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General Relationships between Micro and 
Macro Scales for the Non-linear 

Behaviour of Heterogeneous Media 
C. STOLZ 

Laboratoire de Mecanique des So/ides, Ecole Polytechnique, Palaiseau, France 

ABSTRACT 

This chapter is mainly concerned with the determination of general 
relationships bet ween microscopic and macroscopic mