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Sandstone Compaction by
Intergranular Pressure Solution

Florian Lehner1

Yves Leroy2

3.1 Introduction

It has long been known that the mineral matrix of porous rocks tends to dissolve
in pore water preferentially along highly stressed, fluid-permeated grain-to-grain
contacts. The dissolved material is then transported by molecular diffusion and
advective fluxes to nearby or possibly distant precipitation sites, typically the free
faces of mineral grains where they meet the pore fluid. This process can dramati-
cally change the rock fabric, as is illustrated by the example shown in Figure 3.1.
It is considered one of the principle processes of the early diagenesis of sedimen-
tary rocks (Bathurst, 1958; Wanless, 1979; Houseknecht, 1988; Houseknecht and
Hathon, 1987; Tada and Siever, 1989), and it is also a process by which substantial
macroscopic creep strains may accumulate. The implied low-temperature ductile
deformation mechanism is most often termed “pressure solution” by geologists
(Rutter, 1983), but is also known as solution-precipitation creep or solution trans-
fer creep (Durney 1972).

That rocks deform by such a chemomechanical process was observed by geol-
ogists on a somewhat larger scale as early as 1863, when Sorby first explained the
phenomenon of pitted pebbles (see Figure. 3.2) in terms of a selective removal of
material from the more soluble of two impinging pebbles (Mosher 1976, 1981; for
references to early work on pressure solution and related theories, see especially
the review article by Durney 1978). Sorby also hypothesized that the (limestone)

1Department of Geology and Palaeontology, University of Salzburg, Hellbrunnerstrasse 34, 5020
Salzburg, Austria. lehner.fk@sbg.at

2LMS, Ecole Polytechnique, 91128 Palaiseau Cedex, France. leroyy@lms.polytechnique.fr

1



(a)

(b)

Figure 3.1 � Photomicrographs showing intergranular pressure solution (IPS) in a sand-
stone. (a) Pore-filling calcite cement has preserved original quartz grains by inhibiting IPS.
(b) Sample from same depth as (a) without cement (dark areas are porosity), but some quartz
overgrowth, showing significant IPS. (Courtesy Houseknecht and Hathon 1987.)

material he studied had dissolved preferentially “where the pressure is greatest,
and crystallized, where it is least.”

Characteristic features of pressure solution are indeed the microscopic (grain
scale) and macroscopic solution seams or sutures, which tend to assume a preferred
orientation perpendicular to the largest compressive stress. These appear most
conspicuous in the form of stylolites, the digitated solution seams most frequently
formed in porous, water-saturated carbonate rocks (Dunnington 1954, 1967;
Glover 1968; Carrio-Schaffhauser et al. 1990). Stylolites owe their name to the
stylo-like shapes that are seen in cases of extreme column-and-socket interdigi-
tations, when the solution surface is exposed in three dimensions. These solution
seams appear in cross section as serrated veins and are easy to spot by their dark
color, which they owe to less soluble, usually clay-type minerals that are left behind
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by the dissolved rock matrix. The stylos, columns, or teeth of a stylolite can reach
lengths of the order of meters and the seam thickness itself can reach similar
dimensions in rare cases, suggesting an enormous reduction in layer thickness by
dissolution. The stylolitic solution seams that can be spotted in everyday life in
marble tables or floors have typical seam thicknesses of the order of a millimeter
and typical overall lengths (in cross section) of the order of a meter.

It is not altogether clear what causes the solution process to localize macro-
scopically along discrete and often quite evenly spaced, preferentially oriented
solution seams, but a process of “anticrack growth” (Fletscher and Pollard, 1981)
and propagation (Carrio-Schaffhauser et al., 1990) appears to be involved that
remains to be fully explained. Stylolytic solution interfaces are found also on the
scale of individual grains, for example, in sandstones (Houseknecht and Hathon,
1987), where variations in solubility across individual grains or the presence of
insoluble minerals might explain the sutured morphology of the grain-to-grain
contacts (see Figure 3.1). On a grain scale, intergranular pressure solution (IPS)
therefore occurs by necessity in a highly localized fashion. On a coarser macro-
scopic scale the phenomenon may, however, affect substantial layer thicknesses in
a pervasive and seemingly continuous fashion, apparently depending on composi-
tional factors (Wanless, 1979). The distinction between discontinuous and contin-
uous modes ultimately becomes a question of the scale at which the phenomenon
is viewed.

To a theorist, these observations would suggest a two-scale approach toward a
final macroscopic theory, and the principle goal of this chapter is indeed to obtain a
pressure solution “creep law” by such an approach. Our points of departure are the
phenomena seen in Figure 3.1 and Figure 3.2. These suggest to us the concepts of an
aggregate of grains and that of a fluid-infiltrated, grain-to-grain contact, concepts
on which we shall base the grain-scale model of Section 3.2. Next, the transition
from the microscopic grain scale to the macroscopic continuum scale must be
accomplished. In general, this will involve a difficult averaging step, to which we
shall give some attention, without actually carrying out the necessary computations
for the general case of a realistic grain fabric. In Section 3.3 we circumvent the
difficulty by assuming a simple periodic arrangement of grains, as is often done.
This can be justified in view of the fundamental nature of certain questions that
a model should answer before addressing the purely geometrical complexity of a
realistic grain fabric. A further goal of future theoretical developments will be the
identification of parameters in a more complete theory—parameters critical to the
appearance of macroscopically localized modes of pressure solution.

Figure 3.1 also illustrates the following important point. If a porous and per-
meable rock mass is undergoing pervasive IPS, then any volume element of it con-
stitutes an open thermodynamic system, allowing soluble matter to be exported
from dissolution sites or imported for deposition at precipitation sites. In such a
context, pressure solution will be of interest to geologists primarily as a process
that can explain large-scale mass movements, accounting for a substantial loss in
layer thickness at a location and providing a source of cement at a different location
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Figure 3.2 � Pitted quartzite pebbles. (Courtesy Mosher 1976)

(Tada and Siever, 1989). But because the average path length from dissolution to
reprecipitation sites may shorten, depending on the balance of relevant rate param-
eters, down to the size of the smallest representative elementary volume (REV) of
the rock, the solid skeleton within an REV can eventually also behave like a closed
system on a macroscopic scale. Material dissolved at grain-to-grain contacts will
then be transported by grain boundary diffusion and diffusion through an open
pore space to nearby precipitation sites at low-stress pore walls, giving rise to a
characteristic microtexture with overgrowth of the original grains in so-called pres-
sure shadows. This mass transfer from high-energy dissolution sites to low-energy
precipitation sites enables an aggregate of grains to accumulate macroscopic creep
strains in response to an applied load. Under closed-system conditions, the process
closely resembles a type of grain boundary diffusion creep known as Coble creep
in the materials science literature (Coble, 1963). Under open-system conditions,
the coupling of deformation to long-range solute transport will complicate the the-
oretical description of creep, since now the solute concentration will enter as an
additional dependent variable into the problem. Moreover, the local pore-scale ki-
netic processes of intergranular dissolution, grain boundary diffusion, and free-face
precipitation along the pore walls will each be governed by distinct characteristic
times that may differ substantially from the relevant time scales of macroscopic
advective–diffusive transport.

This chapter is intended to provide the theoretical means for exploring prob-
lems of stress-sensitive dissolution and coupled macroscopic deformation and
transport. Choosing a simple model system for a grain-scale description of IPS,
we discuss the thermodynamic foundations of the subject of pressure solution in
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Section 3.2. The resulting pore-scale model is shown to furnish pertinent source
terms in the macroscopic mass balance equations that are introduced in Section 3.3
along with other elements of a macroscopic theory of compaction creep by IPS.
This macroscopic description is partially developed to provide interested readers
with some background. In Section 3.4, the theory is further specialized to yield
descriptions of essentially one-dimensional boundary value problems for a closed
and an open system. As a problem of the latter kind, we then study the com-
paction of a thick sedimentary layer, embedded in fixed hydrostatic pressure and
geothermal temperature fields, in which IPS is suddenly “switched on.”

3.2 Grain-Scale Model of IPS

3.2.1 Model Assumptions
As shown in Figure 3.3, we consider a nominally flat contact between two identical
spherical grains composed of a homogeneous solid substance. The solid phase is
in contact with its own aqueous solution, the pore fluid, which is at a uniform
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Figure 3.3 � IPS affecting two identical spherical grains of initial diameter d; nominally
flat, fluid-permeated contact zone shown in magnification. Current grain size normal to
contact is lnd.
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pressure p. Both solid and fluid phase are at a uniform temperature T . The two
grains shown in Figure 3.3 belong to an assembly of grains, left unspecified for
the moment, that together with the pore fluid sustains compressive macroscopic
normal stresses that exceed the pore-fluid pressure in magnitude in all directions.
There exists therefore a compressive intergranular normal stress that tends to press
the grains together and is assumed to enhance the solubility of the grains in any
aqueous pore fluid present at their contact.

On a finer scale, the nominally flat grain-to-grain contact is visualized here
as a “contact zone” of some finite thickness δ. This thickness may vary between
a few nanometers for “clean” contacts between single crystals of halite or quartz
and tens of micrometers for intergranular solution seams that contain impurities
shed by the dissolving grains and other less soluble minerals. We further stipulate
that this contact zone remain, in a roughened state during active IPS, such that
adjacent grains maintain solid–solid contact across insular ridges that are sepa-
rated by fluid-filled grooves (Raj, 1982; Lehner and Bataille, 1984/85; Spiers and
Schutjens, 1990; Cox and Paterson, 1991; Schutjens and Spiers, 1999). In plan
view such a grain boundary will then exhibit a characteristic island-and-channel
structure, whereas in cross section the contact zone forms a thin, porous, and per-
meable interlayer that is wetted and invaded by the pore fluid. Any dissolved solid
material can thus be carried by diffusive transport through this grain boundary
fluid phase from interior points of a contact zone toward its rim where it meets the
interconnected pore space.

Assuming now that the grain centers converge normal to the contact and
ignoring small elastic shape changes, it follows that the rate of grain conver-
gence must equal the (uniform) jump in the normal components of the grain
velocities across the contact interface. Accordingly, [[vn]] = v+

n − v−
n ≤ 0 (see

Figure 3.3) and the uniform solution rate (in kg/m2/s) along the contact is given
by ρs[[vn]] = ρs

.
l nd, where d is the initial grain diameter and lnd measures the

current distance between two parallel contacts of the same grain. If J
gb
r denotes

the radial component of the diffusive mass flux of dissolved material (in kg/m2/s),
averaged over an effective grain boundary thickness δ, then the total rate of outflow
across a cylindrical section of area 2πrδ and the total rate of dissolution within
this circumference must balance. Consequently,

2δJ
gb
r (r) + ρs[[vn]]r = 0, (3.1)

where ρs denotes the density of the solid.
We shall further assume that the diffusive mass flux of the solute species, J

gb
r ,

is governed by Fick’s law as applicable to bulk diffusion in a liquid phase. We
introduce this relationship in the form J

gb
r = −ρf Lgbdμ/dr , where Lgb is a

phenomenological mobility coefficient, μ is the mass-specific chemical potential
of the solute component in the grain boundary solution phase, and ρf is the bulk
density of the latter. For a sufficiently dilute solution, Fick’s law can be written
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in terms of the gradient in the solute mass fraction C as (see, e.g., De Groot and
Mazur 1962, Chapter 11)

J
gb
r = −ρf Dgb DC/dr. (3.2)

Here Dgb = Lgb(dμ/dC)p,T ≈ LgbkT /ρs�sC is an approximately constant
mass diffusivity (in m2/s) that controls solute diffusion through the intergranular
fluid phase, where k is the Boltzmann constant and �s denotes the molecular
volume of the solid. This relationship follows from the standard expression

μ = μ∗(p, T ) + (kT /ρs�s) ln γ C (3.3)

for the chemical potential (in J/kg) of the solute component of a binary solute–
diluent solution, when the concentration dependence of the activity coefficient γ

can be disregarded.
We may now combine equations (3.1) and (3.2) and integrate the resulting

differential equation in C(r) to obtain the radial distribution of the solute mass
fraction along the intergranular contact:

C(r) = C(a) − ρs[[vn]]
4ρf δDgb

(a2 − r2). (3.4)

As expected for grain convergence ([[vn]] < 0), the solute concentration and there-
fore also its chemical potential are higher inside the grain contact than at its rim,
in the interconnected pore space. By taking a surface average of this distribution
over the grain contact, one obtains the following expression for the rate of grain
convergence:

[[vn]] = −8ρf δDgb

ρsa2 [C̄ − C(a)] (3.5)

in terms of the average concentration C̄ along the grain boundary and the concen-
tration C(a) at the rim of the contact, i.e., in the pore space where μ and hence C

are taken to be uniform.
To determine the unknown average concentration C̄ in equation (3.5), we must

now enter into a discussion of the chemical thermodynamics of stress-enhanced
dissolution.

