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M. BONNET

A Formulation for Crack Shape Sensitivity
Analysis Based on Galerkin BIE, Domain
Differentiation and Adjoint Variable

1. Introduction and motivation

The consideration of sensitivity analysis of integral functionals with respect to shape
parameters arises in many situations where a geometrical domain plays a primary role;
shape optimization and inverse problems are the most obvious, as well as possibly
the most important, of such instances. In addition to numerical differentition, shape
sensitivities can be evaluated using either a direct differentiation or the adjoint variable
approach [10, 19], the present paper being focused on the latter. Besides, consideration
of shape changes in otherwise linear problems makes it very attractive to use boundary
integral equation (BIE) formulations, which constitute the minimal modelling as far
as the geometrical support of unknown field variables is concerned.

In the BIE context, the direct differentiation approach rests upon an application
of the material differentiation formula for surface integrals to the governing integral
equations, in either singular form [1, 12] or regularized form [4, 11, 15] (the material
differentiation formula is shown in [5] to remain valid for strongly singular or hy-
persingular surface integrals); the direct differentiation approach is thus in particular
applicable in the presence of cracks. Sensitivity evaluation then rests upon solving as
many new boundary-value problems as the number of shape parameters present. The
fact that they all involve the original governing operator reduces the computational
effort to building new right-hand sides and solving linear systems by backsubstitution.

The adjoint variable approach is even more attractive: it needs to solve only one
new boundary-value problem (the so-called adjoint problem) per integral functional
present (often only one), whatever the number of shape parameters. In connexion with
BIE formulations alone, the adjoint variable approach has been successfully applied to
many shape sensitivity problems [3, 9, 10, 13]. It relies critically upon the possibility of
formulating the final, analytical expression of the shape sensitivity of a given integral
functional as a boundary integral that involves the boundary traces of the primary
and adjoint states. However, this step raises difficulties when cracks (elasticity) or
screens (acoustics) are present: non-integrable quantities associated with crack front
singularity of field variables arise in the process.

This paper purports to show that this difficulty is avoided by formulating, in
the Lagrangian, the direct problem constraint as a symmetric Galerkin BIE. Explicit
boundary-only expressions of sensitivities are obtained for shape perturbations of ei-
ther voids or cracks, in linear acoustics and elastodynamics.

The shape sensitivity problem. Consider a domain B of R™ (m = 2 or 3) with
external boundary S, containing an internal defect in the form of either a void V' of
boundary I' (Fig. 1a) or a crack with crack surface I' (Fig. 1b). Let 2 denote the actual
body (i.e.containing the defect): Q = B\ V or Q@ =B\T and put A =&Q2=SUT.
For ease of exposition, the main developments concentrate on scalar wave propa-
gation in the frequency-domain, whereby some complex-valued field variable u (e.g.



the acoustic pressure) satisfies the Helmholtz equation (A + k?)u = 0, where k = w/c
is the wave number (w: angular frequency, c: wave velocity). However, the treatment
of shape sensitivity to follow is applicable to many other linear direct problems; its
extension to steady-state elastodynamics is addressed in Sec 6.
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Figure 1: A body with an internal defect: (a) void, (b) crack.

The shape and position of the boundary I' characterizing the defect are unknown.
Suppose that a given flux ¢ is imposed on B, while the defect surface is flux-free. The
boundary value problem for given defect reads:

(A+k)u=0 (nQ) qu)=¢ (onS) qu)=0 (onT) (1)

where ¢ denotes the normal derivative of u: ¢ = Ou/dn. In the case of a crack, the
variable u is allowed to jump across ['; [u] = u™ —u™ # 0.
Let us thus introduce the generic objective function J:

J(r) = / olur,z)dS + / ¥(z)ds (@)

where ur denotes the solution of problem (1) for a given I'. For instance, in the problem
of determining the shape and position of the defect using experimental data for a
physical quantity governed by problem (1), one may use 2¢(ur, ) = x(Sm) |& — ur|?
where @(x) is a measurement of u for x € S,, C S and ¥(x) serves to define a
regularization term. Other kinds of sensitivity problems with different motivations
(e.g. optimization) can be considered as well.

Evaluating the gradient of J with respect to perturbations of I' allows to use
standard minimization algorithms, e.g. quasi-Newton. In view of the fact that 7
defined by Eq. (2) depends only on boundary quantities and the problem (1) does not
involve sources distributed over €2, it is natural to base the evaluation of J and its
gradient upon a boundary element treatment.

2. Shape sensitivity analysis

The shape of the body 2 is now assumed to evolve with the values of a (small) time-like
parameter p, according to a continuum kinematics-type Lagrangian description (with
the “initial” configuration 3 conventionally associated with p = 0):

x> =®(x,p)eQ), where (Vxe), ®(z,0)== (3)



The geometrical transformation ®(x,p) must possess a strictly positive Jacobian.
Differentiation of field variables and integrals in a domain perturbation is a well-

documented subject [17, 19]; a few basic definitions and facts are recalled now, using

notations introduced in [4]. The initial transformation velocity field 6(x), defined by

6(z) = @,p(z,0) (4)

is the “initial” velocity of the “material” point which coincides with the geometrical
point T at “time” p = 0. The “Lagrangian” derivative at p = 0 of a field quantity

f(y,p) in a geometrical transformation, denoted by f, is defined by:

f=]1)i{r(1]p‘1[f(<v”,p)—f(w,0)]=f,p+Vf-9 (5)
The Lagrangian derivative of the gradient of a field quantity is then given by:
(V) =V f-Vf- V6 (6)

where the symbol “-” indicates the dot product of two vectors or tensors (e.g. Vf. VO =
f.i0ije;). Besides, the material derivatives of the unit normal n to a “moving” surface
S, and the area differential element dS are given by:

dS= divs@dS = D;f; n= —n - Vs = —n;D,0;e; (7)

in terms of the surface gradient: Vsf = Vf—(V f-n)n = (f;—n;f,)e; = (D,f)e; and
the surface divergence divsu = divu — (Vu.n) - n = D;u;. The material derivatives
of domain and surface integrals are expressed by:

4 / FdQ = / (f +7div6)d2  Q: any domain (8)
dp Jo Q

4 /de = /(} +fdivs0) dS S: any surface (9)
dp Js S

From formula (9), the Lagrangian derivative of a double surface integral is given by:

d . . |

Remark 1. The external boundary S and its neighbourhood are here assumed to
be unaffected by the shape transformation, so @ = 0 and V@ = 0 on S. However, if
emerging cracks are considered, 8 and V@ do not vanish on some neighbourhood of
the emerging edge (3-D problems) or point (2-D problems).

Remark 2. The pseudo-time p can be understood either as an abstract parameter,
in the fashion of the calculus of variations (arbitrary shape perturbations being ac-
commodated using 0) or a geometrical parameter having a definite practical meaning
(a radius, a major semiaxis, a centroid coordinate ... ). As far as first-order deriva-
tives are concerned, the analysis to follow considers for convenience a single shape
parameter p but is in fact applicable to the case of finitely many shape parameters.

3. Adjoint problem for domain integral formulation

In this section, the classical way of defining an adjoint state, which rests upon a (weak)
domain formulation of the direct problem (1), is recalled. The resulting sensitivity



expression involves a domain integral which, when the defect is a void, can be converted
into a boundary integral (section 3.2). However, when the defect is a crack, the
conversion into boundary integrals will be seen to break down (section 3.3).

