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Introduction.

The boundary element method (BEM) is now well-established and applied in numerous engineering fields (structural analysis, geomechanics, acoustics, among others) [START_REF] Brebbia | Boundary element techniques[END_REF], [START_REF] Brebbia | Topics in boundary element research[END_REF], [START_REF] Beskos | Boundary Element Methods in Mechanics[END_REF], [START_REF] Kobayashi | Fundamentals of boundary integral equations methods in elastodynamics[END_REF], [START_REF] Wendland | Asymptotic accuracy and convergence for point collocation methods[END_REF]. However the integral equations of elastodynamics or acoustics involve strongly singular or hypersingular integrals which, in classical elastic potential theory, are interpreted as Cauchy principal value (CPV) (Kupradze [31], [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and ther moelasticity[END_REF]) or Hadamard finite part (FP). As pointed out in [START_REF] Mikhlin | Multi-dimensional singular integrals and singular integral equations[END_REF], [START_REF] Bui | Sur Jes equations integrales en thermoelastoplasticite tridimensionnelle[END_REF], [START_REF] Bui | An integral equation method for solving the problem of a plane crack of arbitrary shape[END_REF], the usual techniques of integral calculus (differentiation under the integral sign, change of variable) applied to CPV or FP integrals may give false results. This has been a serious obstacle to a satisfactory numerical implementation of BEM because these singular integrals correspond to near-diagonal terms in the matrix of the boundary element discretized problem, and hence the accuracy of the numerical BEM solution depends strongly on an accurate evaluation of the singular integrals. Indeed this singular character is also an advantage, since the strong singularity of the kernels, if accurately evaluated, leads to a well-conditioned discrete problem. The regularization of the singular integral equations arising in elastic or acoustic potential theory is an old problem. Giraud [START_REF]Equations a integrales principales, etude suivie d'une application[END_REF], then Mikhlin [START_REF] Mikhlin | Multi-dimensional singular integrals and singular integral equations[END_REF] considered multidimensional singular integral equations of the form (I-AK)<f> = f with (K<f>)(x) =ls <f>(y)K(x,y)dSy (x,y ES) (1) with unknown density <f>(y) and a kernel K(x,y) integrable in the CPV sense. They state the regularization problem as follows: find the singular kernel K'(x, z, A) such that (I+ AK ')(I -AK)<f> = (I+ AK')f [START_REF] Bamberger | Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide[END_REF] Combining Giraud and Mikhlin methods, Kupradze [31] exhibits a construction of the singular part of integral operator K'. He is then able to prove that the regularized form [START_REF] Bamberger | Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide[END_REF] of the singular integral equation is a Fredholm integral equation of the second kind, and hence to state the existence and uniqueness of the solutions of the singular integral equations associated to the basic elasticity problems. In this sense, the singular integral equations arising in elastic or scalar potential theory are well-posed.

However, this approach of regularization, though very fruitful for fundamental considerations, is not amenable to efficient numerical methods for solving singular multidimensional integral equations, the construction of operator K' being very complicated for arbitrary surfaces. For this reason other regularization approaches appeared, better suited to numerical implementation: indirect approach, variational approach and direct approach.

The present paper is devoted to the application of indirect approach to the regularization of displacement and traction boundary integral equations (BIE), with emphasis on the latter.

Basically, the indirect approach consists in a singularity isolation: ef>(x) is subtracted and added to ef>(y) in the operator K: ( K ef>)(x) = Jsl<t> (y) -ef>(x))K(x,y)dSy + ef>(x) ls K(x,y)dSy For a strongly singular integral operator K, the fi rst integral above is weakly singular, while the second one remains to be evaluated by some means. This idea itself is extensively used in classical potential theory. In the HEM literature, indirect regularization of collocation elasto static HIE appears in Rizzo, Shippy [START_REF] Rizzo | An advanced boundary integral equation method for three-dimensional elasticity[END_REF]; the isolated CPV is evaluated (or, more precisely, its actual computation is avoided) by means of a rigid-body identity. This idea has been extended for broader classes of problems governed by displacement boundary integral equations (DBIE): frequency-domain elastodynamics (Bui et al. [START_REF] Bui | Regularisation des equations integrales de l'elastodynamique et de l'elastostatique[END_REF], Bonnet [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], Rizzo et al. [START_REF] Rizzo | A boundary integral equation method for radiation and scattering of elastic waves in three dimensions[END_REF]) and time-domain elastodynamics [START_REF] Bonnet | Regularized Boundary Integral Equations for Three-dimensional Bounded or Unbounded Elas tic Bodies Containing Curved Cracks of Arbitrary Shape Under Dynamic Loading[END_REF]. During the same period, the need of numerical solutions for (hypersingular) traction BIEs became manifest, especially for crack problems. The first step was to convert these hypersingular HIEs into CPV strongly singular BIEs, the unknown density becoming the tangen tial gradient of the crack opening displacement (Bui [START_REF] Bui | An integral equation method for solving the problem of a plane crack of arbitrary shape[END_REF], Weaver [START_REF] Weaver | Three-dimensional crack analysis[END_REF] for planar cracks, Sladek & Sladek [START_REF] Sladek | Three-dimensional curved crack in an elastic body[END_REF] for curved cracks). The singularity isolation and evaluation in this case cannot be done using a rigid-body identity, and the fi nal singularity isolation relies upon an analytical treatment of the residual integral followed by a limiting process (Bonnet [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], [START_REF] Bonnet | Regularized Boundary Integral Equations for Three-dimensional Bounded or Unbounded Elas tic Bodies Containing Curved Cracks of Arbitrary Shape Under Dynamic Loading[END_REF]). Regularization methods for hypersingular BIEs for scalar potential theory and frequency-domain elastodynamic crack problems are also developed by Krishnasamy et al. [START_REF] Krishnasamy | Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering[END_REF], [START_REF] Krishnasamy | Hypersingular boundary integral equations: their oc currence, interpretation, regularization and computation[END_REF], Nishimura & Kobayashi [START_REF] Nishimura | A regularized boundary integral equation method for elastodynamic crack problems[END_REF]. Leblond [START_REF] Leblond | Equations integrales regularisees pour un corps bidimensionnel contenant une fissure de forme quelconque[END_REF] considers the second-order regularization for 2D elastostatic crack problems.

The present paper focuses on the regularization, using the indirect approach, of the (hyper singular) traction HIE (THIE), or, equivalently, of the gradient HIE (GBIE), for time-domain elastodynamics. The THIE are classically used for the HIE modelling of cracks in linear brittle fracture mechanics [START_REF] Koller | Modelling of dynamical crack propagation using time domain boundary integral equations[END_REF], [START_REF] Bui | An integral equation method for solving the problem of a plane crack of arbitrary shape[END_REF], [START_REF] Bui | A boundary integral equation approach to fracture mechanics in three-dimensional and related problems[END_REF], [START_REF] Cruse | Boundary Element Analysis in Computational Fracture Mechanics[END_REF], [START_REF] Hirose | Time-domain boundary element analysis of elastic wave interaction with a crack[END_REF], [START_REF] Nishimura | A regularized boundary integral equation method for elastodynamic crack problems[END_REF], [START_REF] Polch | Traction BIE solutions for flat cracks[END_REF], [START_REF] Sladek | Dynamic stress-intensity factors studied by boundary integro-differential equations[END_REF], [START_REF] Weaver | Three-dimensional crack analysis[END_REF], owing to the well-known degen eracy of the DBIE applied to cracks. However, the THIE may also prove useful for the study of non-cracked solids:

• On portions of the boundary where displacements are given (Dirichlet boundary conditions), the classical DBIE is of the 'first kind' structure and shows some ill-conditioning. The use of a THIE for the collocation points located on the Dirichlet part of the boundary restores the mathematically desirable 'second-kind' structure and may lead to a better conditioned numerical solution algorithm.

• Traction BIEs may be used to compute the complete stress tensor on the boundary, either for stress analysis purposes or for the computation of residual-type error indicators.

The purpose of the present paper is twofold:

• To establish and state the regularized TBIE for general elastodynamic problems, involving bounded as well as unbounded elastic media. The case of a crack embedded in an infinite medium is treated separately.

• To show, via the regularization process being used, that the results do not depend on the limiting process used to define the TBIE, i.e. the shape of the exclusion neighbourhood around the (singular) collocation point, in contrast with other expositions of the subject. This gives both a rigorous proof of the results and, in the authors' opinion, a better understanding of the singularities involved and of the nature of the resulting regularized TBIE.

In accordance with the latter consideration, the TBIE here are introduced and investigated without reference to a specific limiting process such as finite-part integrals. The BIE are not treated as limiting forms of interior representations when the collocation point is moved to the boundary an of the domain n under consideration (as was earlier done for cracks in [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], [START_REF] Bonnet | Regularized Boundary Integral Equations for Three-dimensional Bounded or Unbounded Elas tic Bodies Containing Curved Cracks of Arbitrary Shape Under Dynamic Loading[END_REF]). Instead they are viewed as limiting forms of exterior representations when a vanishing exclusion neighbourhood is removed around the collocation point, the latter being kept fixed on an during the regularization process. This presentation viewpoint follows Guiggiani et al. [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF].

The regularization of time-domain (strongly singular) elastodynamic DBIE is also treated here, both for the sake of reference and in order to introduce some ideas and notations of later use.

The regularization of static BIEs plays a central role, since the static and dynamic kernels possess the same singularities.

In this paper, after some preliminaries and definitions (section 2), the indirect regularization of static DBIE is treated (section 3). Then comes the regularization of static TBIE, which constitutes the bulk of the present paper. First uncracked elastic media, either bounded or unbounded, are considered and two different regularizations strategies are developed: second-order regularization (section 5) and integration by parts followed by a first-order regularization (section 6). Then, in section 7, the former strategy is applied to the TBIE associated to a curved crack. A key prelim inary for sections 6 and 7 is the introduction of tangential differential operators, integration by parts formulas for curved surfaces and integral identities involving the Kelvin static kernels, which is done in section 4. Next, the regularized DBIE and TBIEs are stated for time-domain elastody namics and discussed in section 8. This is followed by a discussion on the actual computation of the resulting (weakly singular) element integrals using BEM discretization (section 9) and a brief overview of other approaches for dealing with hypersingular BIE, namely the variational and the direct approach (section 10). Finally two numerical examples illustrating the use of regularized DBIE and TBIE in elastodynamics are presented in section 11.
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Preliminaries.