3.2.2 Chemical Equilibrium Between a Stressed Solid and Its
Aqueous Solution

It was Sorby who in 1863 remarked that an effect similar in principle to the low-
ering of the freezing temperature of water with increasing pressure, first estab-
lished experimentally by W. Thomson (Lord Kelvin) in 1850, must hold true with
respect to the solubility of salts in water and might thus explain pressure solution
phenomena such as pitted pebbles; and indeed in 1861 J. Thomson had already

7



demonstrated the stress-enhanced solubility of salt crystals in water experimen-
tally. But it remained for Gibbs (1961) to furnish a full theoretical explanation
of the effect of stress on the chemical equilibrium of an arbitrarily stressed solid
with its own solution phase. In particular, Gibbs showed that the condition for
local chemical equilibrium at a flat interface between a stressed pure solid and its
solution is given by (Gibbs 1961, Eq 387)3

us − T ss + p/ρs = μ, (3.6)

where us and ss are the specific internal energy and specific entropy, respectively,
of the pure solid phase, p is the pressure in the solution phase, and μ is the
chemical potential of the solute component in the solution phase (in the present
context always a binary aqueous solution) as given by equation (3.3). Because −p

must equal the normal component of stress σn at the solid side of the interface,
the left side of condition (3.6) may be expressed solely in terms of quantities
associated with the solid phase. Choosing to replace the first two terms by the
specific Helmholtz free energy f s = us − T ss , we may thus write equivalently

f s − σn/ρs = μ. (3.7)

Condition (3.6) characterizes a strictly local state of equilibrium, pertaining
only to points along a solid–solution interface. For curved interfaces an interfacial
energy term of the form (1/R1 + 1/R2)γ sf /ρs must be added to its left side,
in which R1 and R2 denote finite principal radii of interfacial curvature (positive
when their centers lie on the side of the solid) and γ sf denotes the interfacial
energy (see Gibbs 1961, Eq 661; see also Heidug 1991).

One can picture a variety of situations involving a nonhydrostatically stressed
solid in global equilibrium with its own solution. In each case, however, the cri-
terion of global interfacial equilibrium will amount to nothing less than the re-
quirement that condition (3.6) be satisfied pointwise along the entire solid–fluid
interface in the system under consideration. It is only in the special case in which
a homogeneous solid is completely surrounded by a solution phase at uniform
chemical potential μ and pressure p that the term f s + p/ρs becomes a constant
independent of position, thus appearing in the role of a specific Gibbs free energy
characterizing the bulk of the solid phase—on equal footing with the chemical po-
tential μ of the dissolved solid. In general, however, there exists no useful concept
of a scalar Gibbs free energy or chemical potential that could serve to define the
heterogeneous equilibrium of a solid composed of different phases or of a system
comprising a stressed solid in contact with a liquid solution. In fact, it has become
clear that the formal development of Gibbs’thermodynamics of heterogeneous sys-
tems could be clarified in this point and in a sense made more complete through

3See also Lehner and Bataille (1984/85) for an alternative derivation of this result based on a defi-
nition of interfacial equilibrium as corresponding to a state of vanishing interfacial entropy production.
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the explicit recognition of the concept of a “chemical-potential tensor” (Bowen
and Wiese, 1976; Grinfeld, 1982, 1991; Truskinovskiy, 1984; Heidug and Lehner,
1985). It will be noticed, indeed, that the condition of interfacial equilibrium shown
in equation (3.7) can be written in the form

μs
n = μ (3.8)

in terms of the normal component μs
n = n · μs · n at the solid–solution interface

(with unit normal n) of the tensor

μs = f s1 − σ/ρs, (3.9)

where 1 is an isotropic unit tensor and σ is the Cauchy stress. Under hydrostatic
conditions, when σ = −p1, μs is also isotropic and its orientation-independent
normal component becomes identical with the specific Gibbs free energy f s+p/ρs

or scalar chemical potential of a single-component solid.

3.2.3 A Phenomenological Rate Law for IPS
In the following we wish to derive a model for IPS that is free of any a priori
bias toward one or the other rate-limiting process. We must therefore avoid the
frequently made assumption that the intergranular solution phase is in chemical
equilibrium with the stressed solid phase. Similarly, we shall admit a state of
disequilibrium between the two phases along the hydrostatically loaded pore walls
and allow for precipitation from a locally supersaturated pore fluid at such sites,
or possibly free-face dissolution in an undersaturated pore fluid. We shall follow
earlier work by Lehner and Bataille (1984/85) and Lehner (1990, 1995, 1997)
and employ thermodynamic arguments that allow us to set up a phenomenological
description of IPS.

Consider first the solid–fluid interface comprising the pore walls or free faces
of the grains. We have already seen that Gibbs’ condition, shown in equation (3.8),
provides a local condition of equilibrium along this boundary. In the interpretation
of the thermodynamic theory of irreversible processes, violation of equation (3.8)
implies the existence of a thermodynamic force μs

n −μ = 0 that will drive a flux of
the soluble solid substance across the phase boundary, implying either dissolution
or precipitation.

Let wn denote the local speed of displacement of the solution surface in the
direction of an outwardly directed unit normal and let vn be the normal component
of the solid-particle velocity at the interface. The difference wn − vn therefore
designates the velocity of the interface relative to the material, while the product
rsf = ρs(wn − vn) yields the flux (in kg/m2/s) of solute mass per unit area across
the pore wall (rsf < 0 for solution). The product rsf (μs

n − μ) can be shown
to equal the rate at which free energy is dissipated per unit area as the material
passes through the phase boundary (see Lehner and Bataille 1984/85). This rate
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is expressible as the product of the absolute temperature T (which is assumed
to remain continuous across the phase boundary) and a nonnegative interfacial
entropy production rate

.
σ . Accordingly, one has

−rsf (μs
n − μ) = T

.
σ ≥ 0, (3.10)

which must hold for any value of the flux. It follows that the work-conjugate
thermodynamic force (or “affinity”) μs

n − μ and flux rsf must be functionally
dependent. The simplest phenomenological relation of this kind is obtained upon
truncating a Taylor expansion of the function rsf = f (μs

n − μ) after the linear
term, i.e., putting rsf ≈ −L(μs

n − μ). This may be written in the form

rsf = −ρsKsf (ρs�s/kT )(μs
n − μ), (3.11)

where the temperature-dependent, nonnegative phenomenological coefficient L

is replaced by the more convenient rate “constant” Ksf with the dimension of a
velocity. These coefficients assume different values, L+ and L− or K

sf
+ and K

sf
− ,

for solution and precipitation, respectively.
A phenomenological relation of the type of equation (3.11), which governs

the propagation of a phase boundary, was apparently employed first by Machlin
(1953) in an analysis of the growth of precipitates in metals. The advantage of such
a thermodynamic description, apart from its simplicity, lies in the clarification of
the nature of the driving force (i.e., one that involves the normal component of a
chemical potential tensor). This can be of great conceptual help in the development
of rational theories of deforming two-phase materials. The fact remains, however,
that the linear dependence in equation (3.11) of the flux rsf on the driving force
μs

n −μ is indeed only a consequence of the linearization of an appropriate nonlin-
ear kinetic model relation (see Dibble and Tiller 1981). One must therefore restrict
the validity of (3.11) to small driving forces, implying ρs�s |μs

n − μ|/kT � 1 in
the present case. Relation (3.11) was proposed by Lehner and Bataille (1984/85) as
a means to account for the effects of nonhydrostatic stresses in a dissolving solid.
Including the surface energy term (Heidug, 1991), it has since been employed in a
substantial number of theoretical modeling studies by Heidug and Leroy (1994),
Leroy and Heidug (1994), and Ghoussoub and Leroy (2001) concerned with the
stability and evolution of solid–fluid interfaces under conditions of pressure solu-
tion and redeposition.

Let us also observe that the thermodynamic force-flux relation equation (3.11)
may be brought into the more familiar form of a first-order kinetic relation by use of
equations (3.3) and (3.6), which allow us to express the solid chemical potential μs

n

in terms of an equilibrium concentration Cσ , i.e., the solute concentration required
to maintain chemical equilibrium between the stressed solid and the fluid phase
locally along the solid–fluid interface. For dilute concentrations this gives

rsf = ρsKsf (C − Cσ )/Cσ , (3.12)

C being the actual solute concentration in the pore fluid. We shall consider this
type of kinetic relation further later in the discussion (see equation [3.26]).
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Turning now to the kinetics of intergranular dissolution and diffusive transport,
let us denote by rgb = ρs[[vn]] = ρs

.
l nd the uniform dissolution rate along a given

intergranular contact, i.e., the flux of solid material (in kg/m2/s) from both grains
into the contact zone and across the actual solid–solution phase boundary lying
within that zone (see Figure 3.3). Also, let μs

n(r) denote the normal component
of the solid-phase chemical-potential tensor along the smooth outer margins of
the contact zone of Figure 3.3—defined in terms of the values of σn, ρs , and f s

along these margins—and μ(r) denote the chemical potential of the dissolved
solid component in the grain boundary fluid. The product −rgb[μs

n(r) − μ(r)]
then equals the rate at which work is dissipated per unit nominal contact area as
the material passes through the solid contact zone and the phase boundary.

Furthermore, the work dissipated per unit area in the isothermal diffusive trans-
fer of material, driven by the potential drop μ(r) − μ(a) at the rate rgb from its
solution site at r to the contact periphery at r = a, is equal to −rgb[μ(r) − μ(a)].
It follows that the total rate of dissipation associated with irreversible processes in
an intergranular contact zone, a quantity that we denote by

.
�gb, must equal the

sum of the integrated dissipative work rates for this zone, i.e.,

.
�gb = −rgb

∫
Sgb

[μs
n(r) − μ(r)]dA − rgb

∫
Sgb

[μ(r) − μ(a)]dA, (3.13)

where the integrals are taken over the nominally flat grain-to-grain contact Sgb of
Figure 3.3. Note that on carrying out a formal integration over Sgb and canceling
terms, this becomes

.
�gb = −πa2rgb[μ̄s

n − μ(a)], (3.14)

from which it is apparent that the potential difference μ̄s
n − μ(a) represents the

average total driving force for the combined (serial) processes of intergranular
dissolution and grain boundary diffusion.

If the first integral in equation (3.13) can be neglected against the second,
grain boundary diffusion acts as the rate-limiting process and the driving chemical
potential difference associated with the fast dissolution step may equivalently be
set equal to zero, i.e., μs

n ≈ μ. It is this Stefan-type approximation that allows
equation (3.7) to be treated as an equilibrium condition as in the work of Paterson
(1973).

In general, however, one cannot disregard a priori the dissipation associated
with the dissolution of the solid phase within the contact zone, so that the first
term in equation (3.13) must be retained. As in the above, we may now invoke the
second law to assert that this product must remain nonnegative at any value of the
driving force and to conclude that the force and flux must therefore be functionally
related. In the linear approximation, this yields a force-flux relation of the form

rgb = −ρsKgb(ρs�s/kT )[μs
n(r) − μ(r)], (3.15)

where Kgb > 0 is phenomenological rate coefficient.
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The use of relation (3.15) can be justified, as long as the solid material may be
assumed to deform elastically while advancing through the contact zone toward
the solution surface, except for the immediate vicinity of load-bearing islands.
These islands are imagined to be undercut by dissolution but to deform by dis-
sipative inelastic micromechanisms only in the final phase of this undercutting
process, when the load is about to be transferred from such a deforming contact
point onto neighboring stiffer contacts. Dissipation in the solid portion of the con-
tact zone is therefore neglected against the dissipation associated with dissolution.
While the local undercutting and removal of islands by dissolution is essential to
achieving grain convergence by IPS, inelastic solid deformation can be viewed
as an associated phenomenon, made possible only by the former and progressing
therefore at the same rate. In the following we shall apply equation (3.15) without
any correction for work that may be dissipated in deforming the solid material
within the contact zone, and we shall treat Kgb as a phenomenological coefficient
governing the dissolution rate at a stressed but fluid-infiltrated grain boundary that
possesses a dynamically stable island-channel structure (Raj, 1982; Lehner and
Bataille, 1984/85; Lehner, 1990; Spiers and Schutjens, 1990; Cox and Paterson,
1991).

The second integral in equation (3.13) represents the rate of dissipation associ-
ated with solute diffusion along the grain boundary. The relevant kinetic relation is
Fick’s law (equation [3.2]), which has already been used in equation (3.5) to obtain
the rate of grain convergence in terms of the average concentration C̄ along the
nominally flat circular contact Sgb. Let us first rewrite C̄ in terms of the averaged
chemical potential along Sgb. Under the assumption of dilute solute concentra-
tions, it follows from equation (3.3) that [C(r) − C(a)]/C(a) ≈ ln C(r)/C(a) ≈
(ρs�s/kT )[μ(r) − μ(a)], and [C̄ − C(a)]/C(a) ≈ (ρs�s/kT )[μ̄ − μ(a)], so
that after averaging over Sgb, equation (3.5) may be written

rgb = −(8ρf CeqδDgb/a2)(ρs�s/kT )[μ̄ − μ(a)], (3.16)

where Ceq, the equilibrium concentration (mass fraction), has here been introduced
as an approximation of the actual concentration C(a) in the open pore space. This
approximation can be justified for the contemplated geological applications by
the uncertainties in the numerical values of other parameters, such as the grain
boundary diffusion factor δDgb.

Similarly, one has

rgb = −ρsKgb(ρs�s/kT )[μ̄s
n − μ̄] (3.17)

for the surface-averaged form of equation (3.15). Elimination of the chemical
potential μ̄ from equations (3.16) and (3.17) now produces the relation

[[vn]] = rgb/ρs = −d(ρs�s/kT )[μ̄s
n − μ(a)]/[τS + (4a2/d2)τD] (3.18)

for the uniform rate of grain convergence at the circular contact between two
identical spherical grains. Here it has been found appropriate to introduce the
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initial grain size d as a reference length, yielding the following definition of the
characteristic times:

τS = d/Kgb and τD = ρsd3/(32ρf CeqδDgb), (3.19)

associated with the rates of intergranular solution and grain boundary diffusion,
respectively.

