (y Q , e, p)u m(e,p) i -B ki (y Q , e, p)t m(e,p) i } } + ∑ e∈I(y Q ) N e ∑ p=1 { Ãki (y Q , e, p) × u m(e,p) i -B ki (y Q , e, p)t m(e,p) i } (1 ≤ Q ≤ N N , 1 ≤ k ≤ 3) (21)
where m(e, p) denotes the global number of the pth node of element E e and with the element matrices

B ki (y Q , e, p)= ∫ E e M p (𝝃)U k i (y Q , x(𝝃))J(𝝃) d𝝃 A ki (y Q , e, p)= ∫ E e M p (𝝃)T k i (y Q , x(𝝃))J(𝝃) d𝝃 Ãki (y Q , e, p)= ∫ E e [M p (𝝃)-M p (𝜼)]T k i (y Q , x(𝝃))J(𝝃) d𝝃 Âki (y Q , e)= ∫ E e T k i (y Q , x(𝝃))J(𝝃) d𝝃
where 𝜼 denotes the antecedent of y Q on Δ e . The integration procedures for the calculation of these element matrices crucially depends on whether the collocation point is located on the integration element E e or not; this distinction is emphasized in the above expressions by introducing the index subsets

I( y)={e ∈[1, N E ], y ∈ E e },a n d Ī(y)= [1, N E ]∖I(y).
The previously described discretization method is applicable, with straightforward adaptations, to many other types of BIEs.

Solution of the linear system of BEM equations

The linear system of equation ( 21) takes the form

[A]{u}+[B]{t}=𝟎 (22) 
where [A] and [B] are fully populated N × N matrices (where N = 3N N )a n d{u}={u m i },a n d{t}={t m i } combined gather 2N scalar degrees of freedom (DOFs). The latter are constrained by N additional relations expressing the boundary conditions. Appropriate column swapping between the matrices [A] and [B] allows the separation of knowns (sent to the right-hand side) and unknowns (kept in the left-hand side). Equation ( 22) thus becomes a square linear system of equations:

[K]{X}={Y} (23) 
where {X} denotes an N-"vector" gathering all the scalar components of {u}, {t} that remain unknown, the matrix K, of size N × N, is made of the columns [A], [B] associated to the DOFs in {X},and{Y} is the right-hand side equal to (minus) the sum of those columns of [A], [B] associated to known components of {u}, {t} multiplied by the value taken by these components. In practice, the actual construction of the matrices [A], [B] is best avoided, and the assembly procedure will directly produce [K] and {Y}. Furthermore, the incorporation of the boundary data need not make explicit use of nodal values, but results instead from a direct integration of the relevant contributions of equation ( 17) when the prescribed data is analytically known as a function of the point coordinates. The assembly CPU time is O(N 2 ).

The matrix [K] in ( 23) is fully populated and nonsymmetric. Therefore, equation ( 23) is usually solved by means of either an LU decomposition-based direct solver [an O(N 3 ∕3) procedure] or a generalized minimal residual (GMRES) iterative algorithm [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF]; see Linear Algebraic Solvers and Eigenvalue Analysis.Both memory and CPU time requirements make BEM equations difficult and expensive to solve for large numbers of DOFs, using the standard approach as described in this section. This has prompted the development of fast solution techniques (Section 5) for large problems.

Numerical integration

The element matrices are usually evaluated using numerical integration techniques, which are selected according to whether the integral is nonsingular, singular, or nearly singular. Additionally, significant effort has been directed toward analytical integrations when possible [START_REF] Aimi | Hypersingular kernel integration in 3D Galerkin boundary element method[END_REF][START_REF] Carini | Analytical integrations in 3D BEM: preliminaries[END_REF]Nintcheu Fata, 2009;[START_REF] Niu | A semi-analytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods[END_REF][START_REF] Salvadori | Analytical integrations of hypersingular kernel in 3D BEM problems[END_REF][START_REF] Salvadori | Analytical integrations in 2D BEM elasticity[END_REF].

Nonsingular integrals

They occur when the collocation point is located away from the element. Standard quadrature techniques, usually of Gaussian type, are used. They are described in many books on numerical integration [START_REF] Davis | Methods of Numerical Integration[END_REF][START_REF] Stroud | Gaussian Quadrature Formulas[END_REF] or on computational mechanics. Owing to the O(|y Q -x| -1 ) or O(|y Q -x| -2 ) behavior of the fundamental solutions, it is advisable to adjust the number of Gauss points used according to the distance of y Q to E e (in relative terms, that is, compared to the element characteristic length). Criteria are proposed for that purpose in [START_REF] Lachat | Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics[END_REF] and [START_REF] Rezayat | On time-harmonic elastic wave analysis by the boundary element method for moderate to high frequencies[END_REF], among others.

Singular integrals

They occur when the collocation point is located on the element; in the isoparametric case, it is then located at one of the element nodes. When the BEM equations are obtained from a regularized integral equation like (17), the singular element integrals [here Ãki (y Q , e, p) and B ki (y Q , e, p) of equation ( 21)] are convergent. Still, their accurate numerical computation requires their transformation into nonsingular integrals. This is usually done using a variable transformation in the parametric coordinates 𝝃. The two most commonly used transformations are based on polar coordinates or Duffy triangular coordinates, respectively. Details can be found in textbooks on BEM, for example, [START_REF] Aliabadi | The Boundary Element Method: Applications in Solids and Structures[END_REF], Bonnet (1999a), and[START_REF] Kane | Boundary Element Analysis in Engineering Continuum Mechanics[END_REF]. If Δ e is the unit square 𝝃 ∈[-1, 1] 2 , such transformations have the form

{ 𝜉 1 = 𝜂 1 + u cos v 𝜉 2 = 𝜂 2 + u sin v (polar) { 𝜉 1 = u + 𝜂 1 (1 -u) 𝜉 2 = uv + 𝜂 2 (1 -u) (Duffy) (24) 
Note that the above Duffy coordinates map the triangle of vertices {𝜼, 𝝃 =(-1, 1), 𝝃 =(1, 1)}, that is, one of the four possible triangles sharing the vertex 𝜼, onto the set {0 ≤ u ≤ 1, -1 ≤ v ≤ 1} (Figure 3); similar transformations must be derived for the three other triangular subregions of Δ e .I n both cases, one has

|x(𝝃)-y Q | = ur(u, v) with r(0, v) ≠ 0 ξ 1 ξ 2 Δ e (+1) (-1) (-1) (+1) (η 1 , η 2 )
Figure 3. Eight-noded quadrilateral element: notation for the singular integration. The shaded triangular area corresponds to the Duffy coordinate mapping (24). (Reproduced with permission from [START_REF] Bonnet | Materially nonlinear analysis[END_REF]. © Springer 2003.) so that the singular behavior of the fundamental solution is described in terms of the coordinate u. Furthermore, both choices also lead to d𝝃 = ug(u, v)) du dv with g(0, v) ≠ 0 Finally, for all the usual polynomial interpolations, there exist smooth functions Mp (u, v) such that

M p (𝝃)-M p (𝜼 e )=u Mp (u, v)
Therefore, either mapping 𝝃(u, v) is readily seen to transform the integrals Ãki (y Q , e, p) and B ki (y Q , e, p),o ra n y similar weakly singular element integral arising in the BEM, into nonsingular integrals in (u, v), which can therefore be computed numerically using standard schemes, for example, Gaussian quadrature, in the (u, v) coordinates.

For other singular integration strategies, for example, the direct algorithm, the same transformations in 𝝃-space are used in order to evaluate the singular contributions and perform the subsequent limiting processes analytically.

Nearly singular integrals

Integrals on an element E are nearly singular when the observation point y lies outside E but very close to it; the corresponding integrand, although nonsingular, presents a sharp and narrow peak, which makes accurate numerical integration very difficult. Such integrals occur in the case of adjacent elements of very dissimilar sizes, or when attempting to evaluate interior representation formulas such as ( 7) or ( 12) at observation points very close to the boundary. Standard numerical integration techniques usually yield poor results when applied to nearly singular integrals, and special techniques have therefore been proposed. [START_REF] Telles | A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals[END_REF] introduces a transformation of the parametric element Δ e onto itself so as to concentrate Gauss points near the orthogonal projection of y on E. An algorithm based on (orthogonal) projection (of the observation point) and angular and radial (variable) transformation (PART) is presented by [START_REF] Hayami | A numerical quadrature for nearly singular boundary element integrals[END_REF] and refined in further papers. Adaptive techniques have been proposed by [START_REF] Schwab | Variable order composite quadrature of singular and nearly singular integrals[END_REF], among others.

Computation of domain integrals

When nonzero body forces are present, the domain integral

∫ Ω 𝜌F i (x)U k i ( y, x) dV x (25)
appears on the right-hand side in the integral equation, as in (11). Although it can conceivably be computed numerically (at the expense of introducing integration cells, that is, finite element-like domain subdivisions), it is obviously desirable, if at all possible, to convert it into boundary integrals, which is possible in several situations outlined below. The case of domain integrals involving initial strains is deferred to Section 7.

Isotropic elasticity and body forces deriving from a potential

Any fundamental solution U( y, x) for isotropic elasticity is representable in terms of the Galerkin tensor G(y, x) as

U k i ( y, x)=2(1 -𝜈)G k i,jj ( y, x)-G k j,ji (y, x) (26)
where, for the three-dimensional Kelvin fundamental solution, G( y, x) is given by

G k i (y, x)=F( y, x)𝛿 ik = 1 16𝜋(1 -𝜈)𝜇 r𝛿 ik (27)
Also, assume the existence of a potential Φ and a constant b such that 𝜌F = 𝛁 Φ with ΔΦ = b. Then, the domain integral (25) can be converted by means of integrations by parts into a sum of boundary integrals

∫ Ω 𝜌F i U k i dV x = ∫ 𝜕Ω {(1 + 𝜒)Φ[G k j,ii -G k i,ij ]n j + 𝜒Φ ,j n j G k i,i } dS x -𝜒b ∫ 𝜕Ω G k i n i dS x ( 28 
)
(with 𝜒 = 1 -2𝜈). This result includes several important situations: gravity forces (with Φ=-𝜌gy 3 and b

= 0), centrifugal inertia [with Φ(x)=(1∕2)𝜌𝜔 2 R 2 (x), b = 2𝜌𝜔 2 ,
𝜔∕2𝜋 being the rotation frequency and R(x) the distance between x and rotation axis], and thermal loading induced by a steady-state temperature field T verifying ΔT = r (usually r = 0).

Multiple reciprocity method

Again in the context of using the three-dimensional Kelvin solution, introduce

G k(N) i (y, x)= 1 16𝜋𝜇(1 -𝜈) 𝛿 ik r 2N+1 (2N + 2)!
Then, the sequence U (N) (y, x), N ≥ 0 of fundamental solutions defined by applying (26) to G (N) (y, x) thus defined is such that U (0) ( y, x)=U(y, x) and U (N) (y, x)= U (N+1) ( y, x). Repeated applications of the third Green identity to (25) then yield

∫ Ω F ⋅ U k dV x = ∫ Ω N F ⋅ U k(N) dV x + N-1 ∑ p=0 ∫ 𝜕Ω (U k(p+1) ,n ⋅ p F -U k(p+1) ⋅ ( p F) ,n ) dS x
for an arbitrary value of N ( p denotes the vector Laplace operator iterated p times).

Miscellaneous issues

Interpolation of the traction vector

The traction vector is usually discontinuous across edges or at corners, whereas usual interpolation of the conformal type enforces continuity. This apparent contradiction can be addressed in several ways, depending on the particular situation at hand. When all faces adjacent to an edge or corner except one support prescribed tractions, the prescribed contributions contribute directly to the r.h.s. of ( 23) and the nodal DOFs refer to the face supporting unknown tractions. When at least two adjacent faces support unknown tractions (a not-so-frequent situation), several options are available:

• Use discontinuous elements for the tractions, that is, elements for which all traction nodes are interior. Two drawbacks of this approach are (i) unwanted traction discontinuities are introduced, and (ii) there is a sharp increase in the number of traction DOFs. • Treat the nodes located on edges or corners as double or multiple nodes, that is, consider them as separate nodes (one per face) that happen to be located at the same geometrical point (see [START_REF] Sladek | Why use double nodes in BEM?[END_REF] for a critical discussion of this approach).

• Use selectively discontinuous elements, as proposed by [START_REF] Patterson | Interelement continuity in the boundary element method[END_REF], where only nodes originally located on edges or corners are moved away from them, so as to enforce or relax traction continuity as needed. This is similar to the multiple-node approach, except that the relevant nodes are geometrically distinct as well due to shifting. It is best to avoid shifting by too small an amount in order to avoid nearly singular integrations when traction nodes are also collocation points.

Postprocessing: computation of elastic field values at interior points

The evaluation of interior representation formulas such as ( 7) or ( 12) is a straightforward task, except (as mentioned before) for observation points very close to the boundary. The computational cost is O(N) for each observation point, x, because all integrals must be recomputed when x is changed. Therefore, evaluating, for example, the stress distribution over a grid of observation points, can be computationally expensive, and benefit greatly from the kind of acceleration techniques presented in Section 5.