We consider the dynamic response of a 3D elastic body n (either bounded or unbounded (see figure 1), subjected to surface loadings. Since the regularization procedures would be unaffected by the presence of nonzero body forces and initial conditions, which appear in displacement and traction BIE as weakly singular domain integrals only, zero body forces and initial conditions are considered here. The boundary of n is denoted r. The surface r represents the boundary of either the fi nite body and/or the internal cavities or inclusions, according to the geometry under consideration.

The unit normal vector n, where it exists, is directed t owar d s t he ex terior of the material body (see fi gure 1). The surface r can be the union of several disjoint surfaces (e.g. a bounded solid with cavities).

The case of a crack in an infi nite elastic space will be considered separately in section 7.

2.1 Stokes tensors U and E [START_REF] Eringen | -linear theory[END_REF].

Let x E 'R,3 and f be a twice continuously differentiable function of time that vanishes for t < 0.

Let unx, t, Y I / ] be the i-th component of the (singular) displacement field at y due to the time dependent point force of magnitude f(t) acting on x along ek-direction in an infinite elastic medium. The components U;k defi ne a second order tensor: the Stokes' displacement tensor U, which possesses the symmetry properties:

U;k[x, t,ylf(t)] = Uk[y,t,xlf(t)] = U;k[x, t, ylf(t)] a k a k -0 U; [x,t, yl/(t)] = --0 U; [x,t,ylf(t)] Xr �
The application of Hooke's law yields the corresponding (third order) Stokes' stress tensor I::

:Ef,[x, t, ylf( t)] = C;spqu;, q[x, t, ylf(t)]

In equation [START_REF] Bonnet | Regularized Boundary Integral Equations for Three-dimensional Bounded or Unbounded Elas tic Bodies Containing Curved Cracks of Arbitrary Shape Under Dynamic Loading[END_REF] and throughout the present paper, the comma used with two-point kernels denotes differentiation with respect to the field point y. The analytical expressions of U [x,t,ylf(t)] and :E[x,t,ylf(t)J in the 3-D case are given by formulas (95), (96) in Appendix A. The special cases f(t) = e -iwt and f(t) = 1 yield respectively the time-harmonic tensors (known as the Helmholtz tensors) :E(x, y; w ), U(x, y; w ) and the static tensors (known as the Kelvin tensors) :E(x,y) and U(x,y). The expressions of Kelvin tensors in the 3-D case are given by formulas (93), (94) respectively, in Appendix A.

The Stokes and Kelvin tensors satisfy the (dynamical) equilibrium equation:

Ef,, ,[x, t, ylf(t)] -pU;k[x, t, Yli(t)] Ef,, ,(x,y) -6(y -x)f(t)

-6(y-x)

(7) (8) 
Let r = ll x -Yll be the euclidean distance between x and y. The Stokes tensors (and their time-harmonic and static counterparts as well) exhibit a well-known singular behaviour for r arbitrarily small:

U;k[x, t, Ylf(t)] = 0(1/r) U; � .[x, t, Ylf(t)] = 0(1/r2) Ef,[x, t, ylf(t)] = 0(1/r2) (9)
2.2 Basic integral identities for uncracked domain n.

Let z be a fixed point, either interior or exterior to n (ie. not on the boundary r). The integral boundary representation theorem for time-domain elastodynamics reads [START_REF] Eringen | -linear theory[END_REF]:

KUk (z, t) + j n,(y)Ef , [z, t, ylu;(y, t)]dSy -1 U;k[ z, t,ylt;(y, t)]dSy = 0 (10) where K = 1 (z interior ton) or K = 0 (z exterior ton). Equation [START_REF] Brebbia | Topics in boundary element research[END_REF] sterns from an application of Maxwell-Betti reciprocal identity to the unknown displacement field u( y , t) and the Stokes impulsive displacement tensor U[z, t, yl o(t)] (where o denotes the Dirac delta distribution) and a subsequent time-convolution. The latter is performed analytically ([18]) and results in kernels such as Ef , [z, t, ylu; (y, t)], where u;(y, t) is substituted to the force function f(t) in ( 93), (94).

As z is not on the boundary, the integrals in [START_REF] Brebbia | Topics in boundary element research[END_REF] are C 00 functions of z. In particular, they may be differentiated with respect to Zr, yielding:

KUk,r( z, t) -r n,(y)Ef sr[x, t, ylu;(y, t)]dSy + r U;\[x, t,ylt;(y, t)]dSy = 0 (11) lr ' lr '

In [START_REF] Bui | Sur Jes equations integrales en thermoelastoplasticite tridimensionnelle[END_REF], use has been made of [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], which allows the exchange of differentiations with respect to the source point z and the integration point y . The above identity [START_REF] Bui | Sur Jes equations integrales en thermoelastoplasticite tridimensionnelle[END_REF] yields an integral representation of the displacement gradients. The interior stress tensor a(z) may then be obtained in terms of the boundary elastic fields using Hooke's law ( 4).

Definition of BIE via a limiting process.

In view of the singular character (9) of the fundamental tensors for x arbitrarily close toy, a limiting process of some nature is necessary if one is to derive boun d ary integral equations from the identities [START_REF] Brebbia | Topics in boundary element research[END_REF], [START_REF] Bui | Sur Jes equations integrales en thermoelastoplasticite tridimensionnelle[END_REF].

Let x be a fixed point on r. Following Guiggiani et al. [21] and using the same notations, a neighbourhood v,(x) = v, of x is removed from n, defining the domain n,. The neighbourhood v, has a size of the same order as f, and hence vanishes with f. The common practice is to take for v, the sphere of radius f centered at x and to interpret the subsequent limiting processes as Cauchy principal values (CPV) of Hadamard fi nite parts (FP). On the contrary, the shape of v, throughout the present paper is arbitrary, in order to show that the final (regularized) BIEs does not depend on a specific limit process.

The following notations are introduced (see figure 2): s, = n n ov., e, = on n v, (so that on, = (re,) + s, ) and c, = oe,. The direct collocation displacement boundary integral equation (DBIE) and gradient boundary integral equation (GBIE) are stated as the limit for£-+ 0 of: f { n,(y)Ef ,[x, t, yiu;(y,t)] -U;k[x, t, yit;(y,t)J} dSy = 0 (12) l(r-e,)+•, f { n,(y)Ef ,,r(x , t, ylu;(y, t)] -U; � r[x, t,ylt;(y, t)]} dSy = 0 lcr-e,)+s, [START_REF] Bui | Regularisation des equations integrales de l'elastodynamique et de l'elastostatique[END_REF] respectively (n denoting the unit normal of on, exterior to n,. Equations [START_REF] Bui | An integral equation method for solving the problem of a plane crack of arbitrary shape[END_REF], [START_REF] Bui | Regularisation des equations integrales de l'elastodynamique et de l'elastostatique[END_REF] above are identities [START_REF] Brebbia | Topics in boundary element research[END_REF] and [START_REF] Bui | Sur Jes equations integrales en thermoelastoplasticite tridimensionnelle[END_REF] applied to the domain n,. Indeed the regularization process will show the very existence of the limit, which is not a priori obvious.

Transfer of the singularity of Stokes' tensors into Kelvin tensors.

The Taylor expansion of the Stokes' tensors for small r (equation (97) in Appendix A) reveals the following crucial properties:

U;k[x, t, Yl/ (t)] -f(t)U;k(x, y)

ui �r [x, t,ylf (t)] -/(t)Ui � r (x, y)

Ef,[x, t, Yl/ (t)] -/ (t)Ef , (x, y)

j (t)O(l) f ( t)O(l) f(t)O(l) (14) 
Figure 2: Exclusion neighbourhood v. and related notations used for the limiting process ( 12), [START_REF] Bui | Regularisation des equations integrales de l'elastodynamique et de l'elastostatique[END_REF].

In other words the singularity (9) of the dynamic tensors is entirely included into their static coun terparts U and�. This property is also valid for the Helmholtz tensors. In view of properties ( 14), the singularity of the dynamic kernels Ef,, Ef., , , U;� , in ( 12), (13) can be transfered in integrals involving the static Kelvin tensors. Accordingly, the regularization of static DBIE and GBIE will be investigated first (sections 3 , 5, 6, 7). Then the results for time-domain elastodynamics will be stated in section 8 and discussed.

3 Regularized elastostatic displacement BIE.

The static DBIE is stated as the limiting case, for f-+ 0, of: Jim f { u;(y)n,(y)Ef,(x,y) -t;(y) U ; k (x, y) } d Sy = 0 < -+O Jcr-e.)+•,

3.1 Rigid-body identity.

(

) 15 
Let < > 0 take a temporarily fixed value, and D, denote the bounded domain with boundary an.

(with outward unit normal nD, consistently with the conventions used herein). Thus:

• if n, is bounded: D, = n., nD = n, x is exterior to D,. • if n, is unbounded: D, = R3 -n., nD = -n, x is interior to D •.
Consider, as an auxiliary solution, a rigid displacement of D, defined by:

u(y) = u0(constant) , t(y) = 0 ( 16 
)
This rigid-body motion satisfies the elastostatic equations, thus equation ( 10) holds true for this case, upon substitution of n by nD. Using the unit normal n exterior to n,, i.e. reversing the normal in the case n unbounded, it reads:

-l'>U� + u? f n,(y)Ef,(x,y)dSy = 0 lcr-e.)+s,

with { " = 1 n unbounded " = 0 n bounded ( 17 
)
The meaning of I'> in ( 17) is consistent with the notation introduced in subsection 2.2, this signi fication is maintained in the sequel. The above considerations hold true for x being an edge or corner point as well as a regular point of an. Since the identity [START_REF] Brebbia | Topics in boundary element research[END_REF] for an infinite domain n implies that the displacement and stress fields satisfy decay conditions at infinity, the rigid-body displacement had to be considered for a bounded domain, hence the introduction of n .. and the subsequent appearance of the coefficient "in (17).