In essence, the above result already represents a “creep law” for our sim-
ple model system. We note, in particular, that the difference μ̄s

n − μ(a) between
the average solid-phase chemical potential in the grain-to-grain contact and the
(uniform) solute chemical potential in the pore space appears in the role of the
thermodynamic force that drives IPS—a result that is consistent with expression
(3.14) for dissipation associated with this process. We must now seek an expres-
sion for this driving force, by use of equation (3.9), in terms of the intergranular
contact stress. For this purpose, we shall find it convenient to introduce as a refer-
ence chemical potential the potential μ0 = μ∗(p, T ) + (kT /ρs�s) ln γ Ceq of a
solution that is in equilibrium with the solid phase, when both phases are subjected
to the currently prevailing fluid pressure and temperature, p and T , respectively.
Along a flat solution surface, the above value of μ0 therefore defines a reference
equilibrium value for the normal component of the solid-phase chemical potential
tensor, in agreement with Gibbs’ condition (3.8), equal to μs

n = f s
0 + p/ρs

0 = μ0.
In terms of this reference value, the local potential difference μs

n(r) − μ(a) along
an intergranular contact may be written as the following sum:

μs
n(r) − μ(a) = [μs

n(r) − μ0] − [μ(a) − μ0] =
(f s − f s

0 ) + (1/ρs − 1/ρs
0)p − (σn + p)/ρs − [μ(a) − μ0]. (3.20)

Before making use of this expression in equation (3.18), we introduce the
approximation

μs
n − μ0 ≈ −(σn + p)/ρs, (3.21)

implying the neglect of the first two terms on the right side of equation (3.20)
against the third term. This approximation is frequently used in combination with
the Kamb-Paterson equilibrium assumption μs

n ≈ μ (Paterson, 1973; Rutter, 1976;
Lehner and Bataille, 1984/85). Its validity rests on the observation that the ratio of
the third over the first two terms in equation (3.20) is of the order of |σn +p|/E for
elastic grains with a Young modulus E, and that this ratio remains typically much
smaller than 1 in the situations of interest. Accepting this approximation yields the
following expression for the local driving force in equation (3.15):

μs
n(r) − μ(r) ≈ −(σn + p)/ρs − [μ(r) − μ0], (3.22)

whereas the overall average driving force in equation (3.18) becomes

μ̄s
n − μ(a) ≈ −(σ̄n + p)/ρs − [μ(a) − μ0]. (3.23)
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We therefore have an expression for the rate of grain convergence in which the
thermodynamic driving force is expressed in terms of an effective intergranular
normal stress and the change in solute chemical potential from the hydrostatic
equilibrium level μ0:

[[vn]] = d(ρs�s/kT )[(σ̄n + p)/ρs + μ(a) − μ0]/[τS + (4a2/d2)τD], (3.24)

or alternatively, in terms of concentrations (mass fractions),

[[vn]] = d[(ρs�s/kT )(σ̄n + p)/ρs + (C − Ceq)/Ceq]/[τS + (4a2/d2)τD].
(3.25)

To complete this discussion of the kinetics of pressure solution, we now return
to relation (3.11) to note that the driving potential difference may again be replaced
by (ρs�s/kT )(μs

n−μ0)−(C−Ceq)/Ceq, where the first term could be set equal to
(f s −f s

0 )+(1/ρs −1/ρs
0)p as in equation (3.20) for entirely elastic changes in the

free energy of the solid. Although this would seem appropriate for a description of
free-face pressure solution, precipitation may well occur by incoherent addition of
a hydrostatically stressed solid phase, as has already been argued by Gibbs from
considerations of stability. Within the framework of our approximate model, it
therefore seems reasonable to neglect the contribution from nonhydrostatic stresses
to the free-face solution or precipitation rate rsf and, instead of equation (3.12),
use the first-order kinetic relation

rsf = ρs(wn − vn) = ρsKsf (C − Ceq)/Ceq. (3.26)

3.3 Elements of a Continuum Theory of IPS

In this section we shall turn to the macroscopic continuum theory of porous
materials that are assumed to compact by a process of IPS in the manner that
was described in Section 3.2. This will require some attention to the construction
of the pertinent macrovariables from the corresponding grain-scale fields, for ex-
ample, when setting up mass balance equations with a source term that expresses
an average rate of loss or gain of material by solution or precipitation processes.
The same interpretation problem exists of course for the constitutive macrovari-
ables of stress and deformation that we wish to employ. To expose and elucidate
the structure of a certain type of two-scale theory forms the principal aim of this
chapter, but for this to be accomplished we find it necessary to simplify not only
the chemistry and kinetics, but also the geometry at the grain scale. Our goal has
been the development of a theory of creep coupled to macroscopic solute transport
in an open system up to a point at which it would yield predictions for the behavior
of simple macroscopic systems, for example, the one-dimensional compaction of
a layer of sandstone by IPS or of a sandstone sample in a laboratory experiment.
We think it important to have a relatively simple description of this type available
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at this stage as a testing ground for further theoretical developments as well as for
guiding the design of future laboratory experiments.

3.3.1 Volume Averaging and Kinematics of IPS
The approximate theory of solution and diffusion processes at a wet grain boundary
that has been discussed in the previous section is essentially a grain-scale contin-
uum description; it also defines the microscale considered in this chapter, whereas
the macroscale is the scale at which we wish to formulate and solve boundary value
problems for porous sedimentary layers that compact by a pressure solution creep
process. It would be difficult now to give a macroscale description of the aggregate
deformation by such processes without some attention to an averaging procedure
through which the variables of the macroscopic theory must be related to the mi-
croscale picture of the previous section. We shall therefore begin by recollecting
a few facts about spatial averaging, from which we shall be able to proceed with
a discussion of the requisite kinematic variables of a macroscopic theory of creep
by IPS.

A microscale description usually deals with processes that take place within an
REV of some porous medium (in the present case typically a porous sandstone).
An REV occupies a closed region V in space and comprises a large enough mass of
solid skeleton material such that the relevant field variables defined on V will pos-
sess meaningful macroscopic (spatial) averages. With reference to Figure 3.4, let
Vf denote the interconnected, fluid-saturated pore space lying within the boundary
∂V of V , and Vs the portion occupied by the solid skeleton. The latter would, in
fact, include any isolated cavities or fluid inclusions that do not form part of the
interconnected porosity. For convenience, we use the same symbols to denote a
region and its volume. As shown in Figure 3.4, the boundary ∂V comprises the
fluid–fluid and solid–solid intersections Sff and Sss , respectively, of the imagined
cut. Within V , one distinguishes the solid–fluid phase boundary (pore walls), Ssf

and the grain boundaries Sgb.
The volume fractions φν (ν = s, f ) of the solid or void-filling fluid phase are

defined in the usual manner by φν = Vν/V (ν = s, f ), it being understood that
the volumes V and Vν are determined by suitable techniques on a rock sample.
Because Vs and Vf add up to V , it is clear that the volume fractions of the two
phases satisfy the relation φs + φf = 1, and we shall therefore eventually revert
to the standard notation φ ≡ φf for the porosity and 1 −φ for the volume fraction
of the solid phase.

We note here that the existence of a useful macroscopic point function with
the significance of a volume fraction φν depends on the existence of a size range
of the REV such that the value of φν remains stationary within that range. This
property of stationarity of any field variable is typically taken for granted in con-
tinuum theories of porous media. Certain macroscopic variables of these theories,
such as a partial density of an extensive property or an average particle veloc-
ity of the solid or fluid phase may thus be interpreted as one or the other of the
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V

Figure 3.4 � REV of a porous rock.

following simple volume averages of some microscale field variable ψ , i.e., its
phase average:

ψν = 1

V

∫
Vν

ψdv, ν = s, f, (3.27)

or its intrinsic phase average:

ψν = 1

Vν

∫
Vν

ψdv, ν = s, f. (3.28)

From these definitions, it is apparent that ψν represents a partial quantity that is
related to ψν by

ψν = φνψν, ν = s, f. (3.29)

When a phase average exists for each of the two phases s and f , then the sum
ψ = ψf +ψs defines a bulk property of the porous medium, for example the bulk
mass density ρ = ρf + ρs = φf ρf + φsρ

s , which is usually defined in terms of
the actual intrinsic mass densities ρf and ρs and the respective volume fraction
as in the second expression. Note that this notation does not distinguish between
a local variable and its average, because the scale to which a variable applies will
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usually be clear from the context4 so that no ambiguity should arise. Only where
the distinction is to be emphasized shall we employ the notation 〈ψ〉 for a spatial
average.

Suppose now that the quantity ψ represents a component, in a given Cartesian
coordinate system, of the particle velocity of the solid phase. Its intrinsic phase
average is then given by

vs
i = 1

Vs

∫
Vs

vidv. (3.30)

In terms of this average velocity of the solid skeleton, one may evidently define
as usual the macroscopic rate of deformation as the symmetric part of the velocity
gradient ∂vs

i /∂xj by

Dij = 1

2

(
∂vs

i

∂xj

+ ∂vs
j

∂xi

)
, (3.31)

where we omit a superscript on Dij . But to see how Dij may actually be computed
in terms of the microscale motions that occur within an REV, we shall now make
use of the following result5 for the derivative of a volume integral of physical
variable ψ (scalar, vector, or tensor component) over the region Vs (the same
result holds of course for Vf ):

∂

∂xj

∫
Vs

ψdv =
∫

Sss

ψnj da. (3.32)

Here nj denotes a component of the outer unit normal to the surface Sss .
Division by Vs and an application of the divergence theorem to the term on the
right yields a result that has become known as the averaging rule or even averaging
theorem in the literature on volume-averaged transport equations for two-phase
media (Slattery, 1972):

∂ψs

∂xj

= 1

Vs

∫
Vs

∂ψ

∂xj

dv − 1

Vs

∫
Ssf

ψnj da + 1

Vs

∫
Sgb

[[ψ]]nj da, (3.33)

where the unit normal vector along the phase boundary Ssf points into the fluid
phase. Along the grain boundary Sgb the variable ψ is allowed to experience a

4As in the case of the sum ρ = ρf + ρs , for example (see p. 130).
5The result may be deduced without difficulty by inverting the steps taken in the proof of the diver-

gence theorem (see O.D. Kellogg’s Foundations of Potential Theory, Dover Publs., 1953, Sec. VIII.7),
generalizing Leibniz’s rule for the differentiation of an integral with respect to a parameter. It may also
be deduced from Reynolds’ transport theorem. In the form of equation (3.33) the result is familiar from
the theory of distributions but may again be obtained directly, if not from equation (3.32), then through
elementary arguments (Slattery, 1972).
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jump discontinuity [[ψ]](x, t) = ψ+(x, t) − ψ−(x, t) from its value in the grain
on the negative side to its value in the neighboring grain on the positive side of Sgb,
the surface normal defining the (arbitrarily fixed) positive side (see Figure 3.4).

Application of equations (3.32) and (3.33) to equation (3.31) now yields

Dij = 1

2Vs

∫
Sss

(vinj + vj ni)da

= 1

2Vs

∫
Vs

(
∂vi

∂xj

+ ∂vj

∂xi

)
dv − 1

2Vs

∫
Ssf

(vinj + vj ni)da

+ 1

2Vs

∫
Sgb

([[vi]]nj + [[vj ]]ni)da. (3.34)

This shows that during active IPS there may be three distinct contributions to the
macroscopic rate of deformation. In the applications considered in this chapter, the
first contribution, which results from the internal deformation of the grains, will
typically be neglected against the last one, which arrises from IPS. To appreciate
the significance of the second term in equation (3.34), one may think of two
extreme situations. Suppose, first, that the grains are approximately undeformable,
so that the bulk aggregate deformation results almost entirely from the velocity
discontinuity along grain-to-grain contacts; the second term is then determined
by the third and the grain or pore shape. For a spatially periodic arrangement of
rigid grains that are truncated by intergranular dissolution, one may in fact choose a
single grain to define an REV (as we have done in the previous section) and consider
the grain as being fixed in space. In this case the third term in equation (3.34)
must therefore account entirely for the bulk deformation rate. If, on the other
hand, one were to study an insoluble and incompressible, perhaps rubber-like
solid skeleton material, then the bulk volume deformation would obviously result
from the displacement of the pore walls and would thus be accounted for by the
second term in equation (3.34).