Postprocessing: evaluation of stresses on the boundary

Once the BEM equations are solved, the displacement and traction distributions on the boundary are known. In principle, the stress tensor can be computed at any point of the boundary from this information. Writing the displacement gradient 𝛁 u in its tangential and normal parts 𝛁 S u and u ,n , one has

𝝈(y)=C ∶(𝛁 S u + u n ⊗ n)(y)( y ∈ 𝜕Ω) (29)
The tangential gradient 𝛁 S u can be computed by means of a differentiation of the displacement interpolation (20), while the normal derivative u ,n is expressible in terms of t and 𝛁 S u from the relation

t = n ⋅ C ∶(𝛁 S u + u n ⊗ n) ( 30 
)
This method is computationally economical but not always accurate [START_REF] Guiggiani | Hypersingular formulation for boundary stress evaluation[END_REF]. A better but more expensive approach consists of evaluating the integral representation formula for the stress on the boundary, either in a regularized form such as (13) or by means of the direct algorithm for hypersingular integrals [START_REF] Guiggiani | Hypersingular formulation for boundary stress evaluation[END_REF][START_REF] Guiggiani | Formulation and numerical treatment of boundary integral equations with hypersingular kernels[END_REF]. Each stress e v a l u a t i o ni st h e na nO(N) computation, so the cost using standard methods can become significant for a large number of evaluation points.

THE BOUNDARY ELEMENT METHOD IN ELASTICITY: SYMMETRIC GALERKIN

As emphasized in the previous section, the standard (collocation) approach to BEM leads to matrix equations whose matrix has, in general, no symmetry. Since (assuming the use of direct solvers and keeping the problem size fixed) both storage and computing time requirements for a symmetric BEM formulation would be half those for a nonsymmetric BEM formulation, there is a strong practical incentive to derive symmetric BEM formulations. In addition, formulations based on symmetric operators are more amenable to mathematical justification (existence, uniqueness, and convergence properties of the numerical scheme). Since the fundamental variational principles of solid mechanics involve symmetric energy bilinear operators, the possibility of deriving symmetric BEM formulations is to be expected. The collocation BEM is based on displacement integral equations like (17) or traction integral equations like the inner product of ( 13) by n j (y), which have the form of pointwise residuals set equal to zero: r U k ( y)=0orr T i ( y)=0, respectively. It is natural to consider weighted residual forms of such equations, in analogy with the weak formulations on which FEMs are based, in the form

∫ 𝜕Ω tk ( y)r U k (y) dS y = 0a n d ∫ 𝜕Ω ũi (y)r T i ( y) dS y = 0
where tk ( y) and ũi (y) are trial functions, their notations being chosen so that the weighted residuals are work-like. They are usually referred to as Galerkin boundary element method (GBEM) formulations. In particular, GBEM formulations lead to relaxed smoothness requirements on the unknowns compared to the collocation of residuals. This constitutes a substantial practical advantage for the traction integral equation, which, among other things, is an essential component of BEM formulations for fracture mechanics (Section 6). SGBEM formulations are also useful for multidomain configurations, as shown by, for example, [START_REF] Kallivokas | A symmetric Galerkin BEM variational framework for multi-domain interface problems[END_REF].

Although GBEM formulations need not be symmetric [START_REF] Parreira | On the implementation of the Galerkin approach in the boundary element method[END_REF], most of the research on GBEM formulations has been directed toward symmetric Galerkin boundary element method (SGBEM) formulations. Mathematical expositions of SGBEMs can be found in books by, for example, [START_REF] Sauter | Boundary Element Methods[END_REF] and [START_REF] Steinbach | Numerical Approximation Methods for Elliptic Boundary Value Problems[END_REF], whereas general references on SGBEMs for solid mechanics include the review article by Bonnet et al. (1998a) and the book by Sutradhar et al. (2008). The symmetry in the GBEM formulation is achieved by selecting the trial functions in a manner that is dependent on the boundary condition structure of the problem at hand. For the sake of definiteness, assume that 𝜕Ω is split into two disjoint and complementary components S u and S t on which displacements and tractions, respectively, are prescribed, that is

u = ū (on S u ), t = t (on S t ) (31) 
Representative examples of the implementation of SGBEMs for solid mechanics problems include [START_REF] Burgardt | Contribution à l'étude des méthodes des équations intégrales et à leur mise en oeuvre numérique en élastoplasticité[END_REF][START_REF] Haas | A symmetric Galerkin BEM implementation for 3D elastostatic problems with an extension to curved elements[END_REF]Frangi et al., 2001). The indeterminacy of SGBEM formulations where whole internal connected components of the boundary support traction-free conditions (e.g., for solids containing voids) has been analyzed and solved by [START_REF] Freddi | Symmetric Galerkin BEM for bodies with unconstrained contours[END_REF].

Variational formulation

It is interesting to see that the SGBEM formulation for linear elasticity (assuming the absence of body forces and initial strains) is not merely a weighted residual statement, but can be established from fundamental variational principles of linear elasticity. To that purpose, consider the augmented potential energy

E(v)= ∫ Ω 𝜺(v)∶C ∶ 𝜺(v) dV -∫ S t t ⋅ v dS -∫ S u t(u) ⋅ (v -ū) dS (32)
where the prescribed displacement appears explicitly as a constraint term. Letting v = u + 𝛿u, the stationarity condition is

𝛿E(u)= ∫ Ω 𝜺(u)∶C ∶ 𝜺(𝛿u) dV -∫ S t t ⋅ 𝛿u dS -∫ S u t(u) ⋅ 𝛿u dS = 0 (∀𝛿u)
where the variations 𝛿u are unconstrained and the boundary condition (31a) must be enforced additionally. Restricting the stationarity equation to trial functions 𝛿u, which satisfy the elastic equilibrium field equation (i.e., div (C∶𝜺(𝛿u)) = 𝟎), an integration by parts leads to

𝛿E(u)= ∫ S t ū ⋅ t(𝛿u) dS + ∫ S u u ⋅ t(𝛿u) dS -∫ S t t ⋅ 𝛿u dS -∫ S u t(u) ⋅ 𝛿u dS = 0 (∀𝛿u, div (C ∶ 𝜺(𝛿u)) = 𝟎) (33)
Any such trial functions can be expressed using ( 7) and ( 12) in the form of integral representations:

𝛿u k (x)= ∫ S t ũi (x)T k i (x, x) dS x -∫ S u ti (x)U k i (x, x) dS x (34) 𝛿t k (x)= ∫ S t ũi (x)D ijk𝓁 (x, x)n j (x)n 𝓁 (x) dS x -∫ S u ti (x)T k i (x, x) dS x (35)
Inserting ( 34) and ( 35) into the stationarity equation ( 33), in principle, yields the desired SGBEM formulation. However, owing to the presence of the strongly singular kernel 1∕r2 ) and the hypersingular kernel D ijab (x, x)= O(1∕r 3 ), a more careful approach is called for, involving a limiting process. This technical step is well documented and can be performed using either a limit-to-the-boundary approach [START_REF] Gray | Evaluation of singular and hypersingular Galerkin integrals: direct limits and symbolic computation[END_REF], an extension to SGBEM of the direct algorithm [START_REF] Bonnet | Direct evaluation of double singular integrals and new free terms in 2D (symmetric) Galerkin BEM[END_REF], or a regularization (Bonnet, 1995c). All three strategies aim at formulating mathematically well-defined sets of SGBEM equations that are amenable to numerical implementation. The various SGBEM formulations thus obtained may be superficially different but are equivalent. The SGBEM formulation obtained following the regularization approach is as follows:

T k i (x, x)=O(
Find û ∈  u , t ∈  t such that {  uu ( û, ũ)+ tu (t, ũ)= u ( ũ; t)  ut ( û, t)+ tt (t, t)= t ( t; ū) ∀ ũ ∈  u , ∀ t ∈  t (36)
where the sets  u ,  t of admissible functions are

 u ={ũ | ũ ∈ C 0,𝛼 (S t ) and ũ = 𝟎 on 𝜕S t }  t ={ t | t piecewise continuous on S u }
while the bilinear operators are given by

 uu ( û, ũ)= ∫ S t ∫ S t R q ûi (x)R s ũk (x) × B ikqs (x, x) dS x dS x (37)  tu (t, ũ)=- ∫ S u ∫ S t t k (x)ũ i (x)T k i (x, x) dS x dS x =  ut ( ũ, t) (38)  tt (t, t)= ∫ S u ∫ S u t k (x)t i (x)U k i (x, x) dS x dS x (39)
and the linear operators are given by

 u ( ũ)= ∫ S t ( κ(x)-1)t k (x)ũ k (x) dS x -∫ 𝜕Ω ∫ S u R q ûi (x)R s ũk (x)B iqks (x, x) dS x dS x + ∫ S t ∫ S t tk (x)[ũ i (x)-ũ i (x)]T k i (x, x) dS x dS x -∫ S t ∫ S u tk (x)ũ i (x)T k i (x, x) dS x dS x (40)  t ( t)= ∫ S u κ(x)t k (x)ū k (x) dS x + ∫ S u ∫ 𝜕Ω tk (x)[ ûi (x)-ûi (x)]T k i (x, x) dS x dS x -∫ S u ∫ S t tk (x)t i (x)U k i (x, x) dS x dS x (41)
In equations ( 40) and ( 41), the function κ(x) is such that either κ(x)=0(ifn is exterior to 𝜕Ω at x, e.g., when 𝜕Ω is the external boundary of a bounded body) or κ(x)=1(ifn is interior to 𝜕Ω at x, e.g., when 𝜕Ω is the boundary of an unbounded medium or of a cavity).

One key identity in obtaining this result, due to [START_REF] Nedelec | Integral equations with non integrable kernels[END_REF], reads

D ijk𝓁 (x, x)n j (x)n 𝓁 (x)=R x q R x s B ikqs (x, x)
where R a f ≡ e abc n b f ,c is the surface curl operator and

B ikqs (x, x)= 𝜇 4𝜋(1 -𝜈)r [𝛿 qs r ,i r ,k + 𝛿 ik 𝛿 qs -2𝜈𝛿 is 𝛿 qk -(1 -𝜈)𝛿 iq 𝛿 ks ]
This identity, together with a variant of the Stokes formula, allows the transformation of the integral containing the hypersingular kernel D ijk𝓁 (x, x)n j (x)n 𝓁 (x) into one involving the weakly singular kernel B ikqs (x, x)=O(1∕r) instead. The symmetric character of the GBEM formulation (36-41) can be checked by close inspection. In particular, a new unknown û defined by

û = u -û on S t
has been introduced, so that both û and ũ are in the same function space  u .

Solution of the linear system of SGBEM equations

Interpolating the boundary and the unknowns in the manner described in Section 3, a system of linear equations of the form

[ B uu -B tu -B ut B tt ]{ U T } = { L u L t } (42)
is eventually reached. It is important to note that the matrix is symmetric but not sign-definite (except for the special cases of pure Dirichlet and pure Neumann problems). Thus, Cholesky decomposition does not apply except for the special cases. However, direct linear solvers for indefinite symmetric matrices are expounded in [START_REF] Golub | Matrix Computations (2nd edn)[END_REF], and codes are provided, for example, in software libraries like LAPACK [START_REF] Anderson | Lapack Users' Guide (2nd edn)[END_REF]. Such direct solvers, as well as the Cholesky algorithm for sign-definite symmetric matrices, need O(N 3 )∕6 arithmetic operations.

In addition, iterative solvers like biconjugate gradient or GMRES can also be applied to (42). Iterative solvers are discussed in [START_REF] Greenbaum | Iterative Methods for Solving Linear Systems[END_REF] in general terms, and in (Hackbusch and Wittum, 1996;Wendland, 1997) in connection with SGBEM.

Numerical integration

The SGBEM involves double element integrals. For example, the bilinear operator  tt gives rise to

∫ E ∫ E ′ N p (𝝃)N p( ξ)U k i (x(𝝃), x( ξ))J(𝝃)J( ξ) d𝝃 d ξ
There are four kinds of double element integrals, with singularity of increasing severity:

(i) Disjoint integrations, where E and E ′ are separated; they are nonsingular and can be computed using, for example, Gauss quadrature formulas (either Cartesian products of 1D Gaussian rules or 4D Gaussian rules; see [START_REF] Stroud | Approximate Calculation of Multiple Integrals[END_REF]). (ii) Vertex-adjacent integrals, where E and E ′ share a common vertex. (iii) Edge-adjacent integrals, where E and E ′ share a common edge. (iv) Coincident integrals, where E = E ′ .

In cases (ii), (iii), and (iv), it is best to treat the integrals as Four dimensional rather than a succession of two-dimensional integrals (in the latter case, situations (ii) and (iii) may give rise to nearly singular integrals over E ′ for Gauss points in E close to a vertex or edge, for which care must be exercised). Variable transformations such as generalizations of Duffy coordinates for the 4D (𝝃, ξ)-space (Frangi et al., 2001) then allow recasting of all these singular integrals into nonsingular integrals.

Analytical integration approaches have also been developed for the double element integrals arising in the SGBEM, see, for example, [START_REF] Carini | Analytical integrations for two-dimensional elastic analysis by the symmetric Galerkin boundary element method[END_REF] or [START_REF] Lenoir | Evaluation of 3-d singular and nearly singular integrals in Galerkin BEM for thin layers[END_REF].