Regularization of static DBIE.

The "rigid-body identity" [START_REF] Dongarra | LINPACK users'guide[END_REF] remains in particular true for the choice u0 = u (x), ie the unknown displacement at the fixed point x considered as a rigid-body displacement field on !1. Subtracting [START_REF] Dongarra | LINPACK users'guide[END_REF] from [START_REF] Cortey-Dumont | Ph -Simulation numerique de problemes de diffraction d'ondes par une fi ssure[END_REF] with u0 = u (x) gives: 

Now the limiting process £ ...... 0 in [START_REF] Eringen | -linear theory[END_REF] is investigated. The integrals on s, and on re, are considered separately.

• Because of [START_REF]Equations a integrales principales, etude suivie d'une application[END_REF] and since I I x -y II"' <, dSy "' < 2d !1 ( !1 being the solid angle from x) , the integrals over s, vanish in the limit £ ...... 0.

• On re., the integrands are of order I I xy l l "'-2 and I I xy 11-1 • The limit for E ...... 0 of both integrals over re, are the corresponding ordinary improper integrals over r.

Hence, taking the limit E ...... 0 in [START_REF] Eringen | -linear theory[END_REF] gives the regularized DBIE as follows:

Ku k (x) + j { ( u; (y) -u; (x)) L:f, (x , y) -t; (y)U; k (x, y)} dSy = 0 (20) 
where 11: assumes the same meaning than in [START_REF] Dongarra | LINPACK users'guide[END_REF].

4 Tangential differential operators and integration by parts.

Tangential differential operators.

Let S be a twice continuously differentiable ( C2) surface, closed or open, of unit normal n. Let v denote the unit outward normal to as lying in the tangent plane to S and T the unit tangent to as defined as T = n /\ v. Consider a scalar field / (y) , y Es . The function f may be undefined outside S (e.g. Sis a crack and f is the crack opening displacement, or f = n; (y) . Therefore the cartesian derivatives /, ; are generally meaningless. The domain of definition of f is extended in a neighbourhood V of S by introducing a continuation J of f outside S defined as:

(y E V) f(y) = f (P(y)) ( 21) where P(y) is the orthogonal projection of y onto S. Clearly the restriction of J to Sis equal to f. Moreover the normal derivative of J is equal to zero, i.e. the vector gr adf is tangent to S; therefore it may be used to define the tangential gradient gr a ds of the function f; gr a ds/ = gr a dsf = gr a df [START_REF] Duong | Equations integrales pour la resolution numerique de problemes de diffraction d'ondes acoustiques dans R3• These d'Etat[END_REF] If f is an arbitrary scalar function defined in V, one has, consistently with [START_REF] Duong | Equations integrales pour la resolution numerique de problemes de diffraction d'ondes acoustiques dans R3• These d'Etat[END_REF]: gr a dsf = gr a d/ -nf,n = eJJ,f = e ,( f ,r -n, f, n)

which defines the tangential partial derivatives Dr/ (using the notation (•),n = &/& n( •)). In the following, the symbol ( ' ) will be omitted, keeping in mind when necessary the extension [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF]. The classical Stokes' identity for a vector fi eld U defined over V reads:

f n • rot(U)d S = f U • rds ls las ( 24 
)
Let f and v be respectively a scalar and a vector field on S. Application of Stokes' identity [START_REF] Hirose | Time-domain boundary element analysis of elastic wave interaction with a crack[END_REF] to the vector fi eld U = ( n A e; ) f yields the following identity:

[ (-nrK f +Dr f)dS = [ f vrds f D,.fdS=ljrs f fr;ds for any fi xed pairr,s, r,s=l,2,3 (27) ls las

where fjr• denotes the permutation symbol of the indices j, r,s. Identity [START_REF] Koller | Modelling of dynamical crack propagation using time domain boundary integral equations[END_REF] is very interesting for BEM formulations. It allows integration by parts on a closed or open surface using ordinary partial derivatives (i.e. without separation of tangential and normal derivatives), thanks to eqn.

(26). It will be used in section 6.

The contour integrals in the right-hand sides of (25), ( 27) vanish if S is closed and piecewise smooth (i.e. made of several smooth open surfaces), provided /(y) is continuous at the edges.

Integral identities involving Kelvin tensors.

The regularization approach developed in sections 6, 7 will involve the integrals:

���= f ��rl� ���= f ��rl� ls ls ' ( 28 
)
where x is a fi xed point no t on the surface S, which ensures the validity of any analytical treatment (such as integration by parts, for the present matters) performed on these integrals.

Examination of formulas (93) and (94) reveal that the two first integrals Af , (x, S), Bf';. (x, S) are expressed in terms of two basic integrals Ia(x, S), Jabc(x) (a, b,c = 1, 2, 3), as follows:

Af , (x, S) = -4� [ .82(o;kl,(x, S) + o,kl;(x, S )-o;,h(x, S)) + 3(1 -,B2)J;,k(x, S) j Bfr(x, S) = -8 � µ [ (1 + ,B2)o;klr(x, S) + (1 -,8 2) (3Jikr(x, S) -Orkl;(x, S) -oirlk(x, S))] (31) [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and ther moelasticity[END_REF] with r,n = npr ,p, J( = Drnr and in which the dependencies n = n(y), 11 = 11(y), J( = K(y) , r,; = 8/8y;r(x,y) are made implicit for brevity.

The reformulations (31), [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and ther moelasticity[END_REF] of Ia(x,S), Jabc(x) involve surface integrals with integrands being of order 0 ( 1/r) (S being C2 , l/r2r,n is of order 0(1/r)) for x close to the integration point y . Besides, in view of the symmetry of Jabc (x, S) with respect to the indices a, b, c in (30), formula (32) is invariant under any permutation of a, b, c in either side. However, this symmetry does not hold for the surface and contour integrals taken separately.

The integral Kf(x, S) =ls n,(y)L.f,(x,y)dSy [START_REF] Leblond | Equations integrales regularisees pour un corps bidimensionnel contenant une fissure de forme quelconque[END_REF] will also be used. Although it is not directly expressible using Ia (x, S), Jabc (x, S) integrals, it can be transformed along similar lines (see Appendix B) into:

k

1 [ f dSy 2 f 2 f dsy] K; (x, S) = -4 ir O;k l s r,n� + 3(1 -/3
) l s r,; r,,r,n dSy + /3 Eikp l as Tp -r - 5 Second-order regularized elastostatic GBIE and TBIE.

5.1 Definition of gradient BIE via a limiting process.

(

) 34 
The notations are those introduced in subsection 2.3. The elastostatic gradient boundary integral equation (GBIE) results from application of identity [START_REF] Bui | Sur Jes equations integrales en thermoelastoplasticite tridimensionnelle[END_REF] to the domain n, and then taking the limit € --+ 0 (which existence itself will result from the regularization approach). Repeating the considerations of subsection 2.3, the static GBIE is stated as the limit for €--+ 0 of 1 {u;(y)n,(y)Y:.f,,r(x,y)-t;(y)U;�r(x,y)}dSy = 0 (r-e.)+s,

Application of Hooke's tensor (4) to [START_REF] Mikhlin | Multi-dimensional singular integrals and singular integral equations[END_REF] yields the traction boundary integral equation (TBIE).

Two approaches are considered in this section: the second-order regularization and an inte gration by parts followed by a first-order regularization.

Second-order regularization.

This approach, like the first-order regularization of DBIE, uses a simple elastostatic solution as an auxiliary problem. Owing to the I I y -x 11-3 singularity of the derivatives Y:.7 , r[x, t, y l u; (y, t)] of the second Stokes' tensor, it is then necessary to perform a second-order regularisation, i.e. subtract u (x) and u,r(x) from u (y) .

Consider, as an auxiliary solution of elastostatic equilibrium equation, the superposition of a rigid displacement and a uniform strain displacement of D., defined by:

(with Tj =Yi -Xj)

( u ?, A;J constants). Equation ( 11) holds true for this elastic state. It reads:

ll: Akr + 1

{ [u? + AijTj]n,(y)L.f,,r(x, y) -Cisabn,(y)AabUi�r(x, y) } dSy = 0 (37) (f-e,)+s,

where 11: = 0 ( n, bounded) or 11: = 1 ( n, unbounded), and using as in [START_REF] Dongarra | LINPACK users'guide[END_REF] the unit normal exterior to n,. Identity (37) remains in particular true for the choice u? = u;(x) and A ;j = u ;,j(x) , ie the unknown displacement and displacement gradient at the fixed point x. With this choice, subtraction of (37) from [START_REF] Mikhlin | Multi-dimensional singular integrals and singular integral equations[END_REF] gives:

-ll:Uk,r(x) + 1

[u;(y) -u;(x) -u;,i(x) rj ] n,(y) Y:.f.,r(x, y)dSy (r-e.)+s,

-1 [u; (y) -u; (x) -u; ,;(x)r;] Ef,,.(x,y) "'Ii a: -y 1 1°-2 C; aabn.(y) [ua,b(Y -Ua,b(x)] u. �.( x, y) "'Ii a: -y 11°-2 Now the integrals on s, and on re, in (38) a.re considered separately.

[t ;(y)-Cisabn,(y)ua,b(x)] U;\(x,y)dSy = 0 (f-e.)+s, Assume u; E C 1• ", (i = 1,2,3) at x.
(39)

• Because of [START_REF] Polizzotto | An energy approach to the boundary element method. Part I: elastic solids[END_REF] and since II a: -y II"' £ , dSy "' £ 2d n ( n being the solid angle from x), the integrals over s, vanish for £ --> 0.