Let us now recall a few basic definitions and results from continuum mechanics,
which we shall require subsequently (see, e.g., Chadwick 1999). It is assumed here
that the motion of a given body of porous rock can be described, in the usual manner,
in terms of that of its particles or material points, by specifying the position x of
any given particle (relative to a chosen origin) in the current configuration of the
body as a function of its position X in some reference configuration and of time t ,
writing6

x = x(X, t). (3.35)

One may think here of a material point as corresponding to the center of mass of
a small portion of the solid skeleton, which remains in the solid state throughout

6For simplicity, a function and its value are often denoted by the same symbol in this chapter.
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the entire motion; for example, a suitable subset of the solid part of an REV in the
reference configuration, the existence of which we shall stipulate. An alternative
description of the motion of a body is furnished by the inverse function X =
X(x, t) of equation (3.35). If the scalar, vector, and tensor fields that define the
relevant properties of a deforming body are defined on the reference configuration
as functions ofX and t , they are said to be given in the reference description, while if
expressed as functions of x and t , the fields are given in the spatial description. For
example, the velocity of a particle is defined by the partial derivative of its motion
x(X, t) with respect to time, holding X fixed. Through use of the inverse motion,
it may, however, be represented by the fields

.
x(X, t) and v(x, t) according to

.
x = ∂x

∂t
(X, t) = ∂x

∂t
[X(x, t), t] ≡ v(x, t) (3.36)

in the referential and the spatial description, respectively. In this chapter, a su-
perimposed dot always denotes the so-called material derivative with respect to
time, i.e., the rate of change of a quantity associated with a fixed particle. When a
field is given in the spatial description, its material derivative is therefore obtained
through substitution of the motion and application of the chain rule. For the scalar
field ψ(x, t), for example,

.
ψ(x, t) = ∂

∂t
ψ[x(X, t), t]X

= ∂ψ

∂t
(x, t) + ∂ψ

∂xi

∂xi

∂t
[X(x, t), t]

= ∂ψ

∂t
(x, t) + {(gradψ)(x, t)} · v(x, t). (3.37)

When studying the motion of particles in a neighborhood of a given particle
X, the local deformation of a body is brought into view through the gradient of
the motion (3.35), that is, the deformation gradient F = Gradx(X, t) (or Fiα =
∂xi/∂Xα in Cartesian component notation). The motion x = x(X, t) is usually
assumed to meet the requirement J ≡ det F > 0 for its Jacobian determinant
at all X. Here the sign ensures the transformation of a positive volume element
dV with position X in the reference configuration into a positive volume element
dv = J dV at x in the current configuration. Although it is natural as a rule to
stipulate the condition of noninterpenetrability of matter, which is implied by the
fixed sign of J , such a requirement may well be unwarranted for soluble porous
solids. For now it can happen in principle that a portion of the original solid
skeleton is completely removed by dissolution with or without replacement by
newly precipitated material. Although the kinematics of soluble porous materials
could be developed in sufficient generality to allow for such situations, it is assumed
here that they will not occur, the implication being that the solid skeleton of the
rock under study will always preserve enough of its initial solid substance to
allow a meaningful definition of the motion (3.35) in terms of a single reference
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configuration. It is clear then that the velocity defined by equation (3.36) in terms
of this motion can be identified, in a spatial description, with the average velocity
vs of the solid phase as given by equation (3.30). The trace Dii = divvs of the
rate of deformation is therefore also linked to the relative rate of change in bulk
volume

.
J = (dv) · /dV through Euler’s relation

.
J = J divvs . (3.38)

When dealing with large deformations, a referential description will often be
found more concise and transparent than its spatial counterpart, and this is true also
for the present problem, where we shall find it convenient to discuss the change
of pore volume in terms of the pore volume per unit referential volume, or pore
volume fraction vf = φJ , and in terms of vs = (1−φ)J , the solid volume per unit
referential volume. Because the rates of change of these quantities are related by

.
vf + .

vs = .
J , (3.39)

.
vf may be determined from

.
J , via Euler’s relation (3.38) and the trace of the

deformation rate (3.34) and from
.
vs . An expression for the latter is obtained, by

taking the material derivative of its defining expression, as follows:

.
vs = d

dt

{
1

V0

∫
Vs

dv

}
= 1

V0

∫
∂Vs

wnda = 1

V0

∫
Ssf

wnda + 1

V0

∫
Sss

vnda

= 1

V0

∫
Ssf

(wn − vn)da + 1

V0

∫
Sgb

[[vn]]da + 1

V0

∫
Vs

divvdv. (3.40)

Here we have applied a form of Reynolds’ transport theorem (see, e.g., Chad-
wick 1999, Section 3.6) and the divergence theorem, subtracting and adding and
a term V −1

0

∫
Ssf

vnda. In this way the speed of propagation, wn − vn, of the grain
surface Ssf relative to the material, rather than its speed of displacement, wn, in a
given coordinate system, enters into the surface integral over Ssf as the kinetically
relevant rate.

We note further that, in accordance with equations (3.37) and (3.38), the ma-
terial derivative of any quantity ψJ can be written

(ψJ ) · = J
.

ψ + ψ
.
J = J (∂tψ + vs · gradψ) + ψJ divvs

= J {∂tψ + div(ψvs)}. (3.41)
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3.3.2 Balance Equations for Mass
To write a mass balance equation for each of the two phases ν = f, s, let us assume
now that the mass densities ρν and velocities vν are well-defined macroscopic point
functions of x that may be interpreted as intrinsic phase averages in the above sense.
The local mass balances for the two phases then are

∂t (φsρ
s) + div(φsρ

svs) = rs (for the solid phase) (3.42)

and

∂t (φf ρf ) + div(φf ρf vf ) = −rs (for the fluid phase), (3.43)

where ∂t denotes partial differentiation with respect to time at a fixed spatial posi-
tion x. The source term rs represents the rate of change of the solid skeleton mass
per unit bulk volume by precipitation (rs > 0) or solution (rs < 0) processes.
It has the following interpretation as an average over grain-scale interfacial mass
transfer rates:

rs = 1

V

∫
Ssf

{ρ(wn − vn)}da − 1

V

∫
Sgb

[[ρ(wn − vn)]]da. (3.44)

Mass conservation requires the specific mass flux to remain continuous across Ssf ,
so that it could in principle be determined in terms of the appropriate densities and
particle velocities on either side of this phase boundary. However, unless required
otherwise, it is best to think of the integration over Ssf as being performed on
its negative side, i.e., in the solid phase. Along the grain boundary, on the other
hand, the mass flux across individual grain faces will experience a jump across
Sgb during active IPS, as has been discussed already for the grain-scale model of
the previous section.

Using the notation φ ≡ φf = 1 − φs for the porosity, one can rewrite equa-
tion (3.43) in terms of the Darcy filter velocity

q = φ(vf − vs) (3.45)

to obtain

∂t (φρf ) + div(φρf vs) + div(ρf q) = −rs . (3.46)

The fluid phase forms a binary mixture of aqueous silica (the solute) and water
(the solvent). For these we define the partial mass densities ρ1 (for silica) and ρ2
(for water), which add up to the (intrinsic) fluid density according to

ρf =
2∑

k=1

ρk. (3.47)
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As concentration variables we shall employ the mass fractions

Ck = ρk

ρf
, k = 1, 2, (3.48)

which satisfy the condition
∑

Ck = 1.
To each of the two components of the fluid mixture one may ascribe an average

particle velocity vk such that the partial mass flow rates ρkvk associated with these
particle velocities add up to the total mass flow rate of the fluid and

vf =
2∑

k=1

Ckv
k (3.49)

therefore becomes the velocity of the local center of mass, or barycentric velocity
of the fluid mixture.

A balance equation for the solute mass that accounts for the addition or loss
by solution or precipitation processes must be of the form

∂t (φρ1) + div(φρ1v
1) = −rs, (3.50)

featuring the same source term as equation (3.46). The mass flux appearing in
the second term of this equation may now be written in a physically meaningful
way as a sum of three fluxes. Clearly, because we wish to account for molecular
diffusion as a mode of solute transport, the motion of one species relative to the
mixture as a whole must be described in terms of an appropriate, kinetically relevant
diffusive flux. Here we shall consider the velocity of a particle species relative to
the barycentric velocity and define the diffusive mass flux vector for this species by

j k = ρkφ(vk − vf ) = Ckρf φ(vk − vf ), k = 1, 2, (3.51)

where
∑

j k = 0 follows from equation (3.49). There exists therefore only one
independent diffusive flux j ≡ j1, say, just as there is only one independent
concentration C ≡ C1. Making use of definition (3.51) one may thus express the
solute mass flow rate in equation (3.50) in terms of j , vs , and the filter velocity q,
putting φρ1v1 = j + Cρf φvf = Cρf φvs + Cρf q + j . Substitution of this sum
for the mass flux then yields the balance equation for the solute mass

∂t (Cφρf ) + div(Cφρf vs) + div(Cρf q) + divj = −rs . (3.52)

To cast the balance equations (3.42), (3.46), and (3.52) in a referential descrip-
tion, we now introduce the referential filter velocity Q, defined by

Q = JF−1q q = J −1FQ (3.53)

and the referential diffusive mass flux vector J , defined by

J = JF−1j j = J −1FJ . (3.54)
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Because an oriented material surface element nda in the current configura-
tion becomes NdA = J −1F T nda in the reference configuration (F T denotes the
transpose of F ), the definitions (3.53) and (3.54) are seen to satisfy the invariance
requirement q · nda = Q · NdA and j · nda = J · NdA, respectively, for the
scalar fluxes through a material surface element (see Chadwick, 1999, Chapter 2,
Equation 21). Thus, upon integrating these fluxes over the closed boundary of a ma-
terial region in the two configurations, one must have

∫
∂�0

Q · NdA = ∫
∂�

q · nda

or, by application of the divergence theorem and a subsequent change from the
spatial to the referential description,

∫
�0

DivQdV = ∫
�

divqdv = ∫
�0

J divqdV .
From this follows DivQ = J divq or ∂Qα/∂Xα = J∂qi/∂xi (in referential and
spatial Cartesian coordinates Xα and xi , respectively) and the analogous result for
the vector fields J and j .

In addition to the referential flux vectors, we define the referential partial mass
densities (masses per unit of bulk volume in the reference configuration)

ms = ρs(1 − φ)J = ρsvs mf = ρf φJ = ρf vf (3.55)

for the solid and the fluid phase. Multiplication of equations (3.50) and (3.46) by
J and use of application of relation (3.41), together with the above definitions and
properties, now yields the referential mass balances for the two phases:

.
ms = J rs (3.56)

and
.
mf + Div(ρf Q) = −J rs, (3.57)

while for the solute mass per unit referential volume mf C, one has the referential
balance equation

(mf C) · + Div(Cρf Q) + DivJ = −J rs

or, by use of equation (3.57),

mf

.
C + ρf Q · GradC + DivJ = −(1 − C)J rs. (3.58)

The reader may have noted that hydrodynamic dispersion phenomena have
been disregarded in setting up the last transport equation. This neglect is in fact
fully justified in view of the small filter velocities that are to be expected for
anticipated applications, where even at the highest recorded sedimentation rates
molecular diffusion would by far outpace hydrodynamic dispersion, the relevant
criterion for this to happen requiring Péclet numbers V d/D ≤ 1 (see, e.g., Bear
1988, Chapter 10.4), where V represents an average fluid particle velocity (say,
5 m/yr), d an average grain diameter (say, 1 mm), and D is the molecular diffusivity
of the solute species in water (say, 10−8m2/s) (see Section 3.4.2).
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3.3.3 Force-Flux Relations
It is assumed that the filter velocity is governed by Darcy’s law

q = −η−1K(gradp − ρf g). (3.59)

In the referential description this must take the form

Q = −η−1K∗(Gradp − ρf F Tg), (3.60)

where
K∗ = JF−1K(F−1)T (3.61)

is a referential permeability tensor that was first introduced by Biot (1972).
The diffusive mass flux vector of the solute species is assumed to obey a macro-

scopic form of Fick’s law appropriate for the diffusion at dilute concentrations
through a porous medium, which is

j = −ρf DgradC, (3.62)

or, in the referential description,

J = −ρf D∗GradC, (3.63)

with
D∗ = JF−1D(F−1)T (3.64)

as an appropriate referential effective diffusivity tensor. The diffusivity tensor in
Fick’s law, as shown in equation (3.62), can in fact be decomposed into the three
factors: porosity φ, molecular diffusivity of the solute D (in m2/s), and geometric
conductivity C, according to

D = φDC. (3.65)

The significance of the dimensionless symmetric tensor C follows from the fact
that the quantity 1 − C can be interpreted as a tortuosity tensor.7

7In the literature on porous media, the tensor C itself is sometimes named “tortuosity” (Bear, 1988).
As may easily be seen for a porous medium consisting of a bundle of straight rods or capillaries, the
component of C in the direction parallel to these will attain its maximum value of 1, implying zero
tortuosity, whereas the component of D in the same direction is simply determined by the molecular
diffusivity and by the porosity, i.e., by the available cross section. But if the rod or capillaries were bent
into a sinuous shape, for example, the actual diffusion path length would increase with decreasing wave
length in relation to the straight distance in the overall direction, yielding the limit lstraight/lsinuous → 0.
Thus, while the component of C in the overall direction must vanish in this limit, the corresponding
component of the tensor 1 − C will approach its maximum value 1 so that it is in fact the latter
quantity that deserves to be called tortuosity (see also Lehner 1979, for an analytical justification of
this definition of tortuosity).
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3.3.4 Equations of Equilibrium
In this chapter we consider only slow, quasi-static motions of the two phases of a
fluid-saturated porous medium in a given inertial frame. The equations of balance
of linear and angular momentum for the “bulk” medium are therefore reduced to
the equation of equilibrium

div σ + ρg = 0, (3.66)

where g denotes the acceleration of gravity, ρ = (1 − φ)ρs + φρf the bulk
density, and σ the symmetric Cauchy stress. This stress may be called total stress
in the present context, where averaging considerations suggest the decomposition
σ = φσ f + (1 − φ)σ s in terms of the partial stresses of each phase. The partial
stress σ f is usually equated to the pore fluid pressure −p1 in macroscopic theories
that invoke a condition of local equilibrium. More relevant to our subject is the
decomposition σ = σ ′ − p1 into an effective stress σ ′ and pore fluid pressure, in
terms of which equation (3.66) may be written

div σ ′ + (ρ − ρf )g − (gradp − ρf g) = 0 (3.67)

or, upon recognizing that the last term in parentheses represents the driving force
in Darcy’s law (3.59),

div σ ′ + (ρ − ρf )g + ηK−1q = 0. (3.68)

Equation (3.66) may be cast in a referential description in terms of a nonsymmetric
nominal stress s, related to the Cauchy stress σ by

s = JF−1σ , σ = J −1Fs. (3.69)

This definition is consistent with the invariance requirement σ T nda = sT NdA

for the force exerted upon a material surface element in the two configurations.
By use of the divergence theorem one can therefore show that J div σ = Div s,
so that on multiplying equation (3.66) by J one obtains the referential form of the
equilibrium equation

Div s + mg = 0, (3.70)

in which m = mf + ms is a bulk mass density per unit referential volume.
Similarly, one can rewrite equation (3.68) in terms of a nominal effective stress

s′ = JF−1σ ′ and the quantities entering Darcy’s law (3.60):