FAST SOLUTION TECHNIQUES

As mentioned in Sections 3 and 4, the fully populated character of the governing matrix operator in the discretized BEM equations ( 23) or ( 42) creates severe limitations in the size of BEM discretizations (typically to around 10 000 DOFs), because of both memory space and computing time requirements, when conventional methods such as these previously discussed are used. In particular, recall that the solution using direct algorithms is an O(N 3 ) computation.

To improve this situation, the main remedy consists of using iterative solvers. Algorithms such as GMRES [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF] for general (possibly unsymmetric) invertible matrices or the conjugate gradient for symmetric positive-definite matrices require repeated calculations of matrix-vector products [K]{X}, where {X} assumes various trial values for the unknown DOFs until convergence is reached. In particular, the governing matrix [K] need not be stored. Computing one matrix-vector product is an O(N 2 ) task. Hence, solving the BEM equations iteratively is an O(KN 2 ) task, where K depends on parameters such as the iteration count, preconditioning methods, and accuracy requested for convergence, and usually increases slowly with N (i.e., K(N)∕N = o(1) for large N). This is a step in the right direction, but the O(N 2 ) cost of matrix-vector products still remains a significant obstacle. Furthermore, storage of the governing matrix [K] is avoided only at the cost of recomputing it each time, a lengthy O(N 2 ) computation because of the high cost of numerical integration.

To significantly accelerate BEM algorithms for large-sized problems, it is therefore essential that the matrix-vector products be computable, at least in an approximate way, with a complexity better than O(N 2 );( s e eMultigrid Methods for FEM and BEM Applications, Panel Clustering Techniques and Hierarchical Matrices for BEM and FEM). Several approaches, outlined in the remainder of this section, are available for doing so. In the interest of a compact exposition, it is worth noting that all matrix-vector products relevant to the BEM arise from the discretization of integral operators having the generic form

[u](x) ≡ ∫ 𝜕Ω K(x, x)u(x) dS x (43)
leading to a generic discretized form [K]{u}, via either a collocation or a Galerkin formulation.

The fast multipole method

The evaluation of [K]{u} by classical methods is a O(N 2 ) task because the kernel K(x, x) is a two-point function; thus all element integrals must be recomputed each time a new location of x is used. The fast multipole method (FMM) relies on a series expansion of K(x, x) in the form

K(x, x)= ∑ n≥0 k (1) n (x, x 0 )k (2) n (x, x 0 ) (44) with |x -x 0 | < |x -x 0 |. The functions k (1) n (x, x 0 ) are singular at x = x 0 , while k (2)
n (x, x 0 ) are smooth at x = x 0 . The truncation error bound of the series for a truncation level n = p is known and typically depends on the ratio |xx 0 |∕|xx 0 | (a smaller ratio requiring a lower p to achieve a given level of accuracy). Expansions of the form (44) can be found by means of a Taylor expansion w.r.t. x about x 0 (k (2) n (x, x 0 ) being, in that case, polynomials), like in [START_REF] Fu | A fast solution method for the three-dimensional many-particle problems of linear elasticity[END_REF]. For kernels related to Laplace, elastostatics, or Stokes flow problems (among others), expansions (44) can also be formulated from that of 1∕|x -x| involving spherical harmonics. The value at x of K(x, x) then takes the form of a superposition of the effects of monopoles, dipoles, quadrupoles, and so on, located at x, that is, multipoles.

One essential feature of ( 44) is the reformulation of K(x, x) into a sum of products of functions of x and functions of x, which means that integrations w.r.t. x performed for one choice of x can be reused for another x, thus enabling a complexity better than O(N 2 ). However, since (44) holds only for integration points closer to the origin x 0 than the collocation point x, the same origin x 0 cannot be used for all the element integrations. One idea is to divide the BE mesh into M regions S m (1 ≤ m ≤ M). The contribution of S m to the integral ( 43) is then evaluated by standard (singular or nonsingular) procedures if x lies on S m or a region adjacent to S m , and invoke (44) with x 0 = x m 0 ∈ S m when x lies on a non-adjoining region. An operation count evaluation shows that the optimal choice m = O(N 2∕3 ) leads to a O(N 4∕3 ) complexity for the overall matrix-vector evaluation [START_REF] Nishimura | Fast multipole accelerated boundary integral equation methods[END_REF].

The FMM, first introduced in [START_REF] Rokhlin | Rapid solution of integral equations of classical potential theory[END_REF] and [START_REF] Greengard | A fast algorithm for particle simulations[END_REF], improves on this idea. Contributions to the evaluation of (43) of elements containing x or close to x are evaluated using the traditional element integration methods (this is a O(N) contribution to the overall matrix-vector computation). Other contributions are evaluated on the basis of the kernel expansion (44) recast in the form

K(x, x)= ∑ m≥0 ∑ n≥0 h (1) m (x, x0 )T mn (x 0 , x 0 )k (2) n (x, x 0 ) (45)
where the new origin x0 is closer to x than to x. Then, one has

∫ S x K(x, x)u(x) dS x = ∑ m≥0 h (1) m (x, x0 )L m (x 0 )
where S x denotes a subset of 𝜕Ω such that x ∉ S x, and with the local expansion L m (x 0 ) given by

L m (x 0 )= ∑ n≥0 T mn (x 0 , x 0 )M n (x 0 )
in terms of the multipole moments M n (x 0 ):

M n (x 0 )= ∫ S x k (2) n (x, x 0 )u(x) dS x
One sees that the local expansions L m (x 0 ) allow the computation of [u](x) for all x sufficiently close to x0 .

In addition, a hierarchical tree structure of elements is introduced. For that purpose, a cube containing the whole boundary 𝜕Ω, called level-0 cell, is divided into eight cubes (level-1 cells), each of which is divided in the same fashion. Al e v e l -𝓁 cell is divided into level-(𝓁 + 1) cells unless it contains less than a preset (relatively small) number of boundary elements. The FMM algorithm then consists of the following:

• An upward pass where multipole moments are first computed for the lowest level cells and then recursively aggregated by moving upward in the tree until level 2 (for which there are 4 × 4 × 4 cells overall) is reached. This operation requires identities of the form

k (2) n (x, x 1 )= ∑ n ′ ≥0 c nn ′ (x 1 , x 0 )k (2) n ′ (x, x 0 )
where the coefficients c nn ′ (x 1 , x 0 ) are known for the usual fundamental solutions, which allow shifting of the origin from the center of a level-(𝓁 + 1) cell to the center of ale v el-𝓁 cell (multipole-to-multipole, or M2M, translation). • A downward pass where local expansions are first computed at level 𝓁 = 2 and then evaluated at selected lower level cells by tracing the tree structure downwards. This operation requires identities allowing shifting the origin from the center of a level-𝓁 cell to the center of a level-(𝓁 + 1) cell (local-to-local, or L2L, translation), which have the form

h (1) m (x, x1 )= ∑ m ′ ≥0 b mm ′ (x 1 , x0 )h (1) m ′ (x, x0 )
where the coefficients b mm ′ (x 1 , x0 ) are known for the usual fundamental solutions. At all levels, only interaction between well-separated cells are so evaluated. • A direct calculation, which includes all singular integrations, where the near-field contributions to the integral operator are evaluated using conventional integration methods.

Detailed descriptions of FMM algorithms can be found in [START_REF] Greengard | A fast algorithm for particle simulations[END_REF], 1997[START_REF] Nishimura | Fast multipole accelerated boundary integral equation methods[END_REF]. For BEM associated with static problems, the FMM is found to be an O(N) task, which is a considerable improvement. Thus, the iterative solution of a system of BEM equations is in this context, an O(KN) computation. [START_REF] Yoshida | Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D[END_REF] present many-crack elastostatic computations where problems with N ∼ 10 5 DOFs are solved in 1-2 h using a 500-MHz computer (the extrapolated solution time using traditional methods would have been measured in weeks). Fast multipole SGBEM implementations are described in [START_REF] Margonari | Fast multipole method applied to the coupling of elastostatic BEM with FEM[END_REF] or [START_REF] Of | The fast multipole method for the symmetric boundary integral formulation[END_REF] and, for crack problems, in [START_REF] Trinh | Solving multizone and multicrack elastostatic problems: a fast multipole symmetric Galerkin boundary element method approach[END_REF], while numerical homogenization computations involving thousands of fibers embedded in a 3D matrix and millions of BE DOFs are presented in [START_REF] Liu | A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model[END_REF]. Applications to MEMS are described in [START_REF] Frangi | On the evaluation of damping in MEMS in the slip-flow regime[END_REF]. Many of the recent developments in FMMs address wave propagation and the computation of time-harmonic or transient responses, see the survey by [START_REF] Chaillat | Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics[END_REF] and for example, [START_REF] Chaillat | A multi-level fast multipole bem for 3-d elastodynamics in the frequency domain[END_REF] or [START_REF] Kager | Fast and data sparse time domain BEM for elastodynamics[END_REF]. Finally, a kernel-independent approach of the FMM is proposed by [START_REF] Ying | A kernel-independent adaptive fast multipole in two and three dimensions[END_REF].

Other methods

Panel clustering method

The panel clustering method was first proposed in [START_REF] Hackbusch | On the fast matrix multiplication in the boundary element method by panel clustering[END_REF], and its elastostatic version can be found in [START_REF] Hayami | Application of the panel clustering method to the three-dimensional elastostatics problem[END_REF]. It has many similarities with the FMM, in that it is based on a tree structure of elements (or "panels") and on an expansion of the kernel. The latter has the form

K(x, x)= ∑ n≥0 k ′ (1) n (x, x 0 )k ′ (2) n (x)
rather than (44); this decomposition can be derived, for example, by means of a Taylor expansion of K(x, x) about x = x 0 . Apparently, the panel clustering method has not been the subject of as many investigations and developments as the FMM. The complexity of the matrix-vector product is found in this case to be O(N(ln N) d+2 ), where d is the spatial dimensionality of the problem (see Panel Clustering Techniques and Hierarchical Matrices for BEM and FEM).

Adaptive cross approximation

The adaptive cross approximation (ACA) technique consists of a sequence of decompositions

[K]=[S k ]+[E k ] (k = 1, 2, •••), where [S k ] is a low-rank approximation of [K], with Rank ([S k ]) ≤ k,a n d[E k ]
is the approximation error. The corresponding algorithm can be found in [START_REF] Kurz | The adaptive cross approximation technique for the 3D boundary element method[END_REF], where it is reported to define an O(r 2 N) computation (r: rank of the final approximant [S]). Numerical examples for the 3D Laplace equation and a FEM-BEM coupled approach for 3D electromagnetic problems are presented in the same reference. [START_REF] Bebendorf | Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation[END_REF] present an ACA-based formulation for linear elasticity.

Wavelet BEM

This method assumes a hierarchical sequence of meshes, that is, one for which the mesh of level 𝓁 + 1 is created by subdividing the elements of the mesh of level 𝓁. 

THE BOUNDARY ELEMENT METHOD FOR FRACTURE MECHANICS

Boundary element methods are quite well suited to fracture mechanics analyses. This is in large part due to the ease in creating boundary meshes for cracked solids, the crack being modeled as one of the component surfaces of the mesh (for elastic problems), whereas producing domain meshes of three-dimensional cracked solids is a much more labor-intensive task, especially since mesh refinement is needed in the vicinity of the crack front. The meshing issue is particularly sensitive for the simulation of crack propagation, where repeated remeshings are needed. A substantial body of published work on the application of BEMs to fracture mechanics is available (see the survey by [START_REF] Aliabadi | Boundary element formulations in fracture mechanics[END_REF] (see Computational Fracture Mechanics).

BEM formulations

For definiteness, consider a bounded elastic body Ω∈ℝ 3 of finite extension, externally bounded by the closed surface S and containing a crack modeled by the open surface Γ (i.e., 𝜕Ω=S ∪Γ), see Figure 4. The displacement u, strain 𝜺, and stress 𝝈 are related by the field equation ( 5) without body forces (i.e., with f = 𝟎). Besides, displacements and tractions are prescribed on the portions S u and S t = S∖S u of S and the crack surface Γ is stress-free, that is

u = ū (on S u ), t = t (on S t ), t = 𝟎 (on Γ) (46)
It is important to emphasize that crack problems cannot be solved solely on the basis of the single-region displacement integral equation ( 17), or any equivalent variant. Indeed, when a traction-free crack is buried in Ω, equation ( 17) becomes

∫ S { T k i ( y, x)[u i (x)-u i (y)] -U k i (y, x)t i (x) } dS x -∫ Γ T k i (y, x)𝜙 i (x) dS x = 0 ( y ∈ S) ( 47 
)
where 𝝓 = u +u -is the crack opening displacement (COD) and the ± signs refer to an arbitrarily chosen orientation of Γ such that the unit normal n is directed from Γ - to Γ + . A simple argument -namely the fact that subtracting from (47) equation ( 17) for the problem with the same boundary data but without crack results in a homogeneous equation, which therefore has either zero or infinitely many solutions -leads to the conclusion that equation ( 47) applied to the boundary value problem ( 5), ( 46) is not uniquely

S u S t t = t _ Γ - Γ + n u = u _ Ω Figure 4. Cracked elastic solid: notation.
solvable [START_REF] Cruse | Boundary Element Analysis in Computational Fracture Mechanics[END_REF]. Therefore, alternative BEM formulations are needed to solve crack problems, and the most common ones are now briefly described. With the exception of the multizone formulation, they all involve a combination of displacement and traction integral equations.