• On r -e,, both integrands a.re of order II a: -y 11°-2 and II a: -y 1 1-1, for y close to x. The limit of both integrals over re, a.re then ordinary improper integrals over r. Hence, taking the limit £ --> 0 in [START_REF] Polch | Traction BIE solutions for flat cracks[END_REF] yields the following regularized GBIE:

-Kuk,r(x) + fr [u; (y) -u;(x) -u;,;(x)r;} n,(y)E� .• (x, y)dSy 

where K assumes the same meaning than in (17). Since the unit normal at (x) does not appear in equation ( 40), this result is valid for (x) being a smooth point of r as well as an edge or corner point, provided the regularity requirement u; E C 1•" at x is met.

5.3 Reformulation of ( 40) for BEM discretization.

In a boundary element point of view, the regularization is achieved if the property (39) is made explicit when considering the discretization of the surface fi elds u and t using shape functions, i.e. if the appropriate cancellations occur in the discretized u; (y) -u; (x) -Ui,j(x)rj, t; (y) -Cisabn,(y)ua,b(x) ( see section 9). As these quantities are only defined on r in a BEM context, one has to rearrange them using: 

(42)

The regularized GBIE (40) can be accordingly recast in an alternative form, which also involves (43) The version (43) of the regularized GBIE is better suited to BEM interpolation than [START_REF] Rezayat | On time-harmonic elastic wave analysis by the boundary element method for moderate to high frequencies[END_REF].

6 Integration by parts and first-order regularization of static GBIE.

In this section, an alternative regularization approach for the GBIE is developed in which, instead of a second-order regularization, a first-order regularization follows a preliminary integration by parts. This integration by parts pattern is very useful in the elasticity BIE methods context. It appears in [ 44] and [32] and is used in [START_REF] Bonnet | Shape differentiation of regularized BIE: application to 3-D crack analysis by the virtual crack extension approach[END_REF] for other purposes. Application of ( 44) to the first integral in static GBIE (35) (x being located outside !1,) leads to:

{ { Dr8U;(y)Ef ,(x, y) -t; (y)Ui� r(x,y)} dSy = 0 J(r-e,)+s,

The same integration by parts is also performed on identity (37) obtained from the auxiliary solution [START_REF] Nedelec | Integral equations with non integrable kernels[END_REF], giving:

1'Uk ,r(x) + f 

( 47) Following similar lines than in subsection 5.2, identity (47) above leads to a regularized GBIE.

However, since quantities u;,,(y) -u;,,(x) and Cisabn,(y)ua,b(x) involve complicated combinations of tractions and (tangential gradients of) surface displacements, the result is not very convenient in a BEM point of view. The goal of the present subsection is to rearrange equation ( 47) to get a regularized GBIE explicitely expressed in terms of tractions and tangential gradients of surface displacements.

The substitution n;(y) = (n; (y) -n; (x)) + n; (x) is made in the integrals over Se, in (47).

After a suitable rearrangement of the terms, one gets:

-1'uk,r(x) + k -e, { [Drsu;(y) -Drsu;(x)j Ef.(x, y) -[t;(y) -t; (x)] Ui � r (x, y)} dSy + L [nr (y) (u;,, (y) -u;,,(x)) -n,(y)(u;,r(Y) -Ui, r(x))]Ef,(x, y)dSy

( 4 8)
-1 (t; (y) -Cisabn, (y)ua,b(x)) U; �r (x,y)dSy + Ikr(x, £) = O s,

-fr_. , [(nr(Y)-nr(x))u;,,(x) -(n,(y) -n,(x))ui,r(x)] �f.(x,y)dSy + [ Ciaab(n,(y) -n,(x))ua,b(x)U;�r(x,y)dS y lr-e1:

Because u; E C1•" and property (39),

• The two fi rst integrals in [START_REF] Wendland | Asymptotic accuracy and convergence for point collocation methods[END_REF], in the limit f-+ O, are ordinary improper integrals over G.

• the integrals over s, vanish for f -+ O.

(49)

The limiting process thus reduces to the investigation of Ikr(x, €) . Inserting Hooke's law, noticing the symmetry Ciaab = Cabis of Hooke's tensor and using the notations of section 4 in (49) leads to:

In (50 ), the fi rst integral is integrated by parts using identity ( 2 7):

fr_. , [ nr(Y)u: ,b(x,y)-nb(y)U: ,r(x,y)] dS y fr_. , Drbu:(x,y)dS y = 1 u: ,r(x,y) frbiT;(y)ds y (51 ) c,

Using (51 ) and the results of section 4, the integrals in (50 ) are split into surface integrals and contour integrals over c,.

• In the limit f-+ 0 , all surface integrals in identities (31 ), (3 2 ) are ordinary improper integrals over r. Moreover, since x is a smooth point of G, it can be shown that, from ( 34) :

with { � = = 0 1 n unbounded n n bounded
Hence the contribution of the surface integrals in (50) equals -(� -K.)u;,k(x) + Drau;(x)Af,(x,r)-t;(x)Bfr(x,f)

• Using (51 ), the total contour integral 8Ikr(x, €) over c, arising in (50) equals:

8Ikr(x, €) = -CisabUi,a(x) 1 u:,r(x,y)frbiT;(y)ds y + Ui,r(x)8Kf(x, f -e,) c,

+ Dr8u; (x)8Af,(x, f -e, ) -n,(x)Cisabua,b(x)8Bfr(x, f -e,)
-CiaabU;,,(x) 1 u: , r(x,y)frbiT;(y)ds y c, + Ui,r(x)8Kf(x, fe,) -u;,r(x)n,(x)8Af,(x, fe,)

(

+ C; sabUi,s(x) [ nr(x)8B:b(x, f -e,) -nb(x)8B!r(x, f -e,) ] (53

)
where 8A f,(x, S), &Bt(x, S), 8Kf(x, S) symbolically collect all contour integrals over c, arising in Af , (x, S), Bt(x, S), Kf(x, S) given by identities ( 31 ) , (3 2) and (34). The point x being smooth on r, the curve c, becomes a plane curve for vanishing f. (8 denoting the polar angle of origin x in the tangent plane tor at x). Thus, each integrand in (54) behaves like O(l)d8 for small f. This, together with nr(x)nb(Y) -nb(x)nr(Y) = O(E),

gives:

(55)

Hence:

(56) n,(x)8Af,(x, r -e, ) = (57)

using n,(x)v,(y) = 0( E), nv(x)np(y) -1 = 0( E), nq(x)r,q(x, y) = 0( E).

Collecting results {34), {56) and {57), one has: 8Ikr(x, €) = -CiaabUi,a(x) 1 u:,r(x,y)ErbiTi(y)ds y + CiaabUi,a(x) 1 u:,r(x,y)ErbiTi(Y)ds y c, c, 13 2 j ds y 13 2 j ds + u;,r(x)-4 Eikq Tq-u,,r(x)-Eikq Tq::::

2 + O(E) 7r « r 47r c, r O(E) {58)
that is, the total contour integral 8Ikr(x, E) over c, arising in (50) vanishes for f--> 0. Equation (58) is the key step of the current regularization of the static GBIE: thanks to it, the integral Jkr(x, E) reduces to a sum of weakly singular integrals over r, according to eqns. (31) , (32): (60)

The densities of the integrals in GBIE (60) are the tangential gradients of u and the tractions t. This is a nice feature in a boundary element point of view, because the boundary integrals involve independently interpolated fields defined on the boundary r.

7 Regularized elastostatic first-order traction BIE for curved cracks.

7.1 Elastostatic traction BIE for cracks in infinite elastic solids.

Consider a perfect crack embedded in an infi nite elastic space n. The two faces s+, sof the crack are geometrically identical and have opposite unit normals n + , n -, such that nis oriented from s+ to s-. The surface S = s+ = s-is piecewise twice continuously differentiable. The response of the infinite elastic space to static tractions T1± applied on the two crack faces is considered.

It is well-known that the DBIE applied to this crack problem is ill-posed, because the (given)

tractions appear only by their sum T1 ±. Hence, the traction BIE is needed. Moreover, for x E S, the kernels are singular at s+ 3 y + = x and s-3 y-= x. Thus, the limiting process which defines the GBIE or TBIE in this case must be modifi ed accordingly. Let x be a regular interior point of S. Consider a neighbourhood v, of x, vanishing with € and of arbitrary shape. The closed surface s, = av, is split into two parts si and s;, according to fi gure 3. Let e� = s± n v,. Equation ( 45) can then be written for the domain n, exterior to the cavity (of zero thickness, except for v,) bounded by an,= ((S -e,)+ + si) + ((S -e, ) -+ s;), the limit of this cavity for f __. 0 being the crack:

lim { f {D,.ef>;(y,t)Ef ,(x ,y)-S;(y,t)U; " ,(x,y)} dSy (-+0 ls-et: '

+ 1 + _ { D,,u;(y, t)Ef.(x,y) -t;(y, t)U;�,(x,y)} dS y } = O St: + st" Identity [START_REF] Koller | Modelling of dynamical crack propagation using time domain boundary integral equations[END_REF] have been used to integrate by parts the terms containing derivatives of the static stress kernels. Although the surface S is open, the contour integrals arising from (27) vanish because ef>;(y, t) = 0 on as.

Regularization of the static traction BIE for cracks.

As the idealized crack has no interior, identities [START_REF] Nishimura | A regularized boundary integral equation method for elastodynamic crack problems[END_REF] or ( 46) are not applicable. The singularities must be isolated and then evaluated separately. The first step is to put n;(y) = (n;(y)-n;(x)) + n;(x) in the integral over S -e, and u;,j(Y) = ( u;, j(Y) -u;,;(x)) + u;,;(x) in the integral over s, = si + s; in (61). Upon this manipulation (for a fixed value of€), (61) becomes:

fs_. , {fD,,ef>;(y) -D.,ef>;(x)] Ef.(x,y)-[S;(y) -S;(x)] U;�,(x,y)} dS y + 1+ _ [n,(y) ( u;,.(y) -u;,.(x)) -n,(y) ( u;,,(y) -u;,,(x))] Ef,(x, y)dS y (62)

St: + st' -1+ _ (t;(y) -C;sabn.(y)ua,b(x)) ut,(x, y)dSy + J1<,(x, E) = 0 ae: +st: 

Because u; E C 1•" and property (39),

• The integral over S -e, in ( 48), in the limit f -+ 0, is the corresponding ordinary improper integrals over S.