3.1. Definition of an adjoint state. Introduce the following Lagrangian:
Clu,v,T) = 7(T) + /(Vu VT — k2ud) dQ — / wdS (e H'Q) (1)
Q S

in which the weak formulation of the direct wave problem (1) appears as an equality
constraint term, the test function v acting as the Lagrange multiplier. Taking into
account Eqgs. (5)—(9), the total material derivative of the Lagrangian with respect to
a variation of the domain can be expressed as:

*

c<u,v,r):/¢,ua dS+/({Z ~0+wdiv50)d5+/(Vﬂ-V@—kzz’lﬁ)dQ

S r Q

—/{[Vu-Vﬁ—k2ﬂz‘)]div0~[Vu®V17+V®®Vu]~V0}dQ (12)
N

For cracks, the partial “time” derivative Vu , has generally a d=3/? singularity along
the crack edge AT, while V(1) and Vu have the same d~1/2 singularity, where d is
the distance to 3F For this reason, the Lagrangian derivative « has been introduced
instead of the partial derivative u,. The derivations made in this section are therefore
valid for both void and crack problems. Note that the terms containing v have been
omitted in Eq. (12), because they merely repeat the equality constraint.

. Inequation (12), the test function v is now chosen so that the terms which contain
2 combine to zero for any %, i.e. solves the adjoint problem:

/(V@-V aukzaa)dm/%a dS=0 (Vue HY(Q)) (13)
Q S

whose strong formulation is:
(A+k)v =0 (in Q) qlv)=-p, (onS) ¢g(v)=0 (onT) (14)

)

Finally, J is expressed from Eq. (12) in terms of the direct and adjoint states (ur, vr):
T = (up o T) = /(w 0 + divs0) dS (15)
r

+ / {[Vur - Vir — k2urtp)div — (Vur - V) - Var — (Vir - V) - Vur } dQ
Q

3.2. Conversion into boundary integrals (void problem) The formula (16)
for the sensitivity of 7, expressed by a domain integral, is not suitable for BEM-based
computations. However, for void defects, it can be recast in boundary-only form. In
order to do so, one first notices that ur and vr verify:

[Vu® Vi + Vi@ Vu|.Vo
= diV[(VU[‘ . G)V@[‘ + (V’UF : O)VUFN + ]C2V(Ur’l-)r) -0 — V(VUF : V’l—)r) -0 (16)



Then, using this identity and after some additional manipulation, one obtains:

(Vur - Vor — k*urtp)divl — (Vup - V) - Vor — (Vo - V) - Vur
= le[(VUr : V?_)r - k2UI"DF)0 - (VUF . G)V'Ijr - (V’lj[‘ : B)VUI‘] (17)

which allows us to recast Eq. (16) into a boundary integral by means of the divergence
formula. One obtains (using the fact that S is unperturbed, i.e. 8 = 0 on S):

\?7 (F) = /[VU[‘ . Vl_)p - kQUpﬁp]Hn dS
r

- /F{(VUI‘ . 0)q(61~) + (V@r : 0)q(ur)} dS + ‘/F(;Z’ -0 + deVSO) ds (18)

(where 6, = O.n). Further, splitting gradients into tangential and normal parts and
using the boundary conditions ¢(u) = ¢(v) = 0 on the void surface I', Eq. (18) becomes:

:(7 (F) = /[VSUI‘ - Vsir — kzul"@rwn ds + /(27} -0 + wdivse) dsS (19)
r r

Formula (19) allows the computation of the derivatives of any objective functional
J of the type (2) with respect to shape parameters. In particular, since Vsur, Vsur
depend only on the boundary traces of ur and wvr, the sensitivity (19) is computable
directly from the BEM solution of the primary and adjoint problems.

3.3. Inapplicability to crack problems. Consider the case where the unknown
defect is a crack, i.e. the limiting case of a void bounded by two surfaces I'* and I'~

identical and of opposite orientations (Fig. 2).
n=n

[F
g

Figure 2: A crack bounded by two almost identical surfaces I'"™ and I'~.