Multizone formulation

This approach consists of dividing Ω into two subregions Ω + and Ω -, so that the crack surface Γ lies in the interface between Ω + and Ω -. Then, the displacement integral equation ( 17) is invoked separately for each subdomain. The traction-free condition on Γ is then applied on each side Ω + and Ω -, together with the perfect bonding conditions on the non-crack part of the interface, through which the two sets of BEM equations are coupled. This approach has the advantage of relying only on the displacement BEM formulation, but at the expense of a substantial increase of the problem size. Besides, the interface has also an adverse effect on meshing simplicity, especially for the simulation of crack propagation where the crack surface must be iteratively updated. For problems involving planar cracks lying on a plane of symmetry, the situation is better, as one needs only to solve the BEM equations on one of the subregions. For problems involving interface cracks between dissimilar materials, the multizone approach is more attractive.

Displacement discontinuity formulation: collocation

Avoiding both the above-mentioned degeneracy and unwanted new interfaces, the displacement discontinuity formulation is based on an association of equation ( 47) for collocation points y ∈ S and a traction integral equation for collocation points y ∈Γ. The latter can be obtained as a variant of (13), and reads

t i ( y)=-n j (x)C ijk𝓁 { D 𝓁b u a (y)A k ab ( y,𝜕Ω) + ∫ Γ [D 𝓁b 𝜙 a (x) -D 𝓁b 𝜙 a ( y)]Σ k ab (y, x) dS x } dS x + ∫ S { n j (x)C ijk𝓁 ×Σ k ab (y, x)D 𝓁b u a (x)-t a (x)T k i (x, y) } dS x ( y ∈Γ) (48) 
where t( y), the traction at the collocation point y ∈Γ,i s here set to zero on account of (46). Formulations equivalent to (48) but involving finite part integrals are also available, together with well-defined techniques (notably the direct algorithm, see [START_REF] Guiggiani | Formulation and numerical treatment of boundary integral equations with hypersingular kernels[END_REF] for the numerical computation of hypersingular element integrals.

Equation ( 48) requires that 𝝓 possess C 1,𝛼 Hölder regularity at x = y. Defining conformal C 1,𝛼 interpolations for 𝝓 is relatively easy for plane problems (boundary elements are curvilinear segments), for example, using Hermite shape functions or Overhauser elements [START_REF] Camp | Overhauser elements in boundary element analysis[END_REF], but much more difficult for three-dimensional situations (boundary elements are surface patches). Besides, failing to enforce the C 1,𝛼 smoothness at y of the interpolation of 𝝓 may lead to inaccurate numerical evaluation of singular integrals [START_REF] Krishnasamy | Hypersingular boundary integral equations: their occurrence, interpretation, regularization and computation[END_REF].

When an interpolation of the usual form ( 20) is used for 𝝓, no collocation point y is allowed to lie on interelement edges; on the other hand, any usual interpolation of 𝝓 has C 1,𝛼 regularity at any point interior to an element. One thus has to choose between • Using conformal interpolations, but collocating (48) at element interior points only. This may lead to overdetermined linear systems of equations, to be solved in the least square sense. Alternatively, equations may be added together so as to obtain a square system of equations. • Using nonconformal interpolations for 𝝓, that is, discontinuous elements, and collocate (48) at the interpolation nodes (all are interior to an element). The required C 1,𝛼 smoothness at the collocation points is thus enforced, and a square system of equations is usually obtained. On the other hand, this procedure increases significantly the number of DOFs supported by the crack surface. • Using simultaneously a C 0,𝛼 interpolation for 𝝓 and another C 0,𝛼 interpolation for its tangential derivatives D ij 𝝓 [START_REF] Polch | Traction BIE solutions for flat cracks[END_REF].

Implementation issues are discussed in many papers, for example, [START_REF] Watson | Boundary elements for cracks and notches in three dimensions[END_REF].

Dual formulation

In the displacement discontinuity method, the unknown on Γ is 𝝓 = u +u -, not the individual displacements u + , u - on the crack faces. This is usually of no consequence, as the usual fracture mechanics parameters, for example, stress intensity factors (SIFs) (Section 6.2) or energy release rate, depend on 𝝓 and not on u + , u -separately.

Nevertheless, in a variant called the dual boundary element method for fracture mechanics problems (Mi and [START_REF] Aliabadi | Dual boundary element method for three-dimensional fracture mechanics analysis[END_REF], the individual displacements u + , u -, not the COD 𝝓, are taken as unknowns on Γ. In that case, the system (47, 48) becomes underdetermined and is supplemented for collocation points y ∈Γwith the displacement integral equation

u + k ( y)+ ∫ S { u i (x)T k i ( y, x)-t i (x)U k i (y, x) } dS y -∫ Γ [𝜙 i (x)-𝜙 i ( y)]T k i (y, x) dS y = 0 (49)

Displacement discontinuity formulation: symmetric Galerkin

The Galerkin formulation for cracks embedded in finite bodies can be established from equations ( 36) by dividing Ω into two subregions Ω + and Ω -, so that the crack surface Γ lies in the interface Γ thus defined, and then combining the formulation (36) for each subdomain (e.g., by considering the tractions on Γ as prescribed for both subdomains, and subtracting the two SGBEM equations  uu ( û, ũ)+ tu (t, ũ)= u ( ũ)) and enforcing the perfect bonding conditions (𝝓 = 𝟎 and t + + t -= 𝟎 on Γ∖Γ)andthe traction-free conditions on Γ.ThisleadstoasetofSGBEM equations of the form

Find û ∈  u , 𝝓 ∈  𝜙 , t ∈  t such that ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩  uu ( û, ũ)+ tu (t, ũ) + 𝜙u (𝝓, ũ)= u ( ũ; t)  ut ( û, t)+ tt (t, t) + 𝜙t (𝝓, t)= t ( t; ū)∀ũ ∈  u , ∀ φ ∈  𝜙 , ∀ t ∈  t  u𝜙 ( û, φ)+ t𝜙 (t, φ)
+ 𝜙𝜙 (𝝓, φ)=0 (50) where the new set  𝜙 of admissible functions is  𝜙 ={ φ | φ ∈ C 0,𝛼 (Γ)and φ = 𝟎 on 𝜕Γ}. One thus sees that ordinary C 0 interpolations for 𝝓 can be used, whereas collocation formulations of the traction integral equation requires, as already mentioned, stronger C 1,𝛼 smoothness at the collocation points. This is a definite advantage for the GBEM approach as applied to crack problems (regardless of its symmetry).

In the simpler case of a crack embedded in an infinite elastic body with a symmetric load t on both crack faces, the SGBEM formulation takes the simpler form

Find 𝝓 ∈  𝜙 such that ∫ Γ ∫ Γ R q 𝜓 i (x)B ikqs (y, x)R s 𝜙 k (y) dS y dS x =- ∫ Γ φ ⋅ t dS (∀ φ ∈  𝜙 ) (51) 
Investigations and numerical implementations of (51), or variants of it, are presented in [START_REF] Bui | An integral equation method for solving the problem of a plane crack of arbitrary shape[END_REF], [START_REF] Gu | Finite element solution of a boundary integral equation for mode I embedded three-dimensional fractures[END_REF], and [START_REF] Xu | Development of a variational boundary integral method for the analysis of fully three dimensional crack advance problems[END_REF], while mathematical foundations are given in [START_REF] Costabel | An improved boundary element Galerkin method for three-dimensional crack problems[END_REF]. Three-dimensional implementations of the finite-body formulation (50) by [START_REF] Li | Symmetric weak-form integral equation method for three-dimensional fracture analysis[END_REF] and Frangi et al. (2001) were found to provide very accurate results even with relatively coarse meshes. Among other applications of SGBEMs to the modeling of fracture and damage, cohesive interface problems are considered in [START_REF] Salvadori | A symmetric boundary integral formulation for cohesive interface problems[END_REF] and [START_REF] Vodička | A quasi-static interface damage model with cohesive cracks: SQP-SGBEM implementation[END_REF]. The extension of SGBEM formulations to cracked anisotropic solids is treated in [START_REF] Rungamornrat | Weakly-singular, weak-form integral equations for cracks in three-dimensional anisotropic media[END_REF]. FMMs have been developed in [START_REF] Lai | Fast boundary element method for three-dimensional solids containing many cracks[END_REF] and [START_REF] Trinh | Solving multizone and multicrack elastostatic problems: a fast multipole symmetric Galerkin boundary element method approach[END_REF], among others, for SGBEM formulations of crack problems.

Computation of stress intensity factors and energy release rate

Quantities of interest for fracture mechanics analyses can be evaluated by postprocessing the boundary field variables computed by means of one of the above-described formulations. They notably include the SIFs, which characterize the intensity of the well-known d -1∕2 singular behavior of strains and stresses near the crack front 𝜕Γ (see Computational Fracture Mechanics):

u i (x)= 1 + 𝜈 E ( 2d 
𝜋 ) 1∕2 K 𝛼 (s)f i (𝜃)+O(d) 𝜎 ij (x)= ( 1 2𝜋d 
) -1∕2 K 𝛼 (s)g ij (𝜃)+O(1) (𝛼 = I, II, III)
where s is the arc length along 𝜕Γ; d = Distance (x,𝜕Γ) and d,𝜃 are polar coordinates in the plane orthogonal to 𝜕Γ containing x;a n df i (𝜃) and g ij (𝜃) are known universal dimensionless functions of 𝜃. An SIF is associated to each of the three basic deformation modes: opening (K I ), sliding (K II ), tearing (K III ). In the BEM, the SIFs are most often evaluated from the interpolated COD 𝝓 = u| 𝜃=𝜋 -u| 𝜃=0 :

• Extrapolation consists of finding the best fit (e.g., using quadratic regression) between the COD interpolation on elements adjacent to the crack front and the theoretical asymptotic expression; • Quarter-node elements take advantage of the fact that, for three-noded quadratic interpolation on lines (used e.g., in BEM formulations for 2D crack problems), selecting the middle node location so that its distance to the crack tip is one-fourth of the element length ensures that the usual quadratic interpolation of 𝝓 possesses the d 1∕2 behavior (see, e.g., Cruse and Wilson, 1977 for early BEM implementations). The fact that the asymptotic behavior of 𝝓 is correctly modeled enhances the accuracy in SIF evaluation. This approach has been refined by [START_REF] Gray | Improved quarter-point crack-tip element[END_REF], where the introduction of a cubic interpolation for 𝝓 supported by the usual three-noded element removes the unwanted O(d) term in the interpolated 𝝓; the SIFs are then evaluated by a simple formula in terms of the nodal values 𝝓 2 , 𝝓 3 at nodes 2 and 3 (node 1 being the crack tip, n,andt, the normal and tangential directions, respectively):

K I ≈ 𝜇 12(1 -𝜈) ( 2𝜋 𝓁 ) 1∕2 [8𝜙 2 n -𝜙 3 n ] K II ≈ 𝜇 12(1 -𝜈) ( 2𝜋 𝓁 ) 1∕2 [8𝜙 2 t -𝜙 3 t ]
The quarter-node concept can be extended to eight-noded and nine-noded elements used for 3D problems, but there are constraints on the shape of elements adjacent to the crack front, which sometimes make them impractical with meshes generated by mesh generators. • Special elements with interpolation functions including a correct representation of the asymptotic crack-front behavior have also been proposed in [START_REF] Cruse | Boundary Element Analysis in Computational Fracture Mechanics[END_REF], [START_REF] Luchi | Boundary elements for three-dimensional crack analysis[END_REF] or (for the SGBEM) [START_REF] Li | Symmetric weak-form integral equation method for three-dimensional fracture analysis[END_REF], among others.

The energy release rate G, that is, (minus) the derivative of the potential energy at equilibrium in infinitesimal perturbations of the crack front is also of primary interest in fracture mechanics, as it is involved in usual crack propagation criteria. It is also obtained by postprocessing the BEM solution, by means of path-independent J integrals [START_REF] Huber | On the decomposition of the J-integral for 3D problems[END_REF], interaction integrals [START_REF] Cisilino | Boundary element analysis of three-dimensional mixed-mode cracks via the interaction integral[END_REF], or a shape sensitivity approach using the concepts outlined in Section 8 (Bonnet, 1999c).

Crack growth

BEMs are well suited to the simulation of crack growth. Repeated remeshings entailed by the incremental simulation of crack growth are much easier with surface BEM meshes than with domain FEM meshes, especially for three-dimensional situations and curved crack shapes that may evolve with growth. In addition, the BEM allows for accurate evaluations of quantities involved in crack growth criteria, such as SIFs, energy release rates, invariant integrals such as the J-integral, or field quantities close to the crack front. A number of studies have been devoted to the simulation of crack growth by the BEM. Three-dimensional situations are addressed by dell'Erba and [START_REF] Dell'erba | Three-dimensional thermomechanical fatigue grack growth using BEM[END_REF] for thermoelasticity, [START_REF] Frangi | Fracture propagation in 3D by the symmetric Galerkin boundary element method[END_REF] using the SGBEM, [START_REF] Cisilino | Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems[END_REF] for elastoplasticity, and [START_REF] Xu | Development of a variational boundary integral method for the analysis of fully three dimensional crack advance problems[END_REF] for crack propagation in fiber-matrix composite materials, among others.