• the first two integrals over st + s; vanish for f-+ 0.

The limiting process thus reduces to the investigation of the limit of Jkr (x, c ) . The latter can be recast in a form similar to (50)-(51) and using similar considerations:

Jkr(x , c) = -Cisab { ut.(x) L u:(x , y)frbiTt(y)dsy + u�.(x) L u:(x, y )f rbi T ; -(Y )ds y} + (nr(x)[u;,,(x)] -n,(x)[u;,r(x)]) Af,(x, S -e ,) -n, ( x)Cisab[ua,b) ( x )]Bf r (x , S -e, ) + u t r (x ) Kf (x, si) + u � r (x)Kf (x , s;) (64)

The integrals in (64) are split into surface integrals and contour integrals over c,.

• In the limit f -> 0, all surface integrals in identities (31), ( 32), ( 34) are ordinary improper integrals over r. Moreover, since x is a smooth point of G, it can be shown from (34) that: where lJAf.(x, S), lJBf.(x, S), lJKfex, S) symbolically collect all contour integrals over c. arising in Af.(x, S), Bf.(x, S), Kf(x, S) given by identities (31), (32) a.nd (34). In (66), the substitution D,,</J;(x) = n,(x)[u;,.(x)) -n.(x)[u;,,(x)) has been made; its validity stems from the fact that D,,</J;(x) involves only tangential derivatives, hence the (tangential) differentiation and the jump[• ) operators may be exchanged.

k ± 1 1 j ± dsy J(. (x S ) = --/i• k --T - I ' < 2 I
The contour integral lJ.J1<r(x,£) (equation ( 66)) is the same as the contour integral lJI,.,(x,£) (equation ( 53)), except that the jumps of gradients [u;, ;(x)) appear instead of the gradi ents u;, ;(x) themselves. Hence, the analysis conducted in subsection 6 is applicable again to lJ.J,.,(x, £) and leads to: limlJ.J,.,(x,£) = 0 <-+0

(67) that is, the total contour integral lJ.J,.,(x,£) over c. arising in (50) vanishes for£-+ 0.

Equation ( 67) is the key step of the current regularization of the static crack TBIE: thanks to it, the integral .J1c,(x, £) reduces to a sum of weakly singular integrals over S and of contour integrals over as' according to eqns. ( 31), ( 32 Application of the tensor C1p k rnt"(x) to (69) leads to the TBIEs where the given tractions 1/±(x) are related to unknown COD </J(y) and the known S(y)., In the common case where an incident stress tensor u1(x) is known and the superposition principle is applied, the tractions T1±(y) are of opposite sign: S(y) = O,y ES and the static regularized TBIE reads, from (69): The properties [START_REF] Bui | A boundary integral equation approach to fracture mechanics in three-dimensional and related problems[END_REF] of Stokes' tensors are used to transfer the singularity of the dynamical kernels in integrals involving the static Kelvin tensors. For example, the limiting process in [START_REF] Bui | An integral equation method for solving the problem of a plane crack of arbitrary shape[END_REF] which defines the elastodynamic DBIE may be rewritten:

£ n.(y) { Et[x, t, ylu;(y, t)] -u;(y, t)Ef,(x,y)} dSy + lim l {u;(y,t)Ef,(x,y)-U; ,. [x,t,ylt;(y,t)JdSy} = 0 <-+0 (f -e.) + •.

(71)

Indeed, because of properties ( 14) of the Stokes tensors, such considerations can be applied as well to the other BIE considered in previous sections. Hence all results obtained for elastostatics in sections 3, 5, 6 and 7 can be extended to time-domain elastodynamics.

8.1 Regularization of the elastodynamic DBIE [START_REF] Bui | An integral equation method for solving the problem of a plane crack of arbitrary shape[END_REF].

Identity [START_REF] Dongarra | LINPACK users'guide[END_REF] is written for u0 = u (x,t) and subtracted from (71). As a result, the regularized elastodynamic DBIE reads:

K.uk(x, t) + 1 n,(y) [ Ef,[x, t, yl ui(Y, t)] -Ef,(x,y)ui(y, t)] dSy + 1 n,(y)Ef,(x,y) (u; (y,t)-u; (x,t) )dSy -1 U; k [x,t,yl t; (y,t)]dSy = 0 (72) 8.2 Second-order regularization of the elastodynamic GBIE {13) and TBIE.

Identity [START_REF] Nishimura | A regularized boundary integral equation method for elastodynamic crack problems[END_REF] is written for the static displacement field U(y) defined by: U; (y) = u; (y, t) + u; ,j(y, t)( Yj -Xj ) (73) and subtracted from [START_REF] Bui | Regularisation des equations integrales de l'elastodynamique et de l'elastostatique[END_REF]. This manipulation leads to the second-order regularization of the elastodynamic BIE:

-Kuk,r(x) + 1 n,(y) [ Ef, ,,[x,t,yl u;(y,(y,t)Ef,,,(x,y) j} dSy + 1 [u; (y, t) -u; (x, t) -u; ,j(X, t}rj] n,(y)E�,,(x,y)dSy -1 [u; \[x, t,yl t; (y, t)] -t; (y, t)U; \(x,y)] dSy 

The elastodynamic version of the fi rst-order regularized GBIE (60) results from application of identities ( 75)-( 44) to the integral fr n,(y) [ E7,,,[x,t,yl u; (y,t)] -u; (y,t)Ef,,,(x,y) j dSy

This leads to state the first-order regularization of the elastodynamic GBIE as follows:

1 k k -2uk,r(x, t) + Dr,u; (x, t)A ; , (x,I') -t; (x, t)B ir (x, f) + fr [ E7,[x,t,yl Draui(Y,t)]-Dr,u; (y,t)Ef,(x,y) j dSy -fr [ui �r[x, t, yl t; (y, t)] -t; (y, t)U; \(x, y)j dSy + p fr ut[x, t, yl ii; (y, t)]nr(y)dSy + 1 [ {D,,u; (y, t) -D,,u; (x, t)] Ef,(x,y) -[ti (y, t) -t; (x, t)] U; �,(x, y )} dSy = 0 (76)

Regularized elastodynamic GBIE and TBIE for cracks.

Using the same arguments than in the previous subsections, the elastodynamic counterpart of the regularized GBIE for cracks is: �( ut k (x, t) + u; k (x, t)) + Dr8</>;(x, t)Af,(x, S) -S;(x, t)Bfr(x, S) 2 • .

+ ls [ �f.[x,t,y!D.,</>;(y,t)] -D.,</>;(y, t)�f.(x,y)j dSy

f [ k k l { k ..
l s U ;,r [x,t,y!S;(y,t)]-S;(y,t) U ;,r (x,y) dSy + p l s U ; [x,t,yl</>;(y,t)]nr(Y)dSy + { [Drs</>;(y,t) -D.,</>;(x, t)] �f.(x,y)dSy -{ [S;(y,t) -S;(x, t)] U ; \(x,y)dSy = 0 ls ls .

8.5 Discussion of the results.

(77)

The above BIE (72), ( 74), ( 76), (77) are regularized .BIE expressed with only weakly singular integrals, provided the surface fields satisfy the appropriate regularity requirements. In particular, as shown in section 4, Af,(x, S), Bf r(x, S) which appear in (76), (77) are made of contour integrals (in the case of a crack) and weakly singular surface integrals. These regularized BIEs hold for bounded solids as well as for infi nite elastic media. The boundedness or unboundedness of n in all regularized BIEs is entirely taken into account, given the coefficient x (in (72) and (74)) and the orientation convention chosen for n.

Comments about the limiting process. Throughout the analysis conducted in sections 3,5, 6, 7, the BIE are defined as limiting cases of exterior representations as the size£ of an exclusion neighbourhood v < vanishes. During the limit process, the collocation point x remains fixed and is located on the boundary of n. Moreover, the shape of v< is arbitrary throughout the limit process and may vary as £ --> O.These features are in contrast with other presentations of hypersingular BIEs and their regularization [START_REF] Bonnet | Regularized Boundary Integral Equations for Three-dimensional Bounded or Unbounded Elas tic Bodies Containing Curved Cracks of Arbitrary Shape Under Dynamic Loading[END_REF], [START_REF] Krishnasamy | Hypersingular boundary integral equations: their oc currence, interpretation, regularization and computation[END_REF], where the hypersingular BIEs:

• are defi ned as limiting cases of internal representations for an internal point x.

• are formulated using FP integrals (before any regularization) or CPV integrals (where an integration by parts yields a first regularization).

In the latter the fi nal BIE seems to depend on a particular limit process (CPV, FP), in which exclusion neighbourhoods of specific shapes have to be considered. On the contrary, the present exposition shows that the resulting regularized BIEs are truly expressed in terms of ordinary improper integrals, as the value of such integrals does not depend on the choice of exclusion neighbourhood. Such considerations were previously put forward by Guiggiani et al. [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF] in their direct treatment of hypersingular integrals, see subsection 10.2.

The present application of indirect approach to DBIE and GBIE results in the derivation of regularized BIE, with weakly singular integrals; moreover, the regularization process shows the very existence of the limits which defi ne the BIEs and their independance with respect to v .. Thus the introduction of specific limit processes, such as FP integrals, for the study of GBIE is by no means essential. In a sense, the hypersingularity of the original GBIE, or the strong singularity of the original DBIE, is 'apparent' rather than actual: the regularization process consists essentially in subtracting and adding the same appropriate quantity to the original BIE (either directly or by means of an auxiliary solution), thus the final (weak) singularity may be viewed as more 'essential' than the original strong-or hypersingularity.