Div s′ + m′g + ηJ (K∗F T )−1Q = 0, (3.71)

where m′ = J (ρ − ρf ) = vs(ρ
s − ρf ) is the so-called buoyant mass of the solid

phase per unit referential volume.
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3.3.5 Equations of State
The rate of change of the fluid mass content per unit referential volume can be
written as

.
mf = (ρf vf ) · = ρf vf

.
ρ

f

ρf
+ ρf .

vf . (3.72)

The density of the fluid phase satisfies an equation of state

ρf = ρf (T , p, C) (3.73)

so that
.
ρ

f

ρf
= −αf

.
T + βf

.
p + γf

.
C, (3.74)

with

αf (T , p, C) = − 1

ρf

∂ρf

∂T

∣∣∣
p,C

, (3.75)

βf (T , p, C) = 1

ρf

∂ρf

∂p

∣∣∣
T ,C

, (3.76)

γf (T , p, C) = 1

ρf

∂ρf

∂C

∣∣∣
p,T

. (3.77)

For solute concentrations close to equilibrium, so that the fluid density is well
approximated by

ρf = ρf [T , p, Ceq(T , p)], (3.78)

equation (3.74) may be simplified to

.
ρ

f

ρf
= −α∗

f

.
T + β∗

f

.
p, (3.79)

with

α∗
f (T , p) = αf − γ ∗

f ∂Ceq/∂T , (3.80)

β∗
f (T , p) = βf + γ ∗

f ∂Ceq/∂T , (3.81)

γ ∗
f (T , p) = γf [p, T , Ceq(T , p)]. (3.82)

The pore volume fraction vf , which enters into equation (3.72), will undergo
elastic as well as inelastic changes. These will be brought about by elastic and
inelastic changes in bulk volume and the volume of the solid phase, the latter
being due to IPS and solution or precipitation processes along the pore walls. We
shall thus determine the pore volume fraction from the relation vf = J − vs in
terms of these quantities and, on adopting equation (3.79), write

.
mf = ρf (J − vs)(−α∗

f

.
T + β∗

f

.
p) + ρf (

.
J − .

vs). (3.83)
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The changes in the density of the solid phase with temperature and stress
will contribute negligibly to the total deformation of a granular aggregate that is
compacting by IPS. We therefore disregard any changes in ρs and approximate
the rate of change of the solid mass ms = ρsvs in the balance equation (3.42) by
ρs .

vs , so that

.
vs = J rs/ρs = 1

V0

∫
Ssf

(wn − vn)da − 1

V0

∫
Sgb

[[wn − vn]]da (3.84)

is obtained from equation (3.44) when the density of the solid phase is uniformly
equal to ρs . This result is seen to be consistent with equation (3.40) when the last
term (which equals −vs

.
ρ

s
) is omitted from that equation and upon noticing that

wn is continuous across Sgb. It allows
.
vs to be determined through the use of the

kinetic relations (3.26) and (3.25).
In this section we have discussed certain key elements of a continuum theory of

pressure solution creep. The treatment of the constitutive relations remains clearly
incomplete (i.e., focused exclusively on pressure solution creep) and the same
is true for certain important aspects of a general field theory. Although some of
these, such as the coupled transport of heat and mass, would represent standard
developments, others would point in the direction of substantial future efforts,
e.g., the major task of modeling the evolution of a general grain fabric numeri-
cally. Here we have deliberately kept the theoretical discussion within the scope
of the applications that are within reach at this point. In addressing these, Sec-
tion 3.4 will begin with a description of the simplest possible microstructure—
that of a simple cubic packing of identical spheres. Although strongly idealized,
this structure offers the advantage of allowing a complete formulation of the
theory in closed form, from a grain-scale description to a macroscopic continuum
theory.

3.4 Compaction Creep for a Simple
Microstructure

3.4.1 Unit Cell Behavior
As a first application of the theory developed in the foregoing section, let us now
consider the compaction by IPS for a simple possible microstructure (i.e., that of a
simple cubic packing of spherical grains with uniform initial grain diameter d). We
may associate a cube of volume d3 as a unit cell with this initial grain diameter, such
that the centers of its faces mark the contact points of neighboring spheres. This
will be the largest possible initial unit cell before development of grain truncations
by IPS. We shall assume here that the directions of the surface normals to the faces
of this cell coincide with the principal directions of the macroscopic stress acting
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on the granular aggregate throughout its deformation history. We therefore refer
to these directions simply as principal directions.

By the process of compaction by IPS, as described for the single grain-to-grain
contact of Figure 3.3, the edges of the unit cell will have shrunk at a certain moment
to the lengths lνd, ν = 1, 2, 3, the now prismatic cell truncating the grain along six
pairwise orthogonal grain-to-grain contacts, the cell volume having been reduced
to V = l1l2l3d3 as shown in Figure 3.5.

To introduce a certain additional degree of freedom into the description of
the initial grain shape, we shall view the actual initial state of the chosen grain
assembly as one in which the grain contact areas have already acquired a certain
finite size, precisely as if the grains had experienced some fictitious episode of
initial IPS, producing truncations along the principal planes and a corresponding
reduction in length of the edges of the unit cell from the maximum length d to an
actual initial length l0

ν d, ν = 1, 2, 3. We further assume the grain diameter to be
equal to d in this initial state, which we shall henceforth identify with the reference
state of our grain assembly. The volume of the unit cell in the reference state is
thus given by V0 = l0

1 l0
2 l0

3d3.
Our aim is now to obtain expressions for the creep rate, i.e., the deformation

rate Dij of the unit cell and for rate of change of the solid volume fraction
.
vs

in terms of the relevant macroscopic driving force. The latter will be found to
differ for closed- and open-system conditions. Clearly, the unit cell response will
be equivalent to the homogeneous deformation response of a macroscopic con-
tinuum that possesses the simple microstructure of the assumed cubic packing of
spheres.

x1

x2

x3

l3d

l2d

l1d

Figure 3.5 � Single grain from a simple cubic packing of identical grains showing six
pairwise orthogonal grain truncations.
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The volume of the unit cell at the current time t equals V = l1l2l3d3 =
λ1λ2λ3V0, where the true stretches λν from the reference configuration are related
to the fictitious initial and current stretches l0

ν and lν by

lν = λνl0
ν . (3.85)

From this we have J = V/V0 = λ1λ2λ3 and consequently

.
J = J

3∑
ν=1

.
λν

λν

= J

3∑
ν=1

Dν, (3.86)

the Dν denoting the eigenvalues of the deformation rate Dij for the known principal
directions. Focusing once more on Figure 3.3, we note that (since the grain is
assumed to be rigid) we must have

.
λν = [[vν]]/(l0

ν d) (3.87)

for the rate of shortening in each of the three principal directions, ν = 1, 2, 3,
normal to a grain contact; this will suffice to determine the deformation rate in the
present case.

For reasons of simplicity we make the fundamental assumption that free-face
solution or precipitation will preserve the spherical shape of the free grain surface,
leading to a simple shrinkage or growth of the grain radius R(t) at the rate

.
R(t),

with R0 = R(t = 0) = d/2 as initial radius. As long as the grain truncations
remain circular (we shall assume that the deformation stays within this range), the
solid volume fraction is given by the expression

vs = Vs/V0 = π

6l0
1 l0

2 l0
3

{
r3 − 1

2

3∑
ν=1

(r − lν)2(2r + lν)
}
, (3.88)

where r = R/R0 stands for the normalized grain radius. Note that lν must ulti-
mately be replaced in equation (3.88), as well as in all subsequent appearances, by
its expression (3.85) in terms of the true stretch λν .

Because the simplicity of the assumed grain assembly gave us the explicit
expression (3.88) for vs , we can circumvent the determination of the rate

.
vs from

equation (3.84) (a step that cannot be avoided in general for an incrementally
evolving, irregular grain fabric) and obtain

.
vs directly by differentiation of equation

(3.88). The result is

.
vs = π

4l0
1 l0

2 l0
3

{ 3∑
ν=1

(r2 − l2
ν )l0

ν

.
λν +

[
2r2 −

3∑
ν=1

{(r − lν)2 + r2 − l2
ν }

] .
r
}
. (3.89)
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The rate of change of the pore volume fraction may be determined immediately
in terms of these results from the relation

.
vf = .

J − .
vs .

To obtain
.
λν we only have to substitute equation (3.18)—with aν instead of a

for the contact radius—in equation (3.87) to arrive at the following general kinetic
relation for the rate of grain convergence

l0
ν

.
λν = −(ρs�s/kT )(μ̄s

ν − μ)/[τS + (4a2
ν/d2)τD]. (3.90)

Here and subsequently we denote by μ ≡ μ(a) the locally (on the macroscale)
uniform chemical potential of the solute in the pore space.

For the description of open systems, we shall employ the approximate result
of equation (3.25) in equation (3.87), giving

l0
ν

.
λν = [(�s/kT )(σ̄ν + p) + (C − Ceq)/Ceq]/[τS + (4a2

ν/d2)τD]. (3.91)

To obtain the rate of change
.
r of the grain radius, we fix our frame of refer-

ence on the grain shown in Figure 3.5 to note that
.
r = 2wn/d = 2rsf /(ρsd) if

we make the assumption of uniform growth or shrinkage of the grain radius. To
remain consistent with this assumption, we also replace the local normal compo-
nent of the chemical potential along Ssf by its average μ̃s

n, taken over Ssf , so that
equation (3.11) yields

.
r = −τ−1

I (ρs�s/kT )(μ̃s
n − μ), (3.92)

whereas relation (3.26) produces the approximate result

.
r = τ−1

I (C − Ceq)/Ceq. (3.93)

Here we have introduced a third characteristic time that is associated with the
interface reaction along the free faces of a grain and is defined by

τ±
I = d/(2K

sf
± ). (3.94)

We must now seek an expression for the local (grain boundary) average stress
σ̄ν in terms of the macroscopic average stress, which we shall denote by 〈σij 〉
for clarity, departing from the above usage. Similarly, let 〈σij 〉s = V −1

∫
Vs

σij dV

denote the macroscopic phase-averaged stress in the solid phase. Fixing the origin
of a Cartesian coordinate system at the center of the unit cell, the phase-averaged
stress may also be expressed by the surface integral V −1

∫
∂Vs

σiknkxj da taken
over the entire (closed) boundary ∂Vs = Ssf + Sgb of the grain, where nk and xj

denote components of the outward unit normal to ∂Vs and of the position vector,
Sgb comprises the six intergranular contacts for a unit cell, and Ssf stands for
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the pore walls. Using the fact that the only traction along Ssf is supplied by the
uniform pore fluid pressure p, we split the integral over ∂Vs and write

〈σij 〉s = −p
1

V

∫
Ssf

nixj da + 1

V

∫
Sgb

σiknkxj da

= −p
1

V

∫
∂Vs

nixj da + 1

V

∫
Sgb

(σik + pδik)nkxj da, (3.95)

and since the first integral on the right equals (1 − φ)pδij , where φ = Vf /V

denotes the aggregate porosity, the relationship

〈σij 〉 + pδij = 〈σij 〉s + (1 − φ)pδij = 1

V

∫
Sgb

(σik + pδik)nkxj da (3.96)

exists between the integrated effective grain boundary traction and the macroscopic
effective stress. Note that the total stress is defined as the sum of the partial or
phase-averaged stresses of the solid and fluid phases according to 〈σij 〉 = 〈σij 〉s +
〈σij 〉f = 〈σij 〉s −φpδij . In fact, because we assume that the macroscopic principal
stress directions remain perpendicular to the three orthogonal pairs of grain-to-
grain contacts, we need to consider only a relation in the principal stresses of the
form (in which no summation is implied over a repeated index ν)

〈σν〉 + p = 1

V

∫
Sgb

(σν + p)xνnνda, ν = 1, 2, 3. (3.97)

From the geometry of the unit cell it follows that xνnν = lνd/2 as well as
V = l1l2l3d3 and a2

ν = (r2 − l2
ν )d2/4 for the current volume of the unit cell and

the radius of the circular grain contacts with surface normal in the xν-direction.
The integral in equation (3.97) therefore yields the following expression for the
average effective normal stress on a contact in terms of the macroscopic principal
effective stress:

σ̄ν + p = 4
π
[l1l2l3/(r2 − l2

ν )lν](〈σν〉 + p), ν = 1, 2, 3. (3.98)

This is the desired relationship that, upon substitution in equation (3.91), furnishes
the result (with lν = l0

ν λν, ν = 1, 2, 3)

l0
ν

.
λν = 1

τS + (r2 − l2
ν )τD

[
4l1l2l3

π(r2 − l2
ν )lν

( 〈σν〉 + p

kT /�s

)
+ C − Ceq

Ceq

]
. (3.99)

In the special case of a simple cubic packing undergoing isotropic compaction
under an effective all-round compressive stress 〈σ 〉 + p, one has l ≡ l1 = l2 = l3
and l0 ≡ l0

1 = l0
2 = l0

3 , so that a2
ν = a2 = (r2 − l2)d2/4 and relation (3.99)

specializes to (with l = l0λ)

l0
.
λ = 1

τS + (r2 − l2)τD

[
4l2

π(r2 − l2)

( 〈σ 〉 + p

kT /�s

)
+ C − Ceq

Ceq

]
. (3.100)
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The description of open-system compaction creep by IPS in a simple cubic
packing of spheres is completed with the determination of

.
vs by substitution of

the expressions (3.93) and (3.99) for
.
λν and

.
r in equation (3.89).