Overview of other methods or situations

Traction-free cracks have been considered so far in this section for the sake of definiteness and convenience, but this is by no means a mandatory assumption. For instance, pressurized or otherwise loaded cracks can be considered. If the load is symmetric, that is, t + + t -holds, the displacement discontinuity method can be invoked with the minimal modification of setting t( y) in the traction BIE (48) equal to t -( y), the traction applied on Γ -, instead of zero. Similarly, the dual method for this case consists of using the same modified traction BIE together with equation ( 49). Other types of boundary conditions on the crack, such as Dirichlet conditions or coupling with thermal effects, may be considered along similar lines. In such cases, the load undergone by the crack faces is not necessarily symmetric. In that case, the term -

∫ Γ U k i (y, x)[t + i (x)+t + i (x)] dS x
should be added to the left-hand side of ( 47), and equations such as ( 48) and ( 49) need to be modified accordingly. [START_REF] Partheymuller | Comparison of the basic and the discontinuity formulation of the 3D-Dual boundary element method[END_REF] provide further insight into the comparison of the displacement discontinuity method and the dual method for various cases of boundary conditions. Also worth mentioning is that Green's functions, which satisfy suitable (usually traction-free) boundary conditions on the crack faces, are available for simple crack shapes, for example, straight cracks. The corresponding BIE formulations therefore involve only integrals on the external (i.e., noncrack) surface. For example, [START_REF] Snyder | Boundary integral equation analysis of cracked anisotropic plates[END_REF] introduced this concept for anisotropic cracked plates, and [START_REF] Telles | A numerical Green's function approach for boundary elements applied to fracture mechanics[END_REF] developed techniques for numerically calculating the crack Green's function. Fluid flow in fractured media is addressed by [START_REF] Vu | Modelling of steady-state fluid flow in 3D fractured isotropic porous media: application to effective permeability calculation[END_REF], and damaged structures with bonded piezoelectric sensors in [START_REF] Benedetti | A fast bem for the analysis of damaged structures with bonded piezoelectric sensors[END_REF]. ACA acceleration techniques are applied to 3D fracture problems in [START_REF] Kolk | Investigation of 3D crack propagation problems via fast BEM formulations[END_REF].

BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR ELASTIC-PLASTIC PROBLEMS

In the framework of infinitesimal strain, it is usually assumed that the strain tensor can be decomposed additively into an elastic part and a plastic (or viscoplastic) part, that is

𝜺 = 𝜺 E + 𝜺 P where 𝝈 = C ∶ 𝜺 E (52)
so that the elastic part of the constitutive equation reads Hence, BEM treatments for problems involving nonlinear constitutive properties are based on an integral identity governing elastic problems with distributions of (a priori unknown) initial strains (or stresses), which reads

𝝈 = C ∶(𝜺 -𝜺 P ) (53) 
𝜅(x)u k (x)= ∫ 𝜕Ω {U k i (x, x)t i (x)-T k i (x, x)u i (x)} dS x + ∫ Ω P Σ k ab (x, x)𝜀 P ab (x) dV x (54)
This is in fact a variant of equation ( 7) where the absence of body forces is assumed for simplicity and Ω P ⊆ Ω denotes the potentially plastic region (Figure 5), that is, a region outside of which 𝜺 P = 𝟎 is assumed (keeping in mind that the true support of 𝜺 P is not known a priori and evolves with the load). The corresponding displacement BIE is then obtained in the same manner from (11).

Integral representation of strain or stress at interior points

If the initial strain field 𝜺 P is known, the displacement BIE (11) collocated at the BEM mesh nodes provides a suitable set of discretized equations for the unknown boundary DOFs. However, in nonlinear solid mechanics analyses by BEM, the field 𝜺 P is to be determined in addition to the usual boundary unknowns. Hence, another set of integral equations are needed, in the form of the integral representation of strain collocated at interior points. This new set of equations thus comes from differentiating the integral representation (54) with respect to coordinates of the observation point x.A technical difficulty appears at this stage, namely that the differentiation of ( 7) with respect to x𝓁 involves the derivatives Σ k ij, l (x, x), which have a |x -x| -3 singularity which is not integrable over Ω (the overbar in () , l denoting a partial derivative w.r.t. the 𝓁-coordinate of x). The derivation of the integral representation of strain is therefore not straightforward, as witnessed by the fact that incorrect expressions were found in the literature until [START_REF] Bui | Some remarks about the formulation of three-dimensional thermoelastoplastic problems by integral equations[END_REF] established the correct expression, which involves a free term and a CPV domain integral.

Another approach consists, with the help of an auxiliary integral identity, of performing an indirect regularization approach in order to reformulate the integral representation in an integrable form. Without going into the details of this derivation [START_REF] Chandra | Boundary Element Methods in Manufacturing[END_REF]Poon et al., 1998b;[START_REF] Dong | An integral formulation for steady-state elastoplastic contact over a coated half-plane[END_REF][START_REF] Bonnet | Materially nonlinear analysis[END_REF], the regularized integral representation formula for the displacement gradient at an interior point x is obtained (isolating x into a subregion Ω e ⊂ Ω P )as

u k,𝓁 (x)= ∫ 𝜕Ω {U k i, l (x, x)t i (x)-Σ k ab, l (x, x)u a (x) × n b (x)} dS x + ∫ Ω P -Ω e Σ k ab, l (x, x)𝜀 P ab (x) dV x + ∫ Ω e Σ k ab, l (x, x)[𝜀 P ab (x)-𝜀 P ab (x)] dV x + 𝜀 P ab (x)C ijab × ∫ 𝜕Ω e U k i, l (x, x)n j (x) dS x (55)
Note that the boundary integrals in ( 55) are nonsingular if x ∈Ω P is chosen inside Ω. In particular, they are always nonsingular if Ω P ∩ 𝜕Ω=∅, that is, when the potentially plastic region does not reach the external boundary. If Ω P ∩ 𝜕Ω ≠ ∅, it may be necessary or useful to invoke the integral representation of strain at collocation points x ∈ 𝜕Ω.T h i s gives rise to hypersingular boundary integrals (Section 2.3), to which either a direct approach or an indirect regularization can be applied. The specific issue of indirect regularization of ( 55) is addressed in, for example, Bonnet et al. (1998b) and Poon et al. (1998b).

Equations ( 11) and ( 55) are the two integral identities upon which BEM techniques for nonlinear problems are built. In fact, since the formulation involves domain integrals over the potentially plastic region and collocation at internal points, the ensuing discretization technique is referred to as a domain-boundary element method (D/BEM) rather than a BEM. To exploit ( 11) and ( 55), the nonlinear part of the constitutive property, which up to now has been left unspecified, must be invoked (see Elastoplastic and Viscoplastic Deformations in Solids and Structures).

D/BEM treatment of small-strain elastoplasticity

Since the early paper by [START_REF] Swedlow | Formulation of boundary integral equations for three-dimensional elasto-plastic flow[END_REF], D/BEM treatments of quasi-static elastoplasticity have been investigated by [START_REF] Telles | Boundary elements: new developments in elastoplastic analyses[END_REF], [START_REF] Banerjee | Advanced boundary element analysis of two-and three-dimensional problems of elasto-plasticity[END_REF], [START_REF] Mukherjee | Nonlinear solid mechanics[END_REF], [START_REF] Telles | A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals[END_REF]Carrer (1991, 1994), [START_REF] Comi | Extremum, convergence and stability properties of the finite-increment problem in elastic-plastic boundary element analysis[END_REF], [START_REF] Maier | A Galerkin symmetric boundary-element method in plasticity: formulation and implementation[END_REF]Huber et al. (1996), among others. Elastic-plastic constitutive behavior gives rise to history-dependent evolution problems. In quasi-static situations, there is no physical time scale, and the evolution is described by a kinematical parameter t (e.g., a proportionality factor of the loading), called time for simplicity. Elastic-plastic analyses generally consist of prescribing an incremental load history and finding the corresponding incremental history of mechanical variables (displacements, strains, stresses, etc.). Implicit integration algorithms, based on the concept of consistent tangent operator (CTO) and originally introduced for the finite element method (see [START_REF] Nguyen | On the elastic-plastic initial-boundary value problem and its numerical integration[END_REF][START_REF] Simo | Consistent tangent operators for rate-independent elastoplasticity[END_REF], as well as Simo and Hugues, 1998 for a comprehensive exposition), are now widely used by the FEM community. Using this approach, the Newton iterative method used for each load step converges quadratically, allowing for a reduction of the number of iterations as well as for larger load steps than other integration strategies. Implicit integration algorithms can also be developed in a D/BEMs framework [START_REF] Bonnet | Implicit BEM formulations for usual and sensitivity problems in elasto-plasticity using the consistent tangent operator concept[END_REF]Poon et al., 1998a), and similar robustness properties have been demonstrated (see, e.g., the comparative study by [START_REF] Paulino | Implicit consistent and continuum tangent operators in elastoplastic boundary element formulations[END_REF]. Hence, the D/BEM treatment of small-strain elastoplasticity presented in this section is based on an implicit integration algorithm (see Elastoplastic and Viscoplastic Deformations in Solids and Structures).

Incremental formulation

Basically, the boundary element approach to elastic-plastic analysis is based on the integral equation ( 11) and the integral representation (55) of strain. These equations are discretized using boundary elements for the boundary unknowns u, t and integration cells for the domain integrals containing 𝜺 P .Since the plastic region, that is, the geometrical support of 𝜺 P , is not known a priori,apotentially plastic subset Ω P of Ω, outside of which no plastic strain is expected, must be defined a priori. Interpolation functions for the plastic strain 𝜺 P or the total strain 𝜺 are defined on the cells. The resulting matrix equations associated to ( 11) and ( 55) have the form

[A]{u}+[B]{t}=[Q]{C ∶ 𝜺 P } (56) {𝜺}=-[A ′ ]{u}-[B ′ ]{t}+[Q ′ ]{C ∶ 𝜺 P } (57)
or, after separation of known and unknown DOFs in {u}, {t} and appropriate column-switching in the matrices [A], [B] and

[A ′ ], [B ′ ], the form [K]{X}={Y}+[Q]{C ∶ 𝜺 P } (58) {𝜺}={Y ′ }-[K ′ ]{X}+[Q ′ ]{C ∶ 𝜺 P } (59)
where {Y}, {Y ′ } incorporate the boundary data. Equations ( 56), ( 57) or ( 58), (59) may also be viewed as a symbolic form of the continuous integral equations ( 11) and (55). Solving (58) for {X} and substituting the result into (59), one obtains

{𝜺}={𝜺 L }+[S]{C ∶ 𝜺 P } with { {𝜺 L }={f ′ }-[K ′ ][K] -1 {f } [S]=[Q ′ ]-[K ′ ][K] -1 [Q] (60) 
To take into account the incremental nature of the problem, the evolution between the time instants t n and t n+1 = t n +Δt is considered. Equation ( 60) thus takes the incremental form

{Δ𝜺 n }={Δ𝜺 L n }+[S]{C ∶Δ𝜺 P n } (61) 
using the notation Δ( ) n =() n+1 -() n . The variables (u n , t n ) on 𝜕Ω and (𝜺 n , 𝝈 n ,ē P n ) are assumed to be known. In particular, initial conditions must be provided at the starting time t 0 . Solving the nth increment of the time-discretized elastic-plastic problem then consists in finding all mechanical variables at t = t n+1 , or, equivalently, in finding all the increments Δ𝜺 n , and so on.

The plastic part of the constitutive behavior still remains to be accounted for. Following the approach of [START_REF] Simo | Consistent tangent operators for rate-independent elastoplasticity[END_REF], the radial return algorithm (RRA), symbolically denoted by σ, outputs the stress 𝝈 n+1 given a strain increment Δ𝜺 n and the mechanical variables

(𝜺 n , 𝝈 n ,ē P n ) at t = t n : 𝝈 n+1 = σ(𝜺 n , 𝝈 n ,ē P n , Δ𝜺 n ) (62) 
where ēP denotes the cumulative plastic equivalent strain

ēP = ∫ t 0 √ 2 3 (d p ∶ d p ) 1∕2 :d𝜏
In view of (2), the new plastic strain 62) into (61), one obtains a nonlinear system of equations

𝜺 P n+1 = εP (𝜺 n , 𝝈 n , ēP n , Δ𝜺 n ) follows at once through C ∶ εP (𝜺 n , 𝝈 n ,ē P n , Δ𝜺 n )= σ(𝜺 n , 𝝈 n ,ē P n , Δ𝜺 n )-C ∶ 𝜺 n+1 (63) Substituting (
{G(Δ𝜺 n )} ≡ [S]{ σ(𝜺 n , 𝝈 n ,ē P n , Δ𝜺 n )-𝝈 n -C ∶Δ𝜺 n } -{Δ𝜺 L n }+{Δ𝜺 n }={𝟎} (64) 
whose primary unknown is {Δ𝜺 n }, which is the strain increment compatible with both the elastic equilibrium and the plastic constitutive behavior (left unspecified at this point). Equation ( 64) is then solved by means of an iterative procedure. For example, using the Newton method, the additive correction 𝛿𝜺 i n =Δ𝜺 i+1 n -Δ𝜺 i n to Δ𝜺 i n solves the linear system of equations

([S][D i n+1 ]-[I]){𝛿𝜺 i n }={G(Δ𝜺 i n )} (65) 
where

D i n+1 = C -C i n+1 with C i n+1 ≡ 𝜕 σ 𝜕Δ𝜺 n (𝜺 n , 𝝈 n ,ē P n , Δ𝜺 i n ) ( 66 
)
C i n+1 is the local consistent tangent operator (local CTO) and ([S][D i n+1 ]-[I]
) is the global CTO. The iterative procedure is carried out until convergence, and the value of {Δ𝜺 n } thus obtained is used to update the mechanical variables:

𝜺 n+1 = 𝜺 n +Δ𝜺 n 𝝈 n+1 = 𝝈(𝜺 n , 𝝈 n ,ē P n , Δ𝜺 n )
It is interesting to note that the Newton step (65) involves the difference [C -C i n+1 ] between the elastic tensor and the local CTO, rather than the local CTO itself; this is entirely consistent with the fact that (61) accounts for equilibrium as well as the elastic constitutive law.