Establishment of the fi rst-order regularized GBIE (76) and (77) make an essential use of identities (31), ( 32) and [START_REF] Maier | A variational formulation of the boundary integral equation method in elastodynamics[END_REF] given in section 4:

•The surface integrals in (31), ( 32) and (34) are weakly singular, as a result of integrations by parts.

• In the same time, although the contour integrals over the curve c, do not vanish individually vith E, the nonvanishing quantities cancel each other in the very combinations a:h,(x, E) ( eqn. (53)), o.J k r(x, E) ( eqn. (66)) of such integrals involved in the GBIE. This highlights the fact that the GBIE, i.e. the limiting process [START_REF] Mikhlin | Multi-dimensional singular integrals and singular integral equations[END_REF], is independent on the shape of the exclusion neighbourhood v,. It is even unnecessary to select a certain shape for v. , e.g. v, = EV, and maintain the selected shape V while taking the limit E --+ 0. This may be view as another manifestation of the fact that the GBIE is not 'essentially' hypersingular.

Regularity requirements for the density fu nction and implications for BEM interpo lation. Another result of the regularization process is the regularity requirements on u and t under which the resulting BIE are actually weakly singular.

• In view of equation (72), u(y, t) E C0•0 at y = x is necessary. This requirement is always fulfilled by the usual conformal BEM interpolations using e.g. polynomial shape functions, then regularized DBIE can be used in the usual BEM framework. This has been done in [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], [START_REF] Rezayat | On time-harmonic elastic wave analysis by the boundary element method for moderate to high frequencies[END_REF] , [START_REF] Rizzo | A boundary integral equation method for radiation and scattering of elastic waves in three dimensions[END_REF], among others.

• On the contrary, the GBIEs (74) , ( 76), (77) require u ( y, t) E C1•°' ( or, equivalently, a C0•0 regularity of the displacement gradients ) at y = x, and consequently t(y,t) E C°•°' . If the latter condition is easy to fulfi ll with usual BEM discretizations, this is not the case of the former, because conformal C1•0 boundary elements are very difficult to develop for general surfaces in R3. This problem is by no means negligible: Krishnasamy et al. [START_REF] Krishnasamy | Hypersingular boundary integral equations: their oc currence, interpretation, regularization and computation[END_REF] point out that neglecting to ensure the C1•0 regularity at y = x leads to scale-dependent results. The other choices available by now include:

-The use of nonconformal interpolations for u, i.e. using boundary elements with displace ment nodes away from the element edges. Then the C1•0 requirement is met. It is generally difficult, and maybe undesirable, to make the number of collocation points match exactly the number of unknowns. This results in an expected increase of storage and CPU time, because of the additional equations and of the subsequent use of least-squares solvers which are computationally more expensive than Gaussian elimination.

-The parallel use of a C0•0 interpolation for u and another C0•0 for the gradients u,i • The necessary ( linear) relation between the displacement and gradient nodal values is obtained by stating that the two interpolations are nearest in the least-squates sense. This has been done by Polch, Cruse & Huang ( [START_REF] Polch | Traction BIE solutions for flat cracks[END_REF]), which studied elastostatic planar crack problems using regularized THIE.

Moreover, in the first-order regularized GBIEs (76), (77), the continuity of the displacement gradient at x is necessary for the free-term to make sense.

The regularity requirements for the density functions which appear along the regularization process are consistent with known theoretical results and other approaches:

-The Lyapunov-Tauber theorem in elastic potential theory [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and ther moelasticity[END_REF] states that the derivative of the double-layer elastic potential (K<f>)(x), with K; k (x, y) = n, ( y)E f , ( x,y) at x Er exists only if <f>; E C1•°' at x.

-The direct approach for the evaluation of hypersingular integrals ( Guiggiani et al., [21])

leads to the same regularity requirements.

Collocation at an edge or corner point. The regularized DBIE (72) and the second-order regularization (74) of GBIE are valid if collocated at an edge or corner point x, provided, in the latter case, the total displacement gradients u; E C1•0 at x. In both cases, no apparent free term arise due to the geometrical singularity. Reformulation [START_REF] Sirtori | A Galerkin symmetric boundary element method in elasticity: formulation and implementation[END_REF] of [START_REF] Rezayat | On time-harmonic elastic wave analysis by the boundary element method for moderate to high frequencies[END_REF], and its elastodynamic counterpart as well, remains valid at edge or corner points, the integrals being taken separately on each regular component of r and the quantities D p t; (x ), n, (x ) being attached to each regular component of r.

Frequency-domain elastostatics. The regularized BIE for frequency-domain elastodynamics may be obtained simply by removing the time argument in u; and t ; and doing the substitutions u;(y)E(x, y,w) to E[x, t , yJu;(y , t )] and the like, in equations (72), ( 74), ( 76), (77). The transfer of singularity from Helmholtz to Kelvin kernels uses series expansions (in infinite series of k a r ) of the Helmholtz kernels [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], [START_REF] Bonnet | Regularized Boundary Integral Equations for Three-dimensional Bounded or Unbounded Elas tic Bodies Containing Curved Cracks of Arbitrary Shape Under Dynamic Loading[END_REF].

9 Numerical implementation of the regularization approach.

A detailed discussion of the whole discretization procedure of the time-domain BEM is beyond the scope of this paper. This section focuses on the treatment, at the spatial interpolation of geometry and unknowns level, which allows full use of the regularization approach and ensures a proper numerical evaluation of the singular integrals. Hence this discussion can be restricted without harm to elastostatic DBIE and GBIE.

9.1 Discretization of r and u.

The surface r is divided into boundary elements. They are mapped, in a standard fashion, on a reference elemen t Eo, which is generally the square { = (6,6) E ( -1,1]2 or the triangle 0 � 6 + 6 � 1. Let the discussion be restricted to the consideration of a single element E. The location of a point y on E is expressed in terms of n shape functions N k and n geometrical nodes A k ( k = 1 ... n ) :

({ E Eo) ( 78 
)
The nodes A k are located on the boundary 8E of E, so that the geometry interpolation is conformal. Then the natural basis (aa) , metric tensor (9a {3 ) and unit normal n on E are given by :

aa({) = N. � ({) OA k Ya13({) = aa({) • a13({) ./Ym n ({) = ai /\ a2 g({) = (911922 -9i2)({) ({ E Eo) ( 79 
)
The displacement u(y) on Ei s interpolated using m shape functions Mq and m nodal values uq ( q = 1 ... m ) . According to the discussion of subsection 8.5, the displacement nodes may be either boundary nodes or internal nodes (nonconformal interpolation) and n ;;/; m is possible.

The shape functions discussed here are polynomials of (6 , 6 ).

Numerical evaluation of singular integrals in DBIE.

Singular integrals occur if E contains the collocation point x, which may be neither a geometrical node nor a displacement node. The regularization procedure leads to singular integrals of the form: I8 = k n.(y)Ef.(x, y) ( u;(y) -u;(x)) dSy (80)

Let 71 = (771, 77 2) denote the antecedent of x on Eo. The following defi nition is introduced: for any polynomial P({) , the polynomials P! , P! � are constructed as: P( 11 For completeness, a brief account of two other approaches to formulate and deal with hypersingular BIEs, namely the variational BIE approach and the direct approach for evaluation of hypersingular integrals.

10.1 Variational approach for static TBIE.

Roughly speaking, equation (1) is multiplied by a test fu nction ,,P (x) belonging to some appropriate function space and integrated on S with respect to x. The regularization here stems from the fact that the singular kernel K(x,y), which appears in the bilinear form of the variational equation, is integrable over (x,y) E S X S, even in the case K(x,y) = Ef,,r(x,y) . However, in the actual numerical computation of the (discrete counterpart of) the bilinear form, the two integrations over S have to be done sequentially. As a consequence, the bilinear form has to be rewritten in terms of weakly singular kernels (i.e. integrable over S. This is done using two integrations by parts (one for each variable x and y), e.g. in [START_REF] Nedelec | Integral equations with non integrable kernels[END_REF], [START_REF] Brebbia | Topics in boundary element research[END_REF], [START_REF] Hamdi | Formulation variationnelle par equations integrales pour le calcul de champs acoustiques lineaires proches et lointains[END_REF]. Actual statements of variational BIE formulations are generally derived from the variational theorems of elasticity. This approach is investigated by Nedelec and co-workers (see e.g. Nedelec [START_REF] Nedelec | Integral equations with non integrable kernels[END_REF], Hamdi [23], Polizzotto, Maier and co-workers (see e.g. [START_REF] Polizzotto | An energy approach to the boundary element method. Part I: elastic solids[END_REF], [START_REF] Maier | A variational formulation of the boundary integral equation method in elastodynamics[END_REF], [START_REF] Sirtori | A Galerkin symmetric boundary element method in elasticity: formulation and implementation[END_REF]), and others. This approach is conceptually better than the usual collocation method: it allows convergence study and lead to symmetric BEM matrices. Moreover, the variational TBIE requires c o ,a interpolation of the densities instead of C1•" (at x) for the collocation TBIE. The usual shape functions may then be used. On the other hand, derivation of the appropriate expressions for the bilinear forms as well as the implementation of this approach for general engineering problems is more involved than using collocation. Numerical applications of this approach may be found e.g. in [START_REF] Hamdi | Formulation variationnelle par equations integrales pour le calcul de champs acoustiques lineaires proches et lointains[END_REF] (exterior acoustics), (10], [START_REF] Cortey-Dumont | Ph -Simulation numerique de problemes de diffraction d'ondes par une fi ssure[END_REF] (elastodynamic crack problems), [START_REF] Sirtori | A Galerkin symmetric boundary element method in elasticity: formulation and implementation[END_REF]. The CPV and FP integrals are defined in terms of specific limit processes, using exclusion neigh bourhood of specified shape and vanishing size. In the direct approach, no prior regularization is performed but the limiting process is carefully preserved in the mapping between the physical element and the reference element used for the numerical evaluation of element integrals, which involve shape functions. This approach allows the direct computation of any strongly singular or hypersingular integral arising in BIE methods. The development of this approach (Guiggiani and co-workers [START_REF] Guiggiani | A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method[END_REF], [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF]) is recent. In [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF], the GBIE (35) for elastostatic problems is formulated (using the notations of section 5) becomes:

Bamberger & Ha Duong [l]-[2], Becache [3]),
Cpkq r Up q(x) + lim r {u;(y)n.(y)Ef . r(x,y) -t;(y)U;\(x,y) + u;(x) b k r i (x) } dSy = 0 (91) ' e:o Jr -e� '

' €

(where Cp kq rUp,q(x) and b k ri(x) are known) and they show that formulation (91) does not depend on the shape chosen for v. , and hence on the shape of e,. Numerical examples on element integrals are very good.