It is tempting to still apply Eq. (19) to compute sensitivities with respect to crack
perturbations. However, Eq. (19) is not applicable to crack defects. For instance,
considering a domain shape transformation such that 6, = 0 on the crack surface
[ (i.e. allowing crack perturbations along the tangent plane at the crack front, i.e.
crack extensions), Eq. (19) gives dJ /dp = 0, which is certainty not true in general.
In contrast, when I' is the piecewise smooth boundary of a void, 8,, = 0 means that
the void is unperturbed. This apparent paradox may be explained as follows: identity
(16), which plays a key role in establishing the boundary-only expression (19), involves
the field quantity V(Vu - Vv). For cracks, u and v behave like d/? in the vicinity
of the crack front (d: distance to OI'). Then, V(Vu - Vv) behaves like d=2 and the
domain integral [, V(Vu - Vv) - 0dQ is divergent.

Hence, the adjoint state defined by Eqs. (13) or (14) leads to boundary-only sen-
sitivity expressions for functionals of the form (2) only when the defect is a void.
To retain the boundary-only character of sensitivity expressions when the defect is a
crack, a suitable and different definition of the adjoint problem approach is called for.
In what follows, this objective is shown to be fulfilled by enforcing the direct problem
constraint as a symmetric Galerkin boundary integral equation (SGBIE).



4. Symmetric Galerkin BIE formulation

The direct problem (1) admits, if the defect is a void, the following regularized SGBIE
fermulation, obtained from a weighted residual statement of the (initially hypersingu-
lar) flux boundary integral equation:

BAA(U,’LU) = F(w) Vw € H1/2(A) (20)

where
BXY(U,U))://G(ic—y){RiU(y)Riw(w)“k‘Qni(y)ni(l?)U(y)'lD((E)}dSdeI (21)
/ / (y.@ — H(y,z)w(y)ld(y) dS, dS,
//H vz )a(y) dSy dSz _/S 7(y)w(y) dSy (22)

In these expressions, R;u denotes the i-th component of the surfece curl of the scalar
function w: R;u = e;;xn;juy, which is a tangential differential operator [14] associated
to a variant of the Stokes formula:

/ R, fdS =0 C: any piecewise smooth closed surface (23)
c

G(xz—y) = €*7/(47r) is the infinite-space fundamental solution of the Helmholtz equa—

tion (r = [y — z|), and H(y, z) = G ;(x~y)n(z), H(y, z) = —(z;—y;)n;(z)/ (477°).
The expression (21) of B(u,w) stems in fact from the following identity verified by G:

—m(y)nj(m)G,z'j(fE—y) = kQG(:I:——y) - R:-"Rf@(m—y) (24)

When the defect is a crack, the corresponding SGBIE formulation is obtained by
taking the limiting form of Eqgs. (20-21-22) when the cavity becomes infinitely thin.
For example, one can consider a cavity of boundary I'* U T'~, where 't '~ (the
crack faces) are identical open surfaces with opposite orientations. Let I' = ['™ and
n = n~. Using test functions w which are continuous over 't UI'™ and vanish on 't
(in particular, such w vanish on the edge OI'), the SGBIE formulation turns out to be:

BAs(u,'ZU) -+ BA[‘(¢, ’LU)f(’lU) (25)
where ¢(y) = [u](y) = u*(y) — v~ (y) is the discontinuity of u across the crack.

When there is no external boundary (void or crack embedded in an infinite medium,
known incident wave u!), the SGBIE formulation reads (u: total field):

Brr(u, w) = /qlu‘) dS (void) Brr(¢,w) = —-/qlu‘;dS (crack) Vw e H'/?
r r



5. Adjoint problem formulation for crack defects

In order to define a suitable ad joint problem, the constraint corresponding to the direct
wave problem is now introduced in its SGBIE form (20) in a Lagrangian Lg:

Lp(u,w,l) = J(T)+ B(u,w) — F(w) (26)

where Ba(u,w) (noted B(u,w) for brevity) and F(w) are given by Egs. (21) and
(22), respectively. Since the latter are respectively bilinear and linear, the material
derivative of Lg is expected to take the form:

*

Lp (u,w, ) :/cp,u b dS-l—/(;/; -0 + 1divsO) dS
s r

+ B(#, w) + B (u, w; 0) — F'(w; 8) (27)

having, again, omitted the terms containing @ for the same reasons as in Sec. 3.1. The
new terms B!(u, w; 0) and F'(w; @), respectively bilinear in (%, w) and linear in w, are
both linear in 6; they result from application of the differentiation formulas (9) and
(10) to Egs. (21) and (22) and will be detailed later.