The pressure solution creep law (3.99) was first obtained by Lehner (1990,
1995, 1997), who also drew attention to the following particular features. First
of all, the fact that equation (3.99) applies to open systems, that is, systems with
significant solute import or export into or from an REV (here the unit cell), so that
the concentration C of the solute is coupled to its transport. This makes for the
appearance in the thermodynamic driving force (the sum of terms within brack-
ets) of a chemical as well as a mechanical term. We note here that the absence of
the chemical term from most published pressure solution creep relations suggests
that these should apply either under closed-system conditions, as will be seen, or
else under conditions of sufficiently fast reprecipitation of the dissolved material
such that significant supersaturations could not exist. We note that in the present
circumstances the chemical term ensures a physically consistent behavior at van-
ishing effective pressure, when

.
λν need not vanish (as is usually assumed) and

compaction creep can continue as long as the solution phase remains undersatu-
rated (C < Ceq). Relation (3.99) also predicts that IPS should cease to operate at a
certain supersaturation. Here we must caution, however, that even if that supersat-
uration level were attained, the prediction itself may well turn out too inaccurate,
principally because the complex process of grain boundary healing is not addressed
by the present model.

Secondly, although linear in the stress and concentration, relation (3.99) dis-
plays a strong geometrical nonlinearity. In other words, at fixed values of these
variables the creep rate will depend strongly on the accumulated strain through
a strong dependence on the current size of the intergranular contacts. This geo-
metrical nonlinearity has been taken into account for some time in experimental
studies of compaction creep behavior caused by IPS. For example, care has been
taken in such studies to determine the dependence of creep rates on stress at a fixed
strain (see, e.g., the work of Spiers and Schutjens (1990), which also contains a
theoretical analysis of this nonlinearity).

A further observation relates to the appearance of the characteristic times τS

and τD in the leading factor of equation (3.99). Clearly, the larger one of the
two will tend to govern the rate of the overall process, as it should in the case
of serial processes. As may be expected, however, τD is weighted by the grain
contact size, becoming less effective at smaller relative contact sizes. A further
important feature of these characteristic times, apparent from their definitions,
is the different dependence on grain size that they exhibit. It follows that grain
boundary diffusion-controlled creep rates should display a dependence on the
third power of the grain size, whereas dissolution-controlled creep rates should
vary linearly with d. This theoretically expected result has been exploited for
some time by experimentalists so as to determine the rate-controlling process
in experimentally compacted grain aggregates of various salts (e.g., NaCl, KCl,
NaNO3) that served as rock analogues (Spiers and Schutjens, 1990; Spiers et al.,
1990; Spiers and Brzesowsky, 1993).
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Let us now consider briefly the compaction of the unit cell of Figure 3.5 under
closed-system conditions. These we shall define by the simple requirement of
conservation of solid mass or—because the density of the solid is assumed to
remain constant—the requirement

.
vs = 0, which from equation (3.89) is seen to

demand the relationship

.
r = − ∑3

ν=1(r2 − l2
ν )l0

ν

.
λν

2r2 − ∑3
ν=1[(r2 − l2

ν ) + (r − lν)2] (3.101)

between
.
r and the

.
λν . A second relationship between these rates, obtained from

equations (3.91) and (3.93) by elimination of the concentration term (C−Ceq)/Ceq
and by use of equation (3.98) is

l0
ν

.
λν =

{
4
π
[l1l2l3/(r2 − l2

ν )lν](�s/kT )(〈σν〉 + p) + τI
.
r
}
/[τS + (r2 − l2

ν )τD].
(3.102)

Next, we substitute this result in relation (3.101), to obtain

.
r = −(4/π)

∑3
ν=1(l1l2l3/lν)(�s/kT )(〈σν〉 + p)/[τS + (r2−l2

ν )τD]
2r2−∑3

ν=1[r2−l2
ν +(r−lν)2]+τI

∑3
ν=1(r2−l2

ν )/[τS+(r2−l2
ν )τD]

(3.103)

for the rate of change of the (nondimensional) grain radius under closed-system
conditions. This expression for

.
r may now be used in equation (3.102) to obtain

.
λν .

The previous system of equations for
.
r and

.
λν takes on a simpler form in the

case of isotropic compaction, with lν = l, λν = λ, and 〈σν〉 = −P (ν = 1, 2, 3),
when

.
r = (4/π)l2(�s/kT )Peff

(2rl − 4r2/3)[τS + (r2 − l2)τD] + (r2 − l2)τI

(3.104)

and, with l = l0λ,

l0
.
λ = −(4/π)l2(2rl − 4r2/3)(�s/kT )Peff

(r2 − l2){(2rl − 4r2/3)[τS + (r2 − l2)τD] + (r2 − l2)τI} , (3.105)

in terms of a macroscopic effective pressure Peff = P − p. Note that the assump-
tions of nonexistent intergranular precipitation and of circular grain truncations
impose the constraints λ ≤ 1 and 1 ≤ r/λl0 ≤ √

2, respectively, on admissible
values of λ and r in the last two expressions.

3.4.2 One-Dimensional Compaction of a Thick Layer
The previous description of the unit cell compaction behavior will now be put to
use for the solution of a first boundary value problem, that of the one-dimensional
compaction of a thick sedimentary layer. Our analysis of this problem can be seen
as an attempt to explore the theoretically predicted process of compaction of a thick
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sedimentary sequence during a relatively short interval of time. We prefer to think
of it as a first test case, allowing us to explore the consequences of certain model
assumptions and to gain a perspective on necessary future developments. While
our problem may be placed in the context of earlier work on rock densification
by pressure solution (Angevine and Turcotte, 1983; Lemee and Gueguen, 1996;
Fowler and Yang, 1999), we shall not attempt a direct comparison in this article.
Rather, we shall focus on a simple problem of the deformation of a thick layer
of sediment (sandstone) in which the process of IPS is suddenly switched on
(i.e., allowed to occur) only after its deposition. We shall also make a number
of simplifying assumptions, specific to the problem at hand, that can later be
abandoned in studies of a broader kind that are based on the general theoretical
framework of this chapter.

To proceed to the formulation of the governing equations of our problem, let us
now introduce the spatial and referential Cartesian coordinate systems {x1, x2, x3}
and {X1, X2, X3}, where x3 and X3 are pointing vertically upward. The particle
motion that occurs during one-dimensional compaction in the negative x3-direction
is described by the component equations x1 = X1, x2 = X2, and x3 = x3(X3, t),
from which the matrix of the deformation gradient Fiα = ∂xi/∂Xα and that of its
inverse are readily determined as

(Fiα) =
⎛⎜⎝ 1 0 0

0 1 0
0 0 λ

⎞⎟⎠ , (F −1
iα ) =

⎛⎜⎝ 1 0 0
0 1 0
0 0 λ−1

⎞⎟⎠ , (3.106)

where λ = ∂x3/∂X3 is the stretch (here in fact shortening) in the vertical direction.
We also note that F = F T and J = det F = λ.

Consider next the equation of equilibrium (3.70). Because we assume all
derivatives with respect to X1 and X2 to vanish, we must have

Div s = ∂

∂X3

(
JF−1σ

)
33

e3 = ∂

∂X3

(
λF−1

3j σj3

)
e3 = ∂σ33

∂X3
e3, (3.107)

and after scalar multiplication of equation (3.70) by the unit vector e3 in the posi-
tive (upward oriented) X3-direction, there follows the only nontrivial equilibrium
equation for the vertical direction

∂σ33

∂X3
− mg = 0, (3.108)

in terms of the (Cauchy) normal stress σ33 which, by the above assumptions, must
also be a principal stress.

The equivalent form of equation (3.71) in the effective stress is

∂σ ′
33

∂X3
− (ρs −ρf )vsg + η

K∗
3

Q3 = 0. (3.109)
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Here we assume that the principal axes of the symmetric permeability K and
effective diffusivity D coincide with the coordinate directions, so that by virtue of
equations (3.61) and (3.64) the matrices of the corresponding referential quantities
are of the form

(K∗
ij ) = λ

⎛⎜⎝ K1 0 0
0 K2 0
0 0 λ−2K3

⎞⎟⎠ , (D∗
ij ) = λ

⎛⎜⎝ D1 0 0
0 D2 0
0 0 λ−2D3

⎞⎟⎠ .

(3.110)

The only nonvanishing components of the referential filter velocity and diffu-
sive mass flux therefore satisfy the force-flux relations

Q3 = −η−1K∗
3

(
∂p

∂X3
+ λρf g

)
(3.111)

and

J3 = −ρf D∗
3

∂C

∂X3
. (3.112)

These enter into the one-dimensional forms of the balance equations (3.57)
and (3.58).

Problem Statement for Hydrostatic Pore Pressures

Let us now focus on an interesting situation that is likely to occur in sandstones of
relatively high permeability when compaction rates by IPS are too slow to produce
significant nonhydrostatic excess fluid pressures. The theoretical description of
one-dimensional compaction may then be further simplified by forsaking the use
of Darcy’s law (3.111) and treating the flux Q3 as an unknown dependent variable
of the problem, while assuming an initial hydrostatic distribution of the pore fluid
pressure to remain unaltered during compaction. In consequence, Q3 is carried
along in the mass balance equations, but deleted from the equilibrium equation
(3.109), which is thereby reduced to its static form

∂σ ′
33

∂X3
− �ρvsg = 0, (3.113)

where �ρ = ρs −ρf .
We further simplify the above general formulation by assuming the temperature

field to be given in terms of a fixed geothermal gradient, by taking the fluid and
solid mass densities to be constant, and by stipulating dilute solute concentrations
(C � 1). Using an appropriately simplified equation of state (3.83), together with
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relation (3.84), we now introduce equation (3.112) into equation (3.58) to obtain
the following system of equations in Q3 and C in one dimension:

−∂Q3

∂X3
=

(
ρs

ρf
− 1

)
.
vs + .

λ (3.114)

and

−Q3
∂C

∂X3
+ ∂

∂X3

(
D∗

3
∂C

∂X3

)
= ρs

ρf

.
vs + (λ − vs)

.
C. (3.115)

Here λ,
.
λ, vs , and

.
vs remain to be determined.

The effective diffusivity of the porous material is allowed to depend solely
on temperature (through the molecular diffusivity D), i.e., we shall disregard any
changes in the relevant component D∗

3 that result from the changes in the pore
geometry during compaction.8 However, we shall disassociate the numerical value
used for the geometrical part φC3/λ of D∗

3 from the particular microstructure of
a simple cubic packing and assume an empirical Archie-type relation of the form
D∗

3 = Dφ2. In fact, we shall simply take

D∗
3 = Dφ2

0 , (3.116)

the porosity being set equal here to an assumed initial, depth-dependent porosity
φ0 specified presently by equation (3.132).

To complete the formulation of our problem, we shall now adopt the above
model of a simple cubic packing of spheres for a grain-scale description of the
sedimentary rock. Although this implies a drastic simplification of reality, the
possibility to test a model of IPS that rests on a clear physical foundation matters
most to us at this stage. Imposing the constraint of one-dimensional compaction,
we assume l0

1 = l0
2 = l0

3 = l0 so that l1 = l2 = l0, while l3 = l = l0λ; putting
these into equations (3.88), (3.89), and (3.99), we now have

vs = π

6l3
0

[r3 − (r − l0)2(2r + l0) − 1

2
(r − l0λ)2(2r + l0λ)] (3.117)

and
.
vs = π

4l3
0

{(r2 − l2
0λ2)l0

.
λ + 2[l0λ − 2(r − l0)]r .

r}, (3.118)

8In the present case equation (3.110) implies D∗
3 = DφC3/λ = D(1 − vs/λ)C3/λ according to

definition (3.65), which shows that the use of the referential diffusivity will in fact compensate to some
extent for a reduction of C3 through the simultaneous decrease in λ during deformation.
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where the rates
.
r and

.
λ must be found from the fundamental expressions (3.93)

and (3.99), the latter assuming the form

l0
.
λ = 1

τS + (r2 − l2
0λ2)τD

[
4l2

0

π(r2 − l2
0λ2)

(
σ33 + p

kT /�s

)
+ C − Ceq

Ceq

]
.

(3.119)

It is through this last relation for
.
λ that the coupling to the (effective) stress occurs.

Note that the notation has now been simplified again, letting σ33 stand for the
component of the macroscopic total stress that appears in the equilibrium equation
(3.108), in fact the principal stress in the vertical direction.

To return to the formulation of our boundary value problem, let us now consider
a layer of sandstone with initial thickness h(0) = H , as measured vertically upward
from a fixed (impermeable) base at x3 = X3 = 0. At time t the top of the layer
will have subsided to a level x3 = h(t), the sea level remaining at x3 = H at all
times (Figure 3.6). No sediment is added at the top of the layer during the entire
time interval studied.

The initial state of the layer is one in which it may be assumed to have undergone
a substantial amount of compaction by mechanical and possibly also chemical pro-
cesses of early diagenesis. We shall allow for this in a simple manner by assuming
a certain initial distribution of the porosity, corresponding to an empirical porosity-
depth profile, which we shall translate into a corresponding fictitious initial strain
l0, as discussed previously. We do not wish to attach an inordinate significance
to certain quantitative aspects of our model, such as the absolute porosity values.

0

X3

H

(a)

h(t)

(b)

x3(X3,t)

X3, x3

Figure 3.6 � A layer of sandstone undergoing vertical gravitational compaction by IPS;
its initial thickness h(0) = H is reduced to h(t) < H at times t > 0 by the motion
x3 = x3(X3, t) of horizons marked by their initial position X3. Coordinates X3 and x3 are
used in the referential description (a) and the spatial description (b).
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Rather, we shall focus on the changes that are predicted to occur once pressure
solution has been “switched on.”