11

Numerical examples.

11.1 Incident plane wave on a spherical cavity. [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF].

In this example the regularized DBIE is applied to the problem of scattering of a time-harmonic (pulsation w) incident plane longitudinal wave by a spherical cavity of radius R and center 0 .

The wave propagates along the x3-direction and has amplitude u1. In view of the axisymmetry of this problem, the only nonzero displacement components are u., uo, where (O, r, 9, </>) denotes a spherical coordinate system, the points </> = 0, </> = ir lying on Ox3. This problem has an exact solution [START_REF] Eringen | -linear theory[END_REF].

The moduli of the surface ( r / R = 1) and far-field ( r / R = 100) displacements are presented, in the form of a polar diagram, on figure 4 for the case wR.,/ p /(>.. + 2µ) = 3. Using the symmetry capabilities of our code [START_REF] Bonnet | On the use of geometrical symmetry in the boundary element methods for 3D elasticity[END_REF], only one-eighth of the spherical surface is meshed, with 12 eight-noded quadrilateral elements and 49 nodes in the present case. The results shows very good agreement between the numerical values (symbols) and the analytical solution (curves).

Dynamical propagation of a crack in antiplane strain [27].

This example illustrates the use of the regularized TBIE in time-domain elastodynamics.

The spontaneous propagation, in antiplane strain, of a straight crack C extending along the x1-axis in an infinite elastic space is considered. The normal direction of C is the X2-direction. Via the superposition principle, C is loaded by a shear traction: T±(y) = ±; H(t)e3, where T is a constant and H(t) is the Heaviside step function. The propagation of C is governed by Knr = Kh1' where Kr u and K'fu respectively denote the mode III dynamical stress intensity factor and the toughness of the elastic material. The left end of the crack is kept fixed, so that only the right end propagates, according to the above criterion. Let £(t) denote the length of C at time t, the initial length being £(0).

The regularized TBIE for cracks in antiplane strain is obtained by integrating equation (77) from y3 = -oo to y3 = +oo.

The crack is discretized into J elements of equal length �x, while the time interval [O, T] of interest is split into I equal time intervals �t. The ratio c�t/ �x has been set to the value 1/2, which allows to perform most of the integrations analytically. This has been done in order to circumvent inaccuracy problems arising when dealing with numerical integration of time-domain kernels and related to causality considerations [START_REF] Karabalis | A simplifi ed 3-D time-domain BEM for dynamic soil-structure interaction problems[END_REF].

The only nonzero component <f>3 (y, t) = </>(y, t) is interpolated linearly in space and in time. The regularized TBIE is collocated at the midpoint of each boundary element and at t = i�t, i = 1, 2, . . . I. The linear system of equations which is to be solved at each time step has J -1 unknowns and J equations, hence it is considered in a least squares sense, using the Householder factorization of the matrix (LINPACK software library, [START_REF] Dongarra | LINPACK users'guide[END_REF]).

The propagation is simulated by adding a new element if the propagation criterion is met, so that I increases during the time-stepping scheme. Details about the discratization procedure and the numerical treatment of the propagation criterion may be found in [START_REF] Koller | Modelling of dynamical crack propagation using time domain boundary integral equations[END_REF].

The numerical results for the spontaneously propagating crack compare very favourably with the analytical solution for the semi-infinite spontaneously propagating crack in antiplane strain given by Kostrov [START_REF] Kostrov | On the crack propagation with variable velocity[END_REF]. Moreover their accuracy is better than those obtained for the same problem in [START_REF] Virieux | Dynamic faulting studied by a finite difference method[END_REF] using a finite-difference method, especially for the initiation phase, which is delayed due to the poor stress resolution of the FD technique. Figure 5 shows our numerical results for £(t) -£(0) compared with those of [START_REF] Virieux | Dynamic faulting studied by a finite difference method[END_REF] and with the analytical value given in [START_REF] Kostrov | On the crack propagation with variable velocity[END_REF]. The regularization of the strongly singular and hypersingular collocation boundary integral equa tions arising for 3D general elastodynamic problems has been derived and stated. The main results are equations (72), (74), ( 76) and (77), in which all integrals are ordinary improper in tegrals, which can be computed accurately using standard numerical quadrature methods. The regularized TBIEs allow the modelling of cracks and the computation of the entire stress tensor on the boundary.

The limiting process used to establish the regularized BIEs shows that they do not depend on a specific limit process such as Cauchy Principal Value or Finite Part. Moreover, the regularity requirements on the densities are natural consequences of the regularization process.

Integration by parts identities and transformation of integrals over open surfaces of the Kelvin tensors play a key role in the derivation of the first-order regularized GBIE and TBIE.

As a global conclusion, all usual BIE are regularizable using indirect approach, and the occur rence of highly singular kernels in the BIE associated to elasticity problems (and scalar potential problems as well) should not be a concern when implementing a BE method. Numerical implementation of these regular BIE is done and succesfully tested for uncracked solids in static and steady-state elasticity, and for propagating cracks in 2-D time-domain elastody namics. Numerical implementation of regularized TBIEs for 3-D situations is under investigation. In the authors' opinion, the study of interpolation strategies for GBIE/TBIE (in connexion with the C1•" requirement at the collocation point) and of accurate spatial numerical integration al gorithms for time-domain BIEs (accuracy problems arise from causality considerations) deserve attention.

The present regularization approach can be developed the same way for 2-D elastodynamics and 3-D or 2-D scalar potential or wave problems.
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 1 Figure 1: Geometrical notations and conventions.

  11:u k (x)+ f {Cu; (y) -u; (x))n,(y)L:f,(x,y)-t; (y)U; k (x,y)}dSy= O(18) J(r-e.)+s, Assume u; E C0•"' at x, where c m ,cx denotes the set of functions m times continuously differentiable such that 3(a,C) > 0, I u; ,m ( x )-u; , m(Y ) l:s;ll xy II"'• Under this assumption, one has: (u; (y) -u; (x)) L:f,(x,y) "' I I x -Y 11"'-2

4. 2

 2 Integration by parts: variants of the Stokes' identity.

  ls laswhere K (y) = Drnr(Y) is twice the mean curvature of S. The operator D,.J = (nrf,, -n,f,r)(26)is also introduced. From (23), D,.f = n,D,f -n,D, f: D.,f is a tangential differential operator.The particular choice U = n A (e; A n)f in (24) leads to another identity relating surface and contour integrals:

  -{ [t; (y) -C; .abn.(y)ua b(x)] U; k .(x,y)dSy = 0 lr ' '

  u; ,;(x) Cisabn,(y)ua,b(x) n.u; (x) + n;(x)ui,n(x) t; (x) + CisabUa,b(x) [n,(y) -n,(x)} Provided u; E C 1•" at x and r is a (piecewise) Lyapunov surface of exponent a, one has: u; (y) -u; (x) -r;D;u; (x) = n;(x)u; ,n(x)r; = 0(11 a:y Ill +") t; (y) -t; (x) = CisabUa,b(x) [n,(y) -n,(x)} = 0(11 a: -Y II")

  only weakly singular integrals thanks to (42): KUk,r(x) + fr { [u; (y) -u; (x) -r;D;u; (x)] n,(y)Ef,,.(x,y) -[t; (y) -t; (x)} U; �.(x, y)} dSy + 1 { Ui,n(x)n;(x)r;n.(y)Ef,,.(x,y) -CisabUa,b(x) [n,(y) -n,(x)} u ; :.(x,y)} dSy = 0

6. 1

 1 Integration by parts of the hypersingular static kernel.The use of identity[START_REF] Koller | Modelling of dynamical crack propagation using time domain boundary integral equations[END_REF] above, together with equation (8) , leads to the following result, which holds for any closed surface S and for x n o t loca t ed o n S: j u;(y)n,(y)Ef, r(x, y)dSy s , ls u;(y) { DsrEf,(x, y) + nr(y)Ef,, ,(x, y)} dSy ls Drsu;(y)Ef,(x, y)dSy[START_REF] Sladek | Three-dimensional curved crack in an elastic body[END_REF] 

(

  nr(y)u;,,(x) -n,(y)ui,r (x)) Ef,(x, y)dSy J(r-e.)+s, -{ Ci sabns(y)ua,b(x)U;\(x,y)dSy = 0 J(r-e.)+s, 6.2 First-order regularized static TBIE Eqn. ( 46) is subtracted from ( 45), to get: -1'Uk,r (x) + f [nr(y)(u;,,(y) -u;, ,(x)) -n,(y) (ui,r(Y)-u;, r (x))] Ef,(x,y)dSy J(r-e,)+s, f [t,(y) -Cisabn,(y)ua, b(x)] U; � r(x,y)dSy = O J(r-e,)+s,

Using ( 29 +

 29 ), (31) and[START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and ther moelasticity[END_REF], one has: nr(x)&B! b(x , re, ) -nb(x)&B!r(x, re, )--1 -{-(l + /32)5ak [nr(x) { Vb(Y) ds y -nb(x) { Vr(Y) ds y ] (1 -/32) [nr(x) L (nb[vank + Vkna + (vpna -Vanp)r,pr,k] -r,ar,kvb) d : y -nb(x) L ( nr[vank + Vkna + (vpna -Vanp)r,pr,k] -r,ar,kVr) d : y ]}(54) 