Observe that C -C i n+1 = 𝟎 at points where the incremental deformation is purely elastic. The implication is that the block-diagonal matrix [C -C i n+1 ] can have zero blocks on the diagonal, leading to corresponding zero block columns in the matrix [S] [D i n+1 ]. This can be used to reduce the size of the system (65) to that of the plastically deforming zone, with significant savings in computer time.

Radial return algorithm

For completeness, the RRA is now explicitly given for a specific constitutive behavior, namely isotropic elasticity, a von Mises yield criterion with isotropic linear hardening, and an associative flow rule. The elastic domain 𝔼 in the stress space is thus defined by

𝔼 ={𝝈| f (𝝈) ≤ 0} with f (𝝈; ēP ) ≡ √ s ∶ s - √ 2 3 (𝜎 0 + hē P ) (67) 
where s = 𝝈 -1∕3Tr(𝝈) is the deviatoric stress, 𝜎 0 is the initial yield stress, and h is the hardening modulus. Incompressibility of plastic strain is assumed. The constitutive equations are then the elastic stress-strain equation (2), the evolution equations

ε P = 𝛾 n ̇ē P = 𝛾 √ 2 3
(where n ≡ 𝜕f ∕𝜕𝝈 = s∕|s|), and the complementarity Kuhn-Tucker conditions

f (𝝈; ēP ) ≤ 0 𝛾 ≥ 0 𝛾f (𝝈; ēP )=0
The plastic multiplier 𝛾 is found from enforcing the consistency condition

𝛾 ̇f (𝝈; ēP )=0
The RRA consists of the following steps. First, the (elastic) trial stress 𝝈 T n+1 is defined by

s T n+1 = s n + 2𝜇Δe n 𝝈 T n+1 = 𝝈 n + KΔ𝜺 n ∶(𝟏 ⊗ 𝟏)+2𝜇Δe n (68) (e: deviatoric strain). If f (𝝈 T n+1 ; ēP n ) ≤ 0, that is, 𝝈 T n+1 is in the elastic domain, one has σ = 𝝈 T n+1 𝜺 P n+1 = 𝜺 P n ēP n+1 = ēP n
On the other hand, if f (𝝈 T n+1 ; ēP n ) > 0, σ is given by the following equations, which constitute the RRA [START_REF] Simo | Consistent tangent operators for rate-independent elastoplasticity[END_REF]:

n = s T n+1 |s T n+1 | s n+1 = s T n+1 -2𝜇𝛾Δt n ēP n+1 = ēP n + √ 2 3 𝛾Δt σ = K𝜺 n+1 ∶(𝟏 ⊗ 𝟏)+s n+1 (69)
where

K = 2𝜇(1 + 𝜈)∕(3 -6𝜈) is the compressibility modulus. The scalar 𝛾Δt solves the equation f ( σ)=0, which is solvable in closed form: 2𝜇𝛾Δt = |𝝃 T | - √ 2 3 (𝜎 0 + hē P n ) 1 +(H + h)∕(3𝜇)
In general, the equation governing 𝛾Δt is nonlinear and must be solved numerically. Finally, the local CTO is given in this case by [START_REF] Simo | Consistent tangent operators for rate-independent elastoplasticity[END_REF] 

C n+1 = C -2𝜇 [ (𝛽 -𝛿) n ⊗ n +(1 -𝛽) ( I - 1 3 𝟏 ⊗ 𝟏 )] (70) 
where 𝟏 and I are the second-order and symmetric fourth-order identity tensors, respectively, and

𝛽 = |s n+1 | |s T n+1 | 𝛿 = h h + 3𝜇
For more general versions of this algorithm, see [START_REF] Simo | Computational Inelasticity[END_REF].

Elastic-plastic analysis based on symmetric Galerkin D/BEM

Elastic-plastic analyses can also be developed on the basis of the SGBEM; see, for example, [START_REF] Maier | A Galerkin approach to boundary element elastoplastic analysis[END_REF], [START_REF] Polizzotto | An energy approach to the boundary element method; Part II: Elastic-plastic solids[END_REF], [START_REF] Maier | Symmetric Galerkin boundary element method in plasticity and gradient-plasticity[END_REF], [START_REF] Frangi | Fracture propagation in 3D by the symmetric Galerkin boundary element method[END_REF][START_REF] Frangi | Dynamic elastic-plastic analysis by a symmetric Galerkin boundary element method with time-independent kernels[END_REF][START_REF] Burgardt | Contribution à l'étude des méthodes des équations intégrales et à leur mise en oeuvre numérique en élastoplasticité[END_REF]. For this purpose, one first needs to set up a symmetric set of governing SGBEM equations for the boundary unknowns u, t, and the plastic strains 𝜺 P .This can be achieved following the path outlined in Section 4 but with the potential energy now given by

E(v, 𝜺 P )= ∫ Ω [𝜺(v)-𝜺 P ]∶C ∶[𝜺(v)-𝜺 P ] dV -∫ S t t ⋅ v dS -∫ S u t(u) ⋅ (v -ū) dS
instead of (32), which leads to the stationarity equation

𝛿E(u, 𝜺 P )= ∫ Ω P [𝜺 ∶ C ∶ ε -𝜺 P ∶ C ∶ 𝛿𝜺]+ ∫ S t ū ⋅ t(𝛿u) dS + ∫ S u u ⋅ t(𝛿u) dS -∫ S t t ⋅ 𝛿u dS -∫ S u t(u) ⋅ u dS = 0 (∀𝛿u, div (C ∶ 𝜺(𝛿u)) = 𝟎) (71) 
upon assuming that all trial functions 𝛿u satisfy div (C ∶ [𝜺(𝛿u)-ε)=𝟎), with ε = 𝟎 outside of Ω P . Any such trial functions can be expressed in the form of integral representations:

𝛿u k (x)= ∫ Ω P εij (x)Σ k ij (x, x) dV x + ∫ S t ũi (x)T k i (x, x) dS x -∫ S u ti (x)U k i (x, x) dS x
As a result, the set of continuous SGBEM equations has the structure (Bonnet et al., 1998a)  tt (t, t)+ ut (u, t)+ 𝜀t (𝜺 P , t)= t ( t; ū)

 tu (t, ũ)+ uu (u, ũ)+ 𝜀u (𝜺 P , ũ)= u ( ũ; t)

 t𝜀 (t, ε)+ u𝜀 (u, ε)+ 𝜀𝜀 (𝜺 P , ε)=-(𝜺, ε) (72)
where  uu ,  ut ,and tt are as defined by ( 37), (38), and (39); the new bilinear operator  𝜀𝜀 is symmetric while  u𝜀 ,  t𝜀 are transposes of  𝜀u ,  𝜀t , respectively; the linear operators  u and  t are as defined by ( 40) and ( 41); and the bilinear operator  is defined by

(𝜺, ε)= ∫ Ω P 𝜺 ∶ C ∶ ε dV (73)
Upon introducing standard BE interpolations for (u, ũ) on S t and (t, t) on S u , and standard (continuous) interpolations for (𝜺 P , ε) on Ω P (and using the same interpolation bases for the associated unknown and test functions, in keeping with the SGBEM approach), equation ( 72) takes the form

⎡ ⎢ ⎢ ⎣ B tt B ut B 𝜀t 𝟎 B tu B uu B 𝜀u 𝟎 B t𝜀 B u𝜀 B 𝜀𝜀 A ⎤ ⎥ ⎥ ⎦ ⎧ ⎪ ⎨ ⎪ ⎩ t u 𝜺 P 𝜺 ⎫ ⎪ ⎬ ⎪ ⎭ = ⎧ ⎪ ⎨ ⎪ ⎩ F t F u 𝟎 ⎫ ⎪ ⎬ ⎪ ⎭ (74) 
with obvious notations and noting that A is a stiffness-like symmetric matrix. Next, in preparation of the time-stepping process, equation ( 74) is written in incremental form (noting that the time-dependent loading is contained in F t and F u ):

⎡ ⎢ ⎢ ⎣ B tt B ut B 𝜀t 𝟎 B tu B uu B 𝜀u 𝟎 B t𝜀 B u𝜀 B 𝜀𝜀 A ⎤ ⎥ ⎥ ⎦ ⎧ ⎪ ⎨ ⎪ ⎩ Δt n Δu n Δ𝜺 P n Δ𝜺 n ⎫ ⎪ ⎬ ⎪ ⎭ = ⎧ ⎪ ⎨ ⎪ ⎩ ΔF n t ΔF n u 𝟎 ⎫ ⎪ ⎬ ⎪ ⎭ (75) 
Using the first two equations to eliminate the increments (Δu n , Δt n ), the third equation yields a relationship between (Δ𝜺 P , Δ𝜺) of the form

[R]{Δ𝜺 P n }+[A]{Δ𝜺 n }={ΔF n } (76) 
As before, all variables at time t n , collectively denoted as  n , are assumed to be known (which requires imposing initial conditions at time t 0 ), and the increments Δ𝜺 P n , Δ𝜺 n are sought.

The plastic part of the constitutive behavior still remains to be accounted for. This is again done using the implicit algorithm based on the RRA, described in Section 7.2, and with the same notations. Here, substituting definition (62) of σ, that is, 𝝈 n+1 = σ(Δ𝜺 n ,  n ), into the elastic constitutive equation (2) written in incremental form yields

σ(Δ𝜺 n ,  n )-𝝈 n = C ∶(Δ𝜺 P n -Δ𝜺 n ) (77) 
which allows expressing Δ𝜺 P n in terms of Δ𝜺 n and σ(Δ𝜺 n ,  n ).

Doing so directly for the nodal unknowns in (76) and performing the subsequent Newton iteration is feasible but leads to unsymmetric tangent matrices for the Newton steps. In order to formulate a symmetric Newton step, equation ( 77) is multiplied (in the tensor inner-product sense) by a trial strain ε and then integrated over Ω P , to obtain

∫ Ω P σ(Δ𝜺 n ,  n )∶ε dV -(Δ𝜺 n , ε)+(Δ𝜺 P n , ε) = ∫ Ω P 𝝈 n ∶ ε dV
Then, putting Δ𝜺 i+1 n =Δ𝜺 i n + 𝛿𝜺 i n and expanding the above equality to first order in 𝛿𝜺 i n in anticipation of the Newton iteration to be implemented, one gets

 i n+1 (𝛿𝜺 i n , ε)-(𝛿𝜺 i n , ε)+(𝛿𝜺 P,i n , ε)+(Δ𝜺 i n )=0 (Δ𝜺 n ) ≡ ∫ Ω P σ(Δ𝜺 n ,  n )∶ε dV -(Δ𝜺 n , ε)+(Δ𝜺 P n , ε)-∫ Ω P 𝝈 n ∶ ε
where  i n+1 is defined by (73) but using the local CTO C i n+1 (Δ𝜺 n ,  n ) instead of the elastic Hooke tensor C.I n discretized form, this equation becomes

[A i n -A]{𝛿𝜺 i n }+[A]{𝛿𝜺 P,i n }+H n ={𝟎} (78)
where S n is the discretized  n and H n incorporates the known stress field 𝝈 n . In combination with the linear equation ( 76) put in a similar iterative form, each correction {𝛿𝜺 i n ,𝛿𝜺 P,i n } is finally found to be governed by the following symmetric system of linear equations:

[ RA AA i n -A ]{ 𝛿𝜺 P,i n 𝛿𝜺 i n } = { -G i n -H i n } (79) 
with

G i n ≡ [R]{𝛿𝜺 P,i n }+[A]{Δ𝜺 n }-{ΔF n }
This scheme has been implemented for three-dimensional problems in [START_REF] Burgardt | Contribution à l'étude des méthodes des équations intégrales et à leur mise en oeuvre numérique en élastoplasticité[END_REF]. It is worth mentioning that setting up the discretized bilinear operators of (74) involves numerical integrations in four dimensions (for B tt , B ut , B uu ), five dimensions (for B 𝜀t , B 𝜀u ), and six dimensions (for B 𝜀𝜀 ), including weakly singular integrations. In the latter case, various types of coordinate changes in the parameter space are available, so that these singular integrations do not raise serious conceptual difficulties. From a more practical viewpoint, the calculation of the operators B 𝜀𝜀 and, to a lesser extent, B 𝜀t , B 𝜀u using Cartesian products of one-dimensional Gaussian rules was found to be extremely time consuming. Outside of other possibilities for code optimization, which have not been explored as of now, much can be gained by employing well-chosen quadrature rules devised for the n-cube instead of n-fold Cartesian products of one-dimensional rules. A collection of such rules are given in [START_REF] Stroud | Approximate Calculation of Multiple Integrals[END_REF]. For instance, the sixfold product of the 3-point rule (i.e., 729 quadrature points in all) can be replaced by a six-dimensional 125-point rule, among several possibilities. For now, this high computational cost means that only a moderate number of (20-noded brick-shaped) domain cells could be used in numerical examples.