Figure 3.6 illustrates the difference between a spatial description (b) in terms of
the vertical coordinate x3 and a referential description (a) in terms of the coordinate
X3, corresponding to the initial position of a compacting horizon currently at x3.
When employing the second, any given function of x3 must be translated into a
function of X3 by use of the motion x3 = x3(X3, t). In particular, we shall have
to apply this mapping to the assumed temperature distribution

T (x3, t) = T0 + T ′[h(t) − x3], (3.120)

where T0 = 277K is the temperature at the sea floor and T ′ = 30 K/1000 m
is a fixed geothermal gradient. The known temperature distribution allows the
determination of a number of temperature-sensitive quantities that are specified
here by the following functions (T in Kelvin):

� The solubility Ceq (expressed as a mass fraction) of quartz in water at neutral
pH:

log10 Ceq = log10 Ms − 0.254 − 1107.12

T
, (3.121)

from Rimstidt 1997 solubility data (given in mol/kg) upon multiplication by
the molar mass of quartz, Ms = 0.055 kg/mol.

� The rate “constants” K
sf
− and K

sf
+ (in m/s) for the precipitation and solu-

tion reactions along the quartz–water interface (taken from Rimstidt and
Barnes 1980):

log10 K
sf
− = log10 V

s − 0.707 − 2598

T
, (3.122)

log10 K
sf
+ = log10 V

s + 1.174 − 0.002028 × T − 4158

T
, (3.123)

obtained by multiplying the rate constants k− and k+, as given by Rimstidt
and Barnes (1980) in units of mol/m2/s, by the molar volume of quartz, V

s =
2.27 × 10−5 m3/mol.
No information is available on the “rate constant” Kgb that was introduced
in relation (3.15) by analogy with (3.11). In the following, we shall therefore
equate Kgb to K

sf
+ .

� The molecular diffusivity D (in m2/s) of the solute in water:

D = D0 exp{−15000/RT }. (3.124)

Here we follow Nakashima (1995) in assuming an activation energy of 15
KJ/mol for this process, while choosing the value 9 × 10−7 m2/s for D′ to
match Applin (1987) value of 2.2 × 10−9 m2/s for the diffusivity at ambient
conditions.
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� The grain boundary diffusion factor δDgb (in m3/s) is estimated by adopting
a range of values for the effective grain boundary width δ (which includes a
grain boundary porosity factor), while taking Dgb = 0.1D, i.e., essentially
assuming equal molecular diffusivities for the solute in the grain boundaries
and the free pore space, but reducing the former to Dgb by a tortuosity factor
of approximately 1/10. This assumption is consistent with our view that the
grain boundaries in sandstones of the type shown in Figure 3.1 possess a
coarse island-channel structure that is infiltrated by the pore fluid. The grain
boundary width δ is therefore taken to be approximately equal to the height
of the channels and should not be confused with the thickness of a fluid film
that may actually exist temporarily between the islands or asperities of two
grains, where these define an actual grain-to-grain contact on the microscopic
scale. Although the rate of undercutting of such asperity contacts is likely
to be controlled by a local dissolution rate constant, the overall diffusive
transport along the grain boundary of the solute species produced by this
undercutting process must be governed by its molecular diffusivity in the
network of channels as well as by the channel geometry. Mindful of the fact
that the physical structure of the grain boundaries remains a controversial topic
among investigators of rather diverse empirical backgrounds of individual
investigators, we do not wish to assume a dogmatic position on this point. We
therefore propose to examine the consequences for our model predictions of a
variation in the effective grain boundary width δ between 2 nm, as appropriate
for a thin fluid-film model, and 200 nm, as would apply to a coarse island–
channel structure.

� From definitions (3.19), and (3.94) it is apparent that the above temperature
functions will affect the characteristic times τD, τS, and τI through the appro-
priate rate constants and—in the case of τD—through the solubility Ceq as
well.

The governing differential equations for our problem are equations (3.113),
(3.114), and (3.115), together with equations (3.93) and (3.117) through (3.119),
and with given functions (3.121) through (3.124) of the temperature distribution
(3.120). To these are adjoined the following initial and boundary conditions:

C(X3, 0) = Ceq(X3, 0), (3.125)

r(X3, 0) = 1, (3.126)

λ(X3, 0) = 1, for 0 < X3 < H, (3.127)

and

C(X3 = H, t) = Ceq(H, 0), (3.128)
∂C

∂X3
(X3 = 0, t) = 0, (3.129)

Q3(X3 = 0, t) = 0. (3.130)
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The initial solute concentration (3.125) is inconsistent with condition (3.129)
at the basis of the domain if condition (3.121) is adopted together with condi-
tion (3.120). To satisfy the boundary condition (3.129), the distribution (3.121) is
therefore amended in the following ad hoc manner in the subsequent numerical
calculations: Below a fraction of the current column height (typically 10%), the
equilibrium concentration (3.125) is changed to a parabolic distribution with a
zero slope at the basis. The two paramters of the parabola are selected such as to
ensure the continuity of the concentration and of its first spatial derivative.

We note further that by virtue of equation (3.117) the conditions (3.126) and
(3.127) imply the relationship

φ0(X3) = 1 − vs(X3, 0) = 1 − (π/12)(9l−2
0 − 4l−3

0 − 3) (3.131)

between the porosity in the initial (reference) state and l0. This enables us to mimic
an exponential initial porosity-depth distribution of the exponential Athy-type

φ0(X3) = φ∗ exp{−κ(H − X3)}, (3.132)

via a suitable depth dependence of l0(X3), which is obtained as the solution of
the cubic equation that results from a substitution of equation (3.132) in equation
(3.131). Here κ is a decay constant and φ∗ denotes the constant surface porosity
at the top of the layer. Following Sclater and Christie (1980), we take κ = 2.7 ×
10−4m−1 for a sandstone, and φ∗ = 1 − π/6, corresponding to l0 = 1 at the
sedimentation boundary X3 = H . For these parameter values it turns out that
relation (3.131) is accurately approximated by the linear relation φ0 = al0 + b,
with a = 1.632 and b = −1.1556 within the relevant porosity and depth range.
The following initial distribution of l0 may therefore be used in the example

l0 = (φ∗/a) exp{−κ(H − X3)} − b/a

= 0.2919 exp{−0.00027(5000 − X3)} + 0.7081. (3.133)

For the reader’s convenience we include in Table 3.1 a summary of the essential
parameters of our problem and of the numerical values assigned to them in the
subsequent computations.

Weak Formulation and Numerical Solution

The numerical solution of the compaction problem is based on a weak formulation
of the differential equations (3.114) and (3.115), use of the evolution equations
(3.93) and (3.119), together with equations (3.117) and (3.118), use of equations
(3.113) and (3.120) through (3.132), and the selection of a time and a space
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TABLE 3.1 � Parameters of One-Dimensional Compaction Problem

Par. Definition Value (Unit)

C Solute concentration (mass fraction) variable
Ceq Solute equilibrium concentration (equation 3.121) function
d Initial grain diameter; d = 2R0 10−4 (m)
D∗

3 Referential effective diffusivity (equation 3.116) function (m2/s)
Dgb Grain boundary diffusivity; Dgb = 0.1D function (m2/s)
D Molecular diffusivity (equation 3.124) function (m2/s)
D0 Reference molecular diffusivity 9 × 10−7 (m2/s)
g Gravitational acceleration 9.81 (m/s2)
h(t) Current column height (Figure 3.6) variable (m)
H Initial column height (Figure 3.6) 5000 (m)
k Boltzmann’s constant 1.38 × 10−23 (J/K)

K
sf
+ Rate constant for quartz dissolution equation 3.122 (m/s)

K
sf
− Rate constant for quartz precipitation equation 3.123 (m/s)

Kgb Rate constant for intergranular solution equation 3.122 (m/s)
l Current fictitious stretch variable
l0 Initial fictitious stretch (Figure 3.5) variable
Ms Molar mass of quartz; Ms = ρsV

s
55 × 10−3 (kg/mol)

NA Avogadro’s number 6.022×1023 (1/mol)
p Pore fluid pressure variable (Pa)
Q3 X3−component of filter velocity variable (m/s)
r Normalized grain radius; r(t) = R(t)/R0 variable
T Absolute temperature (equation 3.120) function (K)
T0 Seafloor temperature 277.15 (K)
T ′ Temperature gradient (equation 3.120) 3 × 10−2 K/m
vs Solid volume fraction; vs = (1−φ)λ1λ2λ3 variable
V

s
Molar volume of quartz 2.27×10−5(m3/mol)

α Time integration constant (equation 3.137) 1/2
δ Grain boundary width 2 × 10−9 (m)
κ Depth-decay constant for φ0 (equation 3.132) 2.7 ×10−4 (1/m)
λ Current actual stretch; λ = l/ l0 variable
ρs Constant mass density of solid phase 2650 (kg/m3)
ρf Constant mass density of fluid phase 1000 (kg/m3)
σ ′

33 Effective vertical stress (equation 3.113) variable (Pa)
φ Current porosity variable
φ0 Initial porosity (equation 3.132) function
φ∗ Initial porosity at layer top 1−π/6
�s Molecular volume of quartz; �s =V

s
/NA 3.7 × 10−29 (m3)
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discretization. The various parts of this numerical scheme are now discussed. We
begin by rewriting equations (3.114) and (3.115) as

Q3,3 + SQ(r, λ,
.
r,

.
λ) = 0

and
Q3C,3 − (D∗

3C,3),3 + Sc(r, λ,
.
r,

.
λ) + (λ − vs)

.
C = 0, (3.134)

with source terms SQ and Sc, the definitions and functional dependence of which
on r, λ,

.
r , and

.
λ will be clear from equations (3.114) and (3.115).

A weak formulation of the problem posed by these two equations is obtained
by multiplying the first equation by a filter velocity Q̃3 and the second by a solute
concentration C̃, both of these “virtual” quantities satisfying essentially homoge-
neous boundary conditions. Next, we integrate the resulting equations over the
reference configuration of the compacting layer. The second equation is further
integrated by parts so as to eliminate a second-order spatial derivative, and the
final results then are ∫ H

0
Q̃3Q3,3 + Q̃3SQdX3 = 0,∫ H

0
C̃Q3C,3 + C̃,3D∗

3C,3 + C̃(Sc + (λ − vs)
.
C)dX3 = 0. (3.135)

A spatial discretization of these equations is now performed, applying the
finite-element method. Selecting two-noded Lagrange elements, this leads to a
linear interpolation of the filter velocity, the solute concentration, and its rate.
After discretization, the system of governing equations assumes the form

∫ H

0
NaNb,3dX3Q3b = −

∫ H

0
NaSQdX3,∫ H

0
(NaQ3 + Na,3D∗

3)Nb,3dX3Cb +
∫ H

0
Na(λ − vs)NbdX3

.
Cb =

−
∫ H

0
NaScdX3, (3.136)

in terms of the shape functions Na and the nodal unknowns Q3b, Cb, and
.
Cb. In

equation (3.136) and hereafter the summation over nodes with dummy indices b

is suppressed for the sake of simplicity.
The following generalized trapezoidal rule is now employed for integrating the

solute concentration over time:

Cn+1 = Cn + �t[α .
Cn+1 + (1 − α)

.
Cn]. (3.137)
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Here the subscripts n and n + 1 designate values at the beginning and at the end,
respectively, of the time step �t . The parameter α is set to 0, 1/2, or 1, resulting
in the selection of the classic forward-Euler, trapezoidal-rule, or backward-Euler
time integration scheme, respectively. The system of governing equations finally
becomes

Q

KabQ3b(n+1) = − Q

Fa(rn, λn,
.
rn,

.
λn)

C

Kab(Q3(n+1))Cb(n+1) + C

Cab

.
Cb(n+1) = − C

Fa(rn, λn,
.
rn,

.
λn). (3.138)

The system must satisfy the initial conditions

Q

KabQ3b0 = − Q

Fa(1, 1, 0,
.
λ0)

C

Cab

.
Cb0 = − C

Fa(1, 1, 0,
.
λ0) − C

Kab(Q30)Cb0, (3.139)

where
.
r0 = 0 follows directly from equation (3.93) for equation (3.125), while

.
λ0 = 4l0

π(1 − l2
0)[τS + (1 − l2

0)τD]
(

σ ′
33(X3, 0)

kT /�s

)
(3.140)

is deduced from equation (3.119) for equations (3.125) through (3.127). The ini-
tial effective stress distribution is obtained by integration of equation (3.113) as
σ ′

33(X3, 0) = −�ρg(H −X3){1−φ∗[1−exp{−κ(H −X3)}]/κ(H −X3)}, notic-
ing that σ ′

33[h(t)] = 0 at all times. The characteristic times τS and τD are evaluated
in equation (3.140) for the initial temperature profile T (X3, 0) = T0−T ′(H −X3).

The matrix notation used in the preceding should be clear from a comparison of
equivalent terms in equations (3.136) and (3.138). The governing equation (3.138)
is written for source terms that are evaluated at the beginning of each time step.
This approximation was found convenient for obtaining an explicit solution by
means of the following staggered five-step scheme:

1. Initialize Q3b and
.
Cb with equation (3.139).

2. Solve for Q3b(n+1) from equation (3.138a).
3. Solve for

.
Cb(n+1) and Cb(n+1) from equations (3.138b) and (3.137).

4. Update rn+1 = rn + �t
.
rn and λn+1 = λn + �t

.
λn and recompute vs

from equation (3.117); determine the current position of every nodal point
x3(X3, t) = ∫ X3

0 λ(X′
3, t)dX′

3, deduce the current column height h(t), and
transfer this information to the quadrature points by interpolation. Then find
the effective stress from σ ′

33(X3, t) = −�ρg
∫ H

X3
vs(X

′
3, t)dX′

3, observing
that σ ′

33(H, t) = 0, and finally determine the temperature from T (X3, t) =
T0 + T ′[h(t) − x3(X3, t)] and the equilibrium concentration Ceq from equa-
tion (3.121).