  Thus, v;(y) = 0(1), n;(y) = 0(1), v;(y) -v;(x) = O(E), n;(y) -n;(x) = O(E) and ds y /r = O(l)d8

  using nr(x)vb(Y) -nb(x)vr(Y) = nr(y)vb(Y) -nb(y)vr(Y) + O(E) = ErbiTi(Y) + O(E). On the other hand, from (29), {31), (32):

limI

  Ikr(x, E) = -(-2 1 -/\;)U; k(x) + DraU;(x)Af.(x, r) -t;(x)Bfr(x, f) The result (59) completes the investigation of the limiting process ( 35) and fi nally allows the statement of the following regularized static GBIE: 1 " " -2uk,r(x) + D,.u;(x)A;.(x, f) -t;(x)B;,(x, f) + f (D,.u;(y) -D,.u;(x)J Ef.(x, y)dS y -f ( t;(y) -t;(x)] U;�,(x, y)dS y = 0 lr-et: lr-et:

  using n = nand introducing the crack opening displacement (COD) ef>;(y, t) = ( u;(y, t)] and the sum of tractions S;(y) = T ; + (y+,t) + T ; -(y-,t) = Ciaabn.(y)[ua,b(y,t)], where [ f(y)] = J(y+) -J(y-) is the jump operator.
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 3 Figure 3: Geometrical notations and conventions for the crack. Exclusion neighbourhood v, and related notations used for the limiting process (61). Jkr(x, c) = { + _ { [nr(y)u; ,.(x) -n, (y)u;,r(x)] Ef, (x, y)dSy -Cisabn,(y)ua,b(x)U;�r(x, y) } dSy Jst: +st: + Drs<l>;(x)Af, (x, S -e, ) -S;(x)Btr(x, Se, )

- 2 (

 2 47r C , p T Hence the contribution of the surface integrals in (64ui,k(x) + u i, k(x)) + Drs4>;(x)A;8 (x, S) -S;(x)B;r (x, S) (65)• From (64), (65) and using r+ = -T-, the total contour integral OJk r(x, c ) over c, arising in (64) is:OJkr(x, c) -Ci sab[u;, ,(x)J j u:, r (x, y)crbi1"i(y)dsy c, + [u;,r(x)]8Kf (x, r -e, ) -[ui,r(x)]n,(x ) oA7,(x, r -e ,) + C;sab[u;,,(x)] [ nr(x)oB:b(x, r -e ,) -nb(x)oB:r(x, r -e , )j(66) 

  ): lim Jkr (x, £) = -- 2 1 ( ut,. (x) + u;,.(x)) + D,,</J;(x)Af,(x, S) -S;(x)Bt(x, S) (68) C:�O ' IThe result {68) completes the investigation of the limiting process (62) and finally allows the statement of the following regularized static GBIE: �( ut,.(x) + u�,.(x)) + D,,</J;(x)Af.(x, S) -S;(x)Bt(x, S) + f [D,,</J;(y) -D,,</J;(x)] Ef.(x,y)dSy -f [S;(y) -S;(y)] U; ,. ,(x,y)dSy = 0 ls ,

  T1±(x) = -C 1 pk r {ls [D,.</J;(y) -D.,</J;(x)] Ef.(x,y)dSy + D,,</J;(x)Af,(x, S)} (70) 8 Time-domain elastodynamic DBIE, GBIE and TBIE and dis cussion.
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 7483 { [t; (y,t)-Cisabn,(y)ua b(x,t)] UUx,y)dSy = 0 lr ' ' First-order regularization of the elastodynamic GBIE (13) and TBIE. The elastodynamic counterpart of identity (44) is obtained using identity (27) above, together with equation (8). It holds any closed surface S and for x n o t loca t e d o n S : { n,(y)Ef, ,[x, t, yl u; (y, t)]dSy ls ' ls D,rEf,[x, t, yl u;(y, t)] +ls nr(y)Ef,,,[x, t, yl u;(y, t)]dSy = ls E7,[x, t, yl D,,u; (y, t)]dSy +ls U; k [x, t,yl ii; (y, t)]dSy

  ) + ({a -'7a)P!({; 11) P(71) + ({a -'7a)P,a(Tl) + 1/2({a -'7a)({13 -1713 )P!M{;71) ( 81 ) Then, using (79) and definition (81), one can put: aa(e) -aa(11) = ({rJ -TJfJ)( N. � )�(e;11)0Ak M, 'i,(e) -M, 'i,(11) = ({fJ -TJfJ)(M, 'i,)�(e;11) hm -9(11) = ({{J -11{J)o�(e;11) o�(e;11) 1 -Vh(11)/g(e) = -({fJ -1/ fJ) l + Jg(11)/g(e) (90)Then, because of (82) and (86), (Drau;(y) -D rau; ( x )) dSy "' p2dpda. Integral (87) may be recast in a completely regular form in the system (p,a). This requires the analytical derivation of (N . � )�(e; 11) , (M, 'l, )�(e; 71) and g�(e; 11) for given shape functions Mq and Nk. 10 Overview of variational and direct approaches for hypersin gular BIEs.

10. 2

 2 Direct computation of hypersingular integrals.
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Figure 4 :

 4 Figure 4: Surface and far-field (for r / R = 100) displacements for the problem of subsection 11.1.The ratios ur/u1 and u 9/ u 1 are depicted in polar diagrams; 8 ranges in[O, 7r] for each component, because of the symmetry of the problem under consideration.
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 5 Figure 5: Crack-tip location during the spontaneous rupture propagation of a semi-infi nite crack. Our results are compared to Kostrov's [28] exact solution and Virieux & Madariaga (46] numerical results (obtained usind FDM). The results are normalized, and K' denotes the nondimensional quantity K' = Kfo /(µ,,/7rb.. x).

  

  The displacement fi eld u(y, t) (y E n and t E r+ = [O, + oo[) is then governed by the homogeneous elastodynamic equilibrium equation together with Hooke's law:

	CisabUa,bs(Y, t) -pu(y,t) = 0	(>.,µ: Lame constants)	(3) (4)

C;spq = >.o;,Opq + µ( O;pOsq + O;qOps) together with appropriate boundary conditions and, if n is unbounded, classical elastodynamic radiation conditions

[31]

. The comma, as in (3), indicates partial differentiation with respect to the components of y. Einstein summation convention is used, unless explicitely stated otherwise, throughout the present paper.

Following a common practice in BEM (see e.g. [START_REF] Rizzo | A boundary integral equation method for radiation and scattering of elastic waves in three dimensions[END_REF] ) , set 6 = pcos a, 6 = psin a. Then d6d6 = pdpda and, from ( 81 ) :

Mq({) -Mq(11) = (la -11a)M;•q({;71) = Mq (p, a; 71) r(x, y) = II (la -11a)N;•k({;71)0Ak II = pr(p, a; 11 ) ( 82 ) k -1 . k • E;,(x,y) -2E;,(p, a, 71) p where r(p,a; 71) ::J 0 and (E(p, a; 71) is regular at p = 0. Hence integral ( 80 ) is recast in a completely regular form, as:

( 83 )

Expression ( 83 ) takes full advantage of the regularization. The numerical evaluation of ( 83 ) can be performed with standard product Gaussian quadrature formulas, the complete procedure requiring a further coordinate change (p, a) --+ ( v 1 , v 2) in order to recover an integral over the square [ -1 , 1] 2 [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], [START_REF] Rizzo | A boundary integral equation method for radiation and scattering of elastic waves in three dimensions[END_REF].

Numerical evaluation of singular integrals in GBIE and TBIE.

A typical integral occurring in second-order regularized GBIE is:

Using the intrinsic expression of gr a d8, definition ( 8 1) and aa( 11) • a"Y( 71 ) = 5�, one has on E: (la -1 /a) { aa(71) + 1/2(l(J -1/(3)N��•\{;71)0Ak} Then, because of ( 82 ) and ( 86 ) , E � ,,r(x , y) ,...., p-3, u;(y)-u;(x)-rjDju;(x) ,...., p 2 and dSy ,...., pdpda, integral ( 84 ) may be recast in a completely regular form in the system (p, a). This requires the analytical derivation of M;�• q (e ;11 ) and N ; �•k({;71) for given shape functions Mq and Nk .

In first-order regularized GBIEs ( 76 ) , ( 77 ) , the following type of singular integral occur: 

A Elastodynamic kernels. 

The following Taylor expansions for small r hold:

They show that:

• the lowest-order terms yields f(t) times the singular static Kelvin kernels (see (93), (94)).

• the differences U[x, t,ylf] -f(t)U(x, y) and I: [x, t ,ylf] -f(t) I:(x, y) remain finite for arbitrary small r. [START_REF] Bui | A boundary integral equation approach to fracture mechanics in three-dimensional and related problems[END_REF].

The properties (14) of the Stokes tensors are a consequence of the expansions (97) and the above remarks. The similar expansions (in infinite series of k"' r) of the Helmholtz kernels can be found e.g. in [START_REF] Bonnet | Methode des equations integrales regularisees en elastodynamique tridimensionnelle[END_REF], [START_REF] Bonnet | Regularized Boundary Integral Equations for Three-dimensional Bounded or Unbounded Elas tic Bodies Containing Curved Cracks of Arbitrary Shape Under Dynamic Loading[END_REF].

B

Proof of the identities {31) {32) {34).

• J0 (x, S) is easily established by noticing that:

(98)

and applying identity [START_REF] Karabalis | A simplifi ed 3-D time-domain BEM for dynamic soil-structure interaction problems[END_REF] with f = na l/r .

• From {92), one has:

3 Jabc(x, S) = -Oablc(x, S) -Oaclb(x, S) -Dbcla (X, S) + ls r,abcdSy

Then, putting r,abc = Dcr,ab + ncnpr,abp Expression [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and ther moelasticity[END_REF] of Jabc(x, S) is then readily get from (99).

• Expression (34) of integral Kf{x, S) results from the following manipulation:

(102)