Again, the adjoint state wr is defined by imposing that all terms containing
vanish in Eq. (27). Therefore, wr is the solution to the adjoint SGBIE formulation:

B(w, ) = — / p.udS Vue HYA) (28)
S

where of course the symmetric character of the bilinear form B(u, w) has been used.

Remark 3. The adjoint problem Eq. (28) is the SGBIE formulation of problem (13),
but in indirect form. Therefore, the solution wr to Eq. (28) is a double-layer density,
and is not equal to the boundary trace of the solution vr to Eq. (13), except in the
special case of cracks in infinite media.

The material derivative of the functional 7 is then expressed as:

* *

7 (T) =Lp (up, we, T) = f (1) -6 + divs®) dS + B (ur, wr; 0) — F'(wr:0)  (29)
I

The remaining task is to establish explicit expressions for the terms B!(u, w;8)
and F'(w;@). This is achieved in quite straightforward fashion, by applying the
differentiation formulas (9) and (10) to the simple and double integrals involved in
Egs. (21) and (22) which define B(u, w) and F(w). It is important to note at this
point that all double integrations in Eqgs. (21) and (22) consist in a weakly singular
inner integral followed by a nonsingular outer integral.

In order to perform this calculation, let us first collect some useful formulas. First,
for any kernel function of the form K (y — x), one has:

K (y - z) = [0:() - 0:(y)|K (y — @) (30)



Then, from Eqs. (7), it is easy to show that
(n:dS)* = (n;D;8; — n;Dif;) dS = e;;xRif; dS (31)
In addition, using Egs. (6), (7) and (31), one has:
(RiudS)* = ejk(ejapRe0aux — njuele) dS = (Rt — Ribk)ux — Riflau,
= —R0u, = RyuD,;8, (32)

The last equality results from invoking again the definition of the surface curl and
its consequence n,R,u = 0. Using Eqg. (10), (30), (31) and (32), it is then a simple
matter to show (again assuming that w= 0) that:

*

B (u,w) = B(u,w) + B (u, w; 0) (33)

where B!(u,w; @) is given by:

B! (u, w; 6) //{Ru )R;w(x (y,:z:;B) — K*u(y)w(z)A' (y,z;0)} dS, dS;
(34)

with the new kernel functions:
Bli(y,x;8) = [Bk(x) — 0x(¥)]G k(x~y)di; + [0:5(z) + 05,;(y)|G(z—y) (35)

Al(y, x;0) = n;(y)ni(z)[9;(x) — 0;(y)]G j(z~y)
+ ek [ni(y) Reb;(x) + ni(z) Bi0;(y)|G(z - y) (36)

Under the conditions of the present study, @ = 0 on S should be enforced in Eq. (34).
Next, one has, from the definition of H(y, ) and using again Egs. (30) and (31):

(H(y,z)dS,)* = (G i(z—y)ni(x)dS,)"
= (6:(2)G i (z—y)ni(x) + G o(z —y)eix Rib;(x)) dSz

where & and y are assumed to lie on [ and S, respectively, so that 8(y) = 0. In
addition, one has (since here x # y):

G,ij(m——y)ni(m) = eiijiG,i(:c—y) + nj(m)G,ii(m"y)
= e G (T —y) — kznj(:c)G(:c—y)

and hence, combining these relations:
(H(y,x)dS:)* = e;jx Ri (G i(x —y)0i(x)) — k%0, (x)G(z—y) (37)

One is now in a position to calculate the material derivative of F(w). The differ-
entiation of Eq. (22) is performed under the assumption that the surface S is left



unperturbed by the domain transformation @ = 0 and hence affects only single inte-
grals. By virtue of the identity (37) and using the Stokes identity (23), one finds:

*

F (w) = FH(w; 6)
= AL{eiijZ(G,i(m—y)Oi(w)) — k*0.(2)G(z —y) }w(z)d(y) dS, dS,
—/F/S{G,i(m—y)Gi(w)eiijkzD(w)+k26n( z)G(x—y)w(x }q )dS, dS; (38)

Equations (33) to (36) and (38) provide the sought-for explicit expressions of B (u, w; 6)
and F'(w;@). The sensitivity formula (29) is then completely determined.