Finite strains

Extensions of D/BEM to problems with both geometrical and material nonlinearities are also proposed by [START_REF] Mukherjee | A boundary element formulation for design sensitivities in problems involving both geometric and material nonlinearities[END_REF], [START_REF] Zhang | Shape design sensitivity analysis for geometrically and materially nonlinear problems by the boundary element method[END_REF], [START_REF] Leu | Sensitivity analysis and shape optimization in nonlinear solid mechanics[END_REF][START_REF] Leu | Sensitivity analysis and shape optimization in nonlinear solid mechanics[END_REF][START_REF] Foerster | A field boundary element formulation for material nonlinear problems at finite strains[END_REF][START_REF] Foerster | A field boundary element formulation for material nonlinear problems at finite strains[END_REF], among others, and in the book by [START_REF] Chandra | Boundary Element Methods in Manufacturing[END_REF].

When geometrical nonlinearities, in the form of finite strains, are present, the governing equations must be formulated in rate form. A detailed presentation of this subject is not attempted here (the reader is referred to the above-mentioned references). However, some insight into how D/BEM formulations are developed for this class of problems can be obtained by looking at the governing displacement DBIE (or, more appropriately here, the velocity DBIE):

κv k (x)+ ∫ 𝜕Ω {T k i (x, x)[v i (x)-v i (x)] -U k i (x, x)t s i (x) } dS x = ∫ Ω Σ k ij (x, x)d P ij (x) dV x + ∫ Ω U k i,j (x, x)g ji (x) dV x ( 80 
)
where v is the velocity field, d =(𝛁 v + 𝛁 v T )∕2 is the total strain rate, d P is the inelastic strain rate, g is defined by the formula

g = 𝝈 ⋅ 𝝎 + d ⋅ 𝝈 -(Tr(d))𝝈
(where 𝝎 =(𝛁 v -𝛁 v T )∕2 is the antisymmetric part of the velocity gradient), and t s is the scaled Lagrange traction rate defined by

t s = n ⋅ ( σ + 𝝈 ⋅ 𝝎 -𝝎 ⋅ 𝝈 -g)
The stress-strain rate relationship is of the form

𝝈 = 𝜆Tr(d)+2𝜇(d -d P ) Tr(d P )=0
which defines the inelastic strain rate d P .

Regularized strain rate representation formulas can be established from (80), providing the foundation for incremental and iterative solution algorithms. Contrary to small-strain plasticity, which in some cases may affect only a small part of the domain Ω under consideration, geometric nonlinearities are expected to spread over the entire region, thus entailing a significant computational burden in terms of numerical integration and solution procedures, since fully populated matrices over domain unknowns arise in the process.

For completeness, one can also mention the work of [START_REF] Bigoni | Green's function for incremental non-linear elasticity: shear bands and boundary integral formulation[END_REF], where a Green's function approach for the incremental problem of finite elasticity in plane strain is proposed.

SHAPE SENSITIVITY ANALYSIS

The consideration of sensitivity analysis of integral functionals with respect to shape parameters arises in many situations in which a geometrical domain plays a primary role; shape optimization and inverse problems are the most obvious, as well as possibly the most important, of such instances (see Identification of Material Parameters for Constitutive Equations).

It is well known that apart from resorting to approximative techniques such as finite differences, shape sensitivity evaluation can be dealt with using either the direct differentiation approach or the adjoint variable approach (Burczyński, 1993b). Besides, consideration of shape changes in otherwise (i.e., for fixed shape) linear problems makes BEMS very attractive, as they constitute the minimal modeling as far as the geometrical support of unknown field variables is concerned.

Typical applications concern shape optimization and inverse problems, see, for example, [START_REF] Brancati | A BEM sensitivity formulation for three-dimensional active noise control[END_REF], [START_REF] Guzina | On the stress-wave imaging of cavities in a semi-infinite solid[END_REF][START_REF] Bonnet | Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework[END_REF], and [START_REF] Rus | Hypersingular shape sensitivity boundary integral equation for crack identification under harmonic elastodynamic excitation[END_REF] in the context of vibrations or wave propagation. However, shape sensitivity analysis also has important applications in fracture mechanics, see, for example, Bonnet (1999c).

Differentiation with respect to shape perturbations

To consider shape perturbations, the shape of Ω is assumed to depend on a parameter t (a fictitious, nonphysical "time") through a continuum kinematics-type Lagrangian description. The unperturbed, "initial" configuration Ω is conventionally associated with t = 0:

x ∈Ω→ x t = 𝚽(x, t)∈Ω(t) 𝚽(x, 0)=x (81)

All "time" derivatives are here implicitly taken at t = 0, that is, the first-order effect of infinitesimal perturbations of Ω ≡ Ω(0) is considered. The geometrical transformation 𝚽(⋅ ; t) must possess a strictly positive Jacobian for t ≥ 0. A given domain evolution considered as a whole admits infinitely many different representations (81).

Differentiation of scalar or tensor fields

Differentiation of field variables and integrals in a domain perturbation is a well-documented subject [START_REF] Petryk | Time derivatives of integrals and functionals defined on varying volume and surface domains[END_REF][START_REF] Sokolowski | Introduction to shape optimization[END_REF]; a few basic concepts and results are recalled now. The initial transformation velocity 𝜽 is defined by

𝜽(x)= 𝜕𝚽 𝜕t | t=0 (82)
The "material" (or "Lagrangian") derivative at t = 0ofafield quantity f (x, t) in a geometrical transformation, denoted by

⋆ f , is defined by ⋆ f = lim t→0 1 t [f (x t , t)-f (x, 0)] = 𝜕f 𝜕t + 𝛁f ⋅ 𝜽 = f ′ + 𝛁f ⋅ 𝜽 (83) 
(where f ′ is used as a shorthand notation for the partial "time" derivative). The material derivative of the gradient of a field quantity is given by

(𝛁f ) ⋆ = 𝛁 ⋆ f -𝛁f ⋅ 𝛁 𝜽 (84)

Differentiation of integrals

First, recall that the derivative of the volume differential element dV is given by ⋆ dV =(div 𝜃)dV so that the derivative of a generic volume integral

I(f , D; t)= ∫ D(t) f (x, t)dV
is given by the well-known formula

dI dt = ⋆ I = ∫ D { ⋆ f + f div 𝜽}dV ( 85 
)
where 𝜃 n = 𝜽 ⋅ n. The material derivatives of the unit normal n and the surface differential element dS on a material surface S t = 𝚽(S; t) are given [START_REF] Petryk | Time derivatives of integrals and functionals defined on varying volume and surface domains[END_REF] by

⋆ dS = div S 𝜽 dS = D r 𝜃 r dS ⋆ n =-n ⋅ 𝛁 S 𝜽 =-n b D a 𝜃 b e a ( 86 
)
in terms of the surface gradient 𝛁 S and the surface divergence div S :

𝛁 S f = 𝛁f -(𝛁f ⋅ n)n =(f ,i -n i f ,n )e i ≡ (D i f )e i ( 87 
) div S u = div u -(𝛁u ⋅ n) ⋅ n = D i u i (88)
Then, for a generic surface integral J(t) J( f , S; t)= ∫ S(t) f (x, t) dS one has, using ( 86)

dJ dt = ⋆ J = ∫ S { ⋆ fdS + f ( dS) ⋆ } = ∫ S { ⋆ f + f div S 𝜽 } dS (89) 

Direct differentiation of boundary integral equations

In the BIE context, the direct differentiation approach rests primarily upon the material differentiation of the governing integral equations. This step has been studied by many researchers, from BIE formulation in either singular form [START_REF] Barone | A boundary element approach for recovery of shape sensitivities in three-dimensional elastic solids[END_REF][START_REF] Mellings | Flaw identification using the boundary element method[END_REF] or regularized form (Bonnet, 1995b;[START_REF] Matsumoto | Optimum design of cooling lines in injection moulds by using boundary element design sensitivity analysis[END_REF][START_REF] Nishimura | Regularized boundary integral equations for an inverse problem of crack determination in time domain[END_REF][START_REF] Nishimura | Application of boundary integral equation method to various crack determination problems[END_REF]. For instance, the integral equation governing the elastic shape sensitivities, obtained from the BIE formulation (17), reads (Bonnet, 1995b)

κ⋆ u k ( y)+ ∫ 𝜕Ω { T k i (y, x)[ ⋆ u i (x)- ⋆ u i (y)] -U k i (y, x) ⋆ t i (x) } dS x =- ∫ 𝜕Ω [𝜃 r (y)-𝜃 r (x)] × D rj u i (x)Σ k ij ( y, x) dS x + ∫ 𝜕Ω t i (x) { ⋆ U k i (y, x) +U k i (y, x)D r 𝜃 r (x) } dS x ( y ∈ 𝜕Ω) (90)
Following this approach, the process of sensitivity computation needs the solution of as many new boundary value problems as the numbers of shape parameters present. The fact that they all involve the same, original, governing operator reduces the computational effort to the building of new right-hand sides and the solution of linear systems by backsubstitution. The usual material differentiation formula for surface integrals is shown in [START_REF] Bonnet | Differentiability of strongly singular and hypersingular boundary integral formulations with respect to boundary perturbations[END_REF] to be still valid when applied to strongly singular or hypersingular formulations. Thus, the direct differentiation approach is, in particular, applicable in the presence of cracks.

Adjoint solution method

Another approach to shape sensitivity (and to other sensitivity calculations as well), namely the adjoint solution method, is useful when the sensitivity of some state-dependent objective function is required. In that case, the desired sensitivity can be expressed in terms of the original solution (u, t) and an adjoint solution ( ũ, t),a n d the calculation of the Lagrangian derivatives ⋆ u, ⋆ t can be avoided. In connection with BEMs, the adjoint solution method has been the subject of many investigations by, for example, Bonnet (1995a,b) Bonnet et al. (2002), Burczyński (1993a), [START_REF] Burczyński | Boundary elements in shape design sensitivity analysis and optimal design of vibrating structures[END_REF], [START_REF] Burczyński | Shape design sensitivity analysis via material derivative -adjoint variable approach[END_REF], and [START_REF] Choi | Boundary integral equation method for shape optimization of elastic structures[END_REF]. In this section, the adjoint solution method is presented for the model problem where a buried cavity or crack is to be identified from elastostatic boundary measurements (this kind of inverse problem is considered by, e.g., [START_REF] Nishimura | Determination of cracks having arbitrary shape with boundary integral method[END_REF], [START_REF] Kassab | Nondestructive evaluation of cavities by an inverse elastostatics boundary element method[END_REF][START_REF] Eller | Identification of cracks in three-dimensional bodies by many boundary measurements[END_REF]), but sensitivity formulations can be developed on similar lines for many other situations.

Consider an elastic body Ω∈ℝ 3 of finite extension, externally bounded by the closed surface S and containing a defect bounded by the surface Γ (i.e., 𝜕Ω=S ∪Γ). For the sake of definiteness, the defect is taken to be either a cavity (i.e., Γ is a closed surface and the interior region bounded by Γ is nonempty) or a crack (i.e., Γ is an open surface across which displacement jumps are expected). The displacement u, strain 𝜺, and stress 𝝈 are related by the field equation (5) without body forces (i.e., with f = 𝟎). Besides, boundary conditions of the form (46) are assumed, that is, displacements and tractions are prescribed on the portions S u and S t = S∖S u of S, and the crack surface Γ is stress-free. Equations ( 46) and (5) define the direct problem.

Consider the problem of determining the shape and position of an unknown defect embedded in the elastic body using elastostatic measurements. The lack of information about Γ must be compensated by some extra knowledge about the field quantities on S (redundant boundary data). Assume, for example, that a measurement û(x) of u (resp. t(x) of t)i s available for x ∈ S t (resp. x ∈ S u ). The defect identification is then usually formulated as the minimization of a cost function. The most obvious choice for the latter is a least-squared misfit function, for example

 (Γ) = J(u Γ , t Γ )= 1 2 ∫ S t | û -u Γ | 2 dS + 1 2 ∫ S u | t -t Γ | 2 dS (91)
where (u Γ , t Γ ) refer to the solution of problem (5, 46) for a given Γ. For the sake of generality, generic objective functions of the form

 (Γ) = J(u Γ , t Γ , Γ) = ∫ S t 𝜑 u (u Γ , x) dS + ∫ S u 𝜑 p (t Γ , x) dS + ∫ Γ 𝜓(x) dS (92) 
which obviously generalize (91), are considered. Minimizing  with respect to Γ using classical gradient-based methods is computationally much more efficient if a procedure for computing the gradient of  with respect to shape perturbations of Γ, in addition to  (Γ) itself, is available.