5. Increment time by �t and proceed to step 2.
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Note that the stiffness array in equation (3.138a) remains constant in time
and therefore needs to be assembled only once. The solution procedure is thus
shortened, because the factorization of the system of equations is not repeated.

Finally, throughout this computation we impose the constraints
.
λ ≤ 0 and

1 ≤ r/ l0 ≤ √
1 + λ2 on the variables r and λ, so as to remain consistent with

the assumption of nonexistent intergranular precipitation and of circular grain
truncations.

The presentation of computed results in the remainder of this section is divided
into two parts. The first of these is concerned with the evolution of the sedimen-
tary column in the absence of free-face dissolution or precipitation. In the second
part, both intergranular dissolution and free-face dissolution and precipitation pro-
cesses are allowed to operate. This distinction was found useful in explaining the
effectiveness of macroscopic advective and diffusive solute transport as well as
the importance of a sink at short distances from the grain boundary to achieving
significant compaction rates. The same finite-element mesh is used in both cases.
It consists of a set of 150 two-noded elements of nonuniform size, distributed
so as to permit decimeter-scale spatial boundary layers at the top and bottom of
the layer to be captured. The number of elements was determined by a sensitiv-
ity analysis (which is not reported here), to make sure that the numerical results
would not depend significantly on the spatial discretization. The time step was
given values between 10−6 years during the early phase of compaction and 10−4

years in approaching a quasi-stationary state. The small value of the time step is a
consequence of our choice of an explicit time integration scheme and also of the
large differences between the pertinent characteristic times of the kinetic processes
considered (Figure 3.7).

Compaction in the Absence of Free-Face Precipitation

The results for compaction in the absence of free-face precipitation are presented
in Figure 3.8. They were obtained by letting τ+

I and τ−
I approach infinity. Phys-

ically, the suppression of free-face dissolution or precipitation may, for example
correspond to the presence of thin clay coatings on the pore walls. The filter ve-
locity profile in Figure 3.8a shows a rapid variation of the velocity over a height
of approximately 1500 m, starting from the value zero at the base of the layer. At
shallower depths, the filter velocity is approximately constant, signaling the rigid
translation of a noncompactant upper portion of the layer.

Clearly, compaction by pressure solution is seen to occur only in the lower
part of the layer at the higher temperatures prevailing there. Initially, the rate of
compaction is rather high, generating some 2.5 m/yr of displacement at the layer’s
top; but it then decreases rapidly by a factor of 1000 after a lapse of only one
year. This boundary layer in time is depicted more clearly by Figure 3.8b, which
shows the rapid decline of the filter velocity at the top of the layer. The vanish-
ing of the filter flux is a clear indication of compaction ceasing to operate, even
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Figure 3.7 � Characteristic times as functions of temperature.

though one has an early burst in dissolution and associated rapid change in the
solute concentration profile (Figure. 3.8c). We should note here that the initial
solute concentration profile, which according to condition (3.125) equals the equi-
librium distribution (3.121), has been altered in the lowermost 10% of the layer
by reducing its slope to zero as X3 → 0, thereby enforcing a boundary condition
of zero diffusive flux in agreement with Fick’s law (3.112) and condition (3.129).
Figure 3.8c shows that the solute concentration then evolves in time toward a sec-
ond profile that may be interpreted as corresponding to a quasi-stationary state,
with a concentration maximum approximately equal to 1.7Ceq at X3 = 0. This
second, quasi-stationary profile, which is well approximated by the dotted curve
after 0.19 × 106 years, establishes itself first at times as short as 0.003 years near
the base of the layer, where rapid intergranular dissolution produces a sharp rise in
solute concentration. At shallower depths, this evolution toward a quasi-stationary
state proceeds at a slower pace and dissolution becomes negligible at about 2000
m, the advective flux Q3 consequently attaining a uniform value. At that point the
concentration profile could be further modified only by diffusive solute transport.
However, the relevant characteristic time for diffusion over the column height H is
approximately H 2/D∗

3 , corresponding to some 1.5×109 years at a temperature of
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Figure 3.8 � Computed compaction behavior in the absence of free-face solution or
precipitation (

.
r = 0). The filter velocity, solute concentration, and rate of intergranular

dissolution profiles are shown in (a), (c), and (d), respectively, for various times. The dotted
curve in (c) pertains to t = 0.2 × 106 years approximately. Plot (b) and its insert depict the
history of the filter velocity at the top of the layer.

300K , too large to justify an idea of diffusion-controlled compaction of the entire
sedimentary column and thus validating the notion of a quasi-stationary state for
the solute concentration found at time 0.19 × 106 years. We note that the corre-
sponding quasi-stationary concentration profile could have been computed with
sufficient accuracy directly from equation (3.119) and the known initial stress and
concentration distributions by determining the concentration for which

.
λ vanishes,

putting λ=1 as appropriate in the present case. The difference between the initial
concentration profile and this quasi-stationary distribution is thus essentially con-
trolled by the effective stress state in the layer.

The computed decline of the rate of intergranular dissolution with time is shown
Figure 3.8d. Note that

.
λ evolves fastest at the base of the layer, a behavior that is

obviously consistent with the first fast evolution of the solute concentration in that

46



region. Figure 3.8d also provides an indication of the total amount of compaction.
The rate of compaction is initially as large as 0.25% per year. However the burst
in dissolution only lasts for at most 0.01 years, extending over 1/20 of the column
height and leading to an integrated compaction that cannot exceed 2 cm of surface
subsidence. The main conclusion to be drawn from these runs must therefore be that
in thick layers the absence of sites of deposition close to the source of dissolution
will effectively slow down the compaction by IPS to the unrealistically large time
scale that is associated with diffusive transport over the entire layer thickness.

Compaction in the Presence of Free-Face Precipitation

When allowing for free-face solution and precipitation to occur, the computed com-
paction behavior became extremely unstable. The source of this problem lies in the
large difference between the characteristic times τ+

I and τ−
I for free-face dissolu-

tion and precipitation (see Figure 3.7), a slight variation of the solute concentration
around its equilibrium value activating either grain growth or dissolution on very
different time scales.

From a number of test runs it became nevertheless clear that for the chosen
set of parameters free-face dissolution would in fact never occur throughout the
time interval covered by the computations. The only characteristic time relevant to
the evolution of the grain diameter must therefore be τ−

I . To alleviate the problem
of unstable behavior, the characteristic time for free-face dissolution was there-
fore set equal to that for precipitation, i.e., we used τ+

I = τ−
I as determined by

equations (3.94) and (3.122).
In discussing the compaction behavior in the presence of free-face solution

and precipitation (
.
r = 0) we now refer to the results shown in Figure 3.9. The

structure of the velocity-depth profiles of Figure 3.9a is similar to the one found
for

.
r = 0. The magnitude of Q3 increases with increasing elevation, rapidly at

first, but attaining uniform values at about half the layer thickness. These values
are small enough to fully justify our assumption of approximately hydrostatic fluid
pressures.

This upper half of the layer is thus subsiding rigidly into the lower half, where
elevated temperatures give rise to significant compaction rates. The main difference
between the two sets of profiles shown in Figure 3.8a and Figure 3.9a is that the
filter velocity does not tend to zero after a short initial burst in dissolution but
toward a value decreasing at a rate of approximately 10−2 m/yr/yr over a period of
30 years (Figure 3.9b). During this period the solute concentration profiles remain
close to Ceq, a result very different from the one obtained in the absence of free-face
dissolution and precipitation. Figure 3.9c shows that the ratio

� = (C − Ceq)/Ceq)

4l2
0(�s |σ ′

33|/kT )/[π(r2 − l2
0λ2)]
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Figure 3.9 � Computed compaction behavior in the presence of free-face precipitation.
Depth dependence of filter velocity, relative contribution � of chemical term to driving force,
grain growth rate, and compaction “stretch” are shown in (a), (c), (d), and (e); evolution of
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of the concentration term over the effective stress term in the driving force in equa-
tion (3.119) remains very small indeed. This suggests that the system behavior must
be very close to a Stefan-type equilibrium along the grain surfaces, such that the
kinetics of free-face precipitation can be disregarded altogether in relation to the
rate-determining step of grain boundary dissolution. Moreover, in comparison with
local precipitation rates, the rate of diffusive outflux of solute from a unit cell is
likely to remain everywhere negligible, suggesting the closed-system approxima-
tion

.
vs ≈ 0 as in the previously discussed examples. From equation (3.118) it

is directly apparent that the last approximation implies the following relationship
between

.
r and

.
λ:

.
r = −(r2 − l2

0λ2)l0

2r[l0λ − 2(r − l0)]
.
λ, (3.141)

and when this is combined with relation (3.93) and (C − Ceq)/Ceq is eliminated
between the resulting expression and equation (3.119),

.
λ = 2rl0[l0λ − 2(r − l0)](σ ′

33�s/kT )
π
2 r[l0λ − 2(r − l0)](r2 − l2

0λ2)τS + l2
0(r2 − l2

0λ2)τ−
I

. (3.142)

Neglecting now the term containing τ−
I against that containing τS, in agreement

with the assumption of interfacial equilibrium, we arrive at

.
λ = (4/π)l0

τS(r2 − l2
0λ2)

(
σ ′

33

kT /�s

)
(3.143)

and by use of equation (3.141)

.
r = −(2/π)l2

0

τS[l0λ − 2(r − l0)]r
(

σ ′
33

kT /�s

)
. (3.144)

Note that because
.
vs is assumed to vanish, the effective stress σ ′

33 must remain
independent of time and equal to its known initial distribution.

As can be seen from Figure 3.9d, relation (3.144) is indeed satisfied by the
computed results. This suggests a very close approximation of the extreme situ-
ation, in which compaction by IPS is essentially dissolution-rate controlled and
stress driven, behaving as under closed-system conditions (closed w.r.t. to the solid
phase) on all time scales significantly below that set by diffusive transport across
the entire layer thickness. Because the latter exceeds even geologically meaning-
ful times, IPS would most likely have been predicted to proceed in this manner
toward very low porosities if a sufficiently general microstructural evolution had
been allowed for in the present model.

We note finally that intergranular dissolution below 3000 m depth is important
enough to bring about an integrated compaction of some 40-m surface subsidence
(see Figure 3.9f ) during the extremely short initial period of only 31 years. At
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that time, the constraint 1 ≤ r/ l0 ≤ √
1 + λ2 is violated at the base of the layer,

signaling that the limit of applicability of our microstructural model has been
reached.

3.5 Concluding Discussion

This chapter has covered the elements of a theory of pressure solution creep up
to a level of detail that should facilitate some direct applications as well as fur-
ther developments by individuals with an interest in this topic. Opportunities for
future research in several directions will have become apparent at various places
throughout the chapter. These range from an obvious need to further explore the
one-dimensional compaction problem, in particular for layers that grow in thick-
ness, to three-dimensional models that might include poroelastic response in addi-
tion to pressure solution creep. Further work on more realistic aggregate unit cells
and grain truncation geometries will be needed for realistic modeling in the low-
porosity range. Complications arising with polymineralic aggregates and more
complex dissolution and precipitation kinetics in the presence of clay minerals
and micas need to be addressed and incorporated in some tractable manner into
a microscale continuum description of unit cell behavior. The kinetics of grain
boundary diffusion and dissolution must be given further attention.

The simple one-dimensional compaction model discussed at the end of this
chapter clearly represents only a first exploratory study of the behavior of the pro-
posed model. Despite carrying out a numerical study for only one-layer thickness
and a single set of initial and boundary conditions, the results we obtained for
this case have yielded some basic insights into the behavior of our compaction
model that can also point the way for future studies. When precipitation was in-
hibited, the exceedingly slow diffusive transport over 5000 m of layer thickness
was found to lead to the build up of high (possibly unrealistic) supersaturations
approximately 1.5 times the equilibrium concentration, which slowed down inter-
granular dissolution to extremely low rates. However, because this low-rate limit in
compaction behavior is likely to be attained only in the absence of any significant
advective influx of undersaturated fluid through the base of the layer, the role of the
prevailing hydrological regime in compacting sedimentary layers is immediately
apparent.

This observation suggests that in a sedimentary column that is open only at its
top, macroscopic advection will be activated only if there exist local sinks—the
free faces—on the grain scale, where the material at a nearby grain boundary can
be deposited. This is confirmed by our numerical results for a sedimentary column
in which precipitation is allowed to take place. In this case, the slow diffusive
transport over 5000 m of layer thickness leads to another extreme behavior that
is characterized by a Stefan-type equilibrium along the grain surfaces, by dissolu-
tion rate control, and by stress-driven compaction. Although we could not follow
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the evolution toward low enough porosities for want of a sufficiently general mi-
crostructural description, IPS may be expected eventually to reach a limit in this
case, at which the free-face surface area becomes too small to absorb the dissolved
material. Such a development would entail a rise in solute concentration and slow
down of the process. However, the corresponding porosity may well be close to
zero.

The principal difficulty encountered in our numerical study originates from
the fact that the rate processes involved in compaction by IPS operate on vastly
different time scales. It was interesting to observe that, with the assumed kinetic
data, grain boundary diffusion never played the role of a rate-determining step.
However, the characteristic time τS for grain boundary dissolution is in fact not
known and our assumption of equal-rate “constants” K+

sf for grain boundary and
free-face dissolution remains only a convenient choice at this stage. With the
characteristic time for precipitation τ−

I being shorter than τS, while the latter is
still much smaller than that for macroscopic diffusion, our problem evolves on
essentially three distinct time scales. More work on suitable numerical (stabilizing)
schemes is therefore needed.
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