Remark 4. Equations (33) to (36) and (38), and hence the sensitivity formula (29),

are applicable for both voids and cracks. The derivation of B*(u,w; ), presented for
Eq. (21) (void), is essentially repeated when applied to Ee. (25) (crack).

Remark 5. When dealing with void defects, two alternative sensitivity expressions,
Egs. (19) and (29), are thus available.

Remark 6. The inner integrals in Eqgs. (33) to (36) and (38) are weakly singular if
@ € C%'(T), while the outer ones are regular. Moreover, due to the double surface
integration, the integrals in Eqgs. (25), (29) are convergent even in the presence of a

d~'/? crack front singularity of R;¢p and R;wr.

Remark 7. The approach developed in Sections 5. and 6. for the first-order mate-
rial derivative can be carried out one step further for the evaluation of second-order
derivatives. Indeed this has been done in [6] to formulate and compute first- and
second-order material derivatives of the elastic potential energy at equilibrium, as
part of a numerical scheme to study the stability of quasi-static crack extension. Re-
call, however, that the second-order material derivative (assuming a finite number of
geometrical parameters) and domain derivative do not coincide in general [18].

6. Frequency-domain elastodynamics

This section presents the generalization of the previous formulations to linear isotropic
elastodynamics. The displacement vector u, strain tensor € and stress tensor o are
related through the equilibrium, constitutive and compatibility field equations:

1
dive + pw’u=0 o =C':e e=§(Vu+VTu) in Q (39)

where C' is the fourth-order Hooke tensor of elastic moduli, whose components possess
the symmetry properties Cjjxe = Cjie = Cijse = Creij. For isotropic elasticity, one
has Cijxe = p(Kdij0xe + 0jedik + digdjk) (p: shear Lamé modulus, v: Poisson ratio,
k = 2v/(1 — 2v)). Equations (39) are supplemented by boundary conditions:

t(u)=t (onS) t(u)=0 (onl) (40)

where t(u) = o(u).n is the elastic traction vector.



6.1. Adjoint formulation for the void defect. Considering objective functions
similar to Eq. (2), the Lagrangian incorporating the problem (39-40) in weak form is:

L(u,v,T) =J() —l—/(a(u) 1e(0) — pwu - v)dQ — /i‘ 2dS (v e [H' Q)]
Q S (41)
Its material derivative is given by:

*

L (u,v,T) = / PRE ds+/(a(&):e(a) — pw? U .@)d9+](&) .0 + ¢divs0) dS
Q r

/{ v) — pwu - v)divl — o(u):(Vo.Vl) — o(v):(Vu-VEO }dQ (42)

(note that the terms containing v have been, again, dropped). The adjoint field v is
thus found to solve the field equations (39) together with the boundary conditions:

ttv)=-p, (nS) tv)=0 (onT) (43)

Besides, the solutions ur and vr to the direct and adjoint problems (and, indeed, any
pair (u, v) solving the field equations (39) as well) are feund to verify:

[o(u):e(D) — pw’u - B)divl — o (u): (Vv VO)-0o(v):(Vu-V0)
= div([o(u):e(?) — pw’u - 8]0 — o(u)(V©.0) — o(0)(Vu - 6)]

so that, for void defects, the sensitivity of J is expressed in boundary-only form as:
*
j / ):e(®) — pw'u - 9)8,dS + /(1,!} -0 + dive®) dS (44)
r

having taken into account the homogeneous boundary conditions on I'. Further, the
strain energy density o (u):€(v) can be expressed in terms of the tangential derivatives
Vsu, Vst and of the tractions ¢(u),t(v). Since the latter vanish on I, one obtains:

o(u):e(v) = u{l _Z/VdiVSudivSf) +(Vsu+ Viu): Vst — (n- Vsu) - (n- Vsd)}
(45)