Adjoint formulations for shape sensitivity

Any sufficiently small perturbation of Γ can be described by means of a domain transformation (81), which does not affect the external boundary S, that is, such that 𝜽 = 𝟎 on S.

It is customary to derive the adjoint problem by means of an optimal control approach whereby the variables in the objective function J(u, t, Γ) are formally considered as independent ones and the direct problem (5, 46) is treated as an explicit constraint. The following Lagrangian is thus introduced:

(u, ũ, t, t, Γ) = J(u, t, Γ) + ∫ Ω 𝝈 ∶ 𝛁 ũ dV -∫ S u (u -ū) ⋅ t dS -∫ S u t ⋅ ũ dS -∫ S t t ⋅ ũ dS (93) 
where ( ũ, t), the test functions of the direct problem in weak form, act as Lagrange multipliers.

Using formulas ( 85) and ( 89), noticing that (C ∶ 𝛁 ⋆ u)∶ 𝛁 ũ = σ ∶ 𝛁 ⋆ u, and ignoring the terms containing ũ⋆ , t ⋆ arising in this calculation (they merely reproduce the direct problem constraint and thus vanish), the total derivative of  with respect to a given domain perturbation is given by

⋆ (u, ũ, t, t, Γ) = ∫ Ω {(𝝈 ∶ 𝛁 ũ)div 𝜽 -[𝝈 ⋅ 𝛁 ũ + σ ⋅ 𝛁u]∶𝛁𝜽} dV + ∫ Γ [𝛁𝜓 ⋅ 𝜽 + 𝜓div S 𝜽] dS + ∫ Ω σ ∶ 𝛁 ⋆ u dV -∫ S u ( ũ - 𝜕𝜑 p 𝜕t ) ⋅ ⋆ t dS -∫ S u t ⋅ ⋆ u dS + ∫ S t 𝜕𝜑 u 𝜕u ⋅ ⋆ u dS (94)
When Γ is an open surface (i.e., a crack), the partial derivative (𝛁u) ,𝜂 has usually a d -3∕2 singularity along the crack edge 93)) to solve the field equations of elastic equilibrium (5), together with the following boundary conditions:

t =- 𝜕𝜑 u 𝜕u (on S t ) ũ = 𝜕𝜑 p 𝜕t (on S u ) t = 𝟎 (on Γ ± ) (95 
) Finally, equation ( 94) allows expressing the derivative of J in terms of the direct and adjoint solutions:

⋆  (Γ) = ⋆ (u Γ , ũΓ , t Γ , tΓ , Γ) = ∫ Ω {(𝝈 Γ ∶ 𝛁 ũΓ )div 𝜽 -[𝝈 Γ ⋅ 𝛁 ũΓ + σΓ ⋅ 𝛁u Γ ]∶𝛁𝜽} dV + ∫ Γ [𝛁𝜓 ⋅ 𝜽 + 𝜓div S 𝜽] dS (96) 
This formula allows an efficient computation of the directional derivative of  (Γ) in any perturbation velocity 𝜽.Itis well suited to domain discretization techniques (e.g., finite elements) for the solution of the direct and adjoint problems.

Sensitivity to cavity shape in terms of boundary integrals

Both the direct and the adjoint problems can be easily formulated using the BIE (17) and solved with the BEM. In addition, a BEM-based defect identification algorithm requires a sensitivity formula written in terms of boundary integrals rather than (96).

A transformation of ( 96) is achieved by noting that any elastostatic states (u, 𝝈) and ( ũ, σ) verify

{(𝝈 ∶ ε)div 𝜽 -[𝝈 ⋅ 𝛁 ũ + σ ⋅ 𝛁u]∶𝛁𝜽} = div ((𝝈 ∶ ε)𝜽 -[𝝈 ⋅ 𝛁 ũ + σ ⋅ 𝛁u] ⋅ 𝜽) ( 97 
)
If Γ is a closed surface, that is, a cavity, this identity directly leads to the boundary-only version of (96):

⋆  (Γ) = ∫ Γ {(𝝈 ∶ ε)𝜃 n -[t Γ ⋅ 𝛁 ũΓ + tΓ ⋅ 𝛁u Γ ] ⋅ 𝜽} dS + ∫ Γ [𝛁𝜓 ⋅ 𝜽 + 𝜓div S 𝜽] dS (98) 
To ensure that formula (98) can actually be evaluated using only the boundary traces of the direct and adjoint solutions, the bilinear form 𝝈 ∶ 𝛁 ũ must be expressed in terms of 𝛁 S u, 𝛁 S ũ,takingt = t = 𝟎 into account in the process: 

𝝈 ∶ 𝛁 ũ = 𝜇 { 2𝜈 1 -𝜈 div S u div S ũ

Sensitivity to crack shape in terms of boundary integrals

If Γ is a crack, the well-known singular behavior of strains and stresses at the crack front prevents a direct application of the divergence formula to (96) for the entire cracked domain Ω because the r.h.s. of (97) is not integrable near the crack front 𝜕Γ. To circumvent this difficulty, a tubular neighborhood D 𝜀 of 𝜕Γ of radius 𝜀 is introduced, the well-known expansions of the mechanical fields near the fixed crack front are invoked inside D 𝜀 , while identity (97) is invoked outside D 𝜀 . Carrying out this limiting process (see Bonnet, 1999b;[START_REF] Bonnet | Sensitivity analysis for shape perturbation of cavity or internal crack using BIE and adjoint variable approach[END_REF] where 𝝂(s) denotes the unit outward normal to 𝜕Γ lying in the tangent plane to Γ at x(s),a n d𝜃 𝜈 = 𝜽 ⋅ 𝝂.A g a i n ,t h e identity (99) is useful. Equation ( 100) is well suited to the computation of the sensitivity of objective functions (92) with respect to crack shape perturbations in the context of boundary element methods. In particular (Section 6), the direct and adjoint SIFs can be computed from the BEM solution using, for example, any of the techniques mentioned in Section 6.2. BE-based formulations for crack shape sensitivity analysis are surveyed in [START_REF] Bonnet | Boundary element based formulations for crack shape sensitivity analysis[END_REF].

FEM-BEM COUPLING

The idea of coupling BEM and FEM is not new (see, e.g., [START_REF] Barth | Kombination eines Integralgleichungsverfahrens mit der Methode der Finiten Elemente zur Berechnung ebener Spannungkontentrationsprobleme[END_REF][START_REF] Zienkiewicz | The coupling of the finite element method and boundary solution procedures[END_REF][START_REF] Johnson | On the coupling of boundary integral and finite element methods[END_REF][START_REF] Belytschko | A variationally coupled finite element-boundary-element method[END_REF]and Coupling of Boundary Element Methods and Finite Element Methods), and is particularly appealing in, for example, fluid structure, soil structure, and soil-fluid structure analyses; see, for example, [START_REF] Clouteau | 3D seismic soil-fluid-structure interaction for arch dams including source and site effects[END_REF]. FEM-BEM coupling is also an attractive option for problems where complex (and in particular nonlinear) phenomena are confined within a finite region surrounded by large elastic zones. BEM-FEM coupling procedures can be either simultaneous (the complete set of equations for the coupled problem being formulated and solved as a whole) or iterative (alternating FEM solutions with data coming from previous BEM solution and BEM solutions with data coming from previous FEM solution). The iterative approach presents the advantage of allowing the coupling of BEM and FEM programs externally, that is, using them as "black boxes", whereas the simultaneous approach requires specific coding. It is also worth mentioning that simultaneous BEM-FEM coupling approach can be used with either direct or iterative solvers. In particular, the recent progress in fast iterative BEM solvers such as the FMM (Section 5) can be applied in the context of BEM-FEM coupling.

Coupling collocation BEM with the FEM, which is the most straightforward approach, breaks the symmetry of the resulting set of equations. Although this drawback is by no means fatal, it is often better for several reasons (optimization of memory resources and of computing time, availability of powerful iterative solvers for symmetric systems in the FEM packages) to derive symmetric coupled formulations, as in Ben [START_REF] Mariem | A new boundary finite element method for fluid-structure interaction problems[END_REF] or [START_REF] Bielak | Stable coupling method for interface scattering problems by combined integral equations and finite elements[END_REF] for fluid-structure interaction. Additional relevant references include [START_REF] Springhetti | Weak coupling of the symmetric Galerkin BEM with FEM for potential and elastostatic problems[END_REF], [START_REF] Rüberg | Coupling finite and boundary element methods for static and dynamic elastic problems with non-conforming interfaces[END_REF][START_REF] El-Gebeily | Convergence of the domain decomposition finite element-boundary element coupling methods[END_REF], 2003) for formulations involving a relaxation parameter, and [START_REF] Vu | On 3D coupled BEM-FEM simulation of nonlinear electro-elastostatics[END_REF] and van Opstal and van Brummelen (2013) for problems with nonlinearities.

Since the topic of FEM-BEM coupling is addressed in another chapter of this encyclopedia, this section is limited to the presentation of a symmetric BEM-FEM coupling procedure based on the construction of the stiffness matrix of a 3D elastic domain without any body forces [START_REF] Mouhoubi | Une formulation symétrique pour le couplage éléments finis -éléments de frontière en mécanique[END_REF] in terms of nodal displacements on the boundary. This approach uses the BEM stiffness computation as a "slave" process, which in effect, computes the stiffness of a super element. To put it another way, the proposed operation essentially corresponds to a condensation on the boundary of a 3D FEM stiffness, but without ever having to discretize the interior of that region. A similar viewpoint is adopted in [START_REF] Haas | Mixed-dimensional, symmetric coupling of FEM and BEM[END_REF] and [START_REF] Helldörfer | Automatic coupling of a boundary element code with a commercial finite element system[END_REF].

Boundary energy and symmetric Galerkin formulations

Let Ω denote a three-dimensional, homogeneous elastic region. In the absence of body forces, the elastic strain energy associated with (u, t) can be expressed in boundary energy form (Clapeyron formula):

W = 1 2 ∫ Ω 𝝈(x)∶𝜺(x) dΩ= 1 2 ∫ Γ t(x) ⋅ u(x) dS (101) 
Since (u, t) are assumed to be compatible (i.e., to correspond to each other through the field equations of elastic equilibrium), the boundary energy is in fact a function of either u or t alone. In order to build a stiffness operator in the usual sense, the displacement u is taken as the primary variable and W ≡ W(u) in equation ( 101). The explicit form of the mathematical link between u and t on Γ is either the displacement boundary integral equation (Somigliana identity) or, equivalently, the traction boundary integral equation. Here, both integral equations are invoked in Galerkin forms using the results of Section 4. First, consider the traction t as being induced by u prescribed over 𝜕Ω (Dirichlet problem). In that case, the SGBEM formulation (36) reduces to Find t ∈  t such that  D (t, t)= D ( t; u)∀ t ∈  t (102) where  D (t, t) and  D ( t; u) are given by ( 39) and ( 41) with S u = 𝜕Ω, S t =∅, the set  t of admissible functions being defined by  t ={ t | t piecewise continuous on 𝜕Ω}.

Next, consider the displacement u as being induced by t prescribed over 𝜕Ω (Neumann problem). In that case, Find u ∈  u such that  N (u, ũ)= N ( ũ; t)∀ ũ ∈  u (103) where  N (u, ũ) and  N ( ũ; t) are given by ( 37) and ( 40) with S t = 𝜕Ω, S u =∅, the set  u of admissible functions being defined by  u ={ũ | ũ ∈ C 0,𝛼 (𝜕Ω)}. Now, selecting the trial functions specifically as t = t and ũ = u, one notices on inspecting (41) and (40) applied in the above-defined conditions that  D (t; u)- N 

Construction of the stiffness matrix

Assume now that the SGBEM equations ( 102) and ( 103) have been discretized using boundary element interpolations of the surface Γ, the boundary fields (u, t), and the associated test functions ( ũ, t). Then, one has

2W(u)={t} T [B D ]{t}-{u} T [B N ]{u}
where B D and B N are the symmetric matrices obtained from the bilinear forms  D (t, t) and  N (u, ũ),a n d{u}, {t} are constrained by the discretized version of (102), that is,

[B D ]{t}=[L D ]{u}
Combining the last two equations, the discretized boundary energy is expressed in terms of {u} as

W = 1 2 {u} T [K]{u} (105) 
where the stiffness matrix [K] of the subdomain is given by

[K]=[L D ] T [B D ] -1 [L D ]-[B N ] (106) 
Thus, the above equation provides the symmetric stiffness matrix for the subdomain Ω, which can be added to the stiffness matrix for the complementary subdomain, obtained, for example, by the FEM approach. It is, however, important to point out that equations ( 102) and ( 103), although exactly compatible as continuous equations, are not both exactly satisfied in discretized form by the same pair {u}, {t} due to discretization errors (in other words, equations ( 105) and (106) hold only in an approximate sense for the discretized problem). 
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