6.2. Adjoint formulation for the crack defect. The direct problem (39) ad-
mits, if the defect is a void, the following regularized SGBIE formulation, obtained
from a weighted residual statement of the traction boundary integral equation:

Baslu,w) = Flw) Yw € [HY?(A)]® (46)

10



where

By (u,v) = /X / { Ryus(y) Re (@) Bitgs(—)
+ Ky () ()4 (%) Agpa(@—1) } 45, dS,  (47)
Flw) = /S /S T (y, @)s() — T (g, )4 (v))ia () 45, S,

; / [ TH(y, o)y () @i () Ly (y) dS, dS, - / fu(y)@e(y) dS,  (48)

In Eq. (48), TF(y,x) (resp. Ti(o)k(y, x)) denotes the traction vector associated with the
dynamical (resp. static) infinite-space fundamental solution U*(z—y) (resp. U™*(z—
y)) of (39):
UF =201 = v)[AF + k}F)6y — Fa U =2(1 — v)AF%; — FY
k 0k _ (0)k 0)k 0)k
£F = M0, UE + p(UE, +UR) S = ae, U 4+ w(UOF + U0
_ (0)k _ ~(0)k
Tf=%tn; T, * = Egj) n;
with
1 1

: : 1
_ — tkpr _ _ikrry I 0 _ —

with k2 = pw?/(A + 2), k% = pw?/ . The latter functions verify:

‘ : 1
(kpe™" —kpe*™)= AF'=0  (z#y) (50)

2 _
AF = 47 k2.

Besides, Eq. (47) stems from the following identity (given in [16] and generalized to
anisotropic elasticity in [2]):
—C;aCrecdUsg pa (T = y)nj (@)ne(y) = By RYBitgs(x —y) + k7 Aijre(T—y)n; () e (y)

where the kernel functions Bikgs(x —y) and Ajjre(x—y) are given by:

Bikgs (T~ Y) = —€iepergrit’ [408pg0rs + 2(1 — V) (8prdgs + 0psbgr)] Feg (51)
Aigre(x—y) = (1 = 20)k7CijabChecadacF pa
+[2(1 = v)(6ix8e + 6k0i¢) + 40840k A*F (52)
and are both weakly singular in view of Egs. (49a) and (50).
Introducing the Lagrangian Lg(u, w, ) = J (') + B(u, w) — F(w), the analysis

of Sec. 5. is essentially repeated: the adjoint state wr is the solution to the adjoint
SGBIE formulation:

*

B(w,u) = —/@’u- adS  Vaue [HYV2(A)P (53)
S
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The material derivative of the functional J is then expressed as:

*

J(U:iL@%9+¢&wmdS+B%unwﬁ9)—fwwm9) (54)

A calculation similar to that performed in Sec. 5. then gives:

5w w) = [ [ {Ryuly) Ree(e) Bl (0. 10
+ k%”j(y)W(“’)ui(y)"Dk(w)Azljke(ya T 9)} dS, dS; (55)
with

ilkqs(y) 5 9) = gq,m(m)Bikms(m_y) + gs,m(y)Bikqm(m#y)

+ [Om(w) - gm(y)]Bikqs,m(m_y) (56)
Azlyktf(yy T, 0) = [gm(m) - gm(y)]Bikqs,m(w—y) + [Dmgm(w) + Dmgm(y)]Aiij(w_y)
- Dmgj(w)Aimkﬁ(m_y) - Dmee(y)]Aijkm(-’B‘y) (57)

and

F(w; 0) = - fF [S {€5mablm(2) S5 (2 —y) R (1)
+ pk30,(2) U (@ —y)be(e) Mo (y) dS, dS,  (58)
which completes our result for the elastodynamic case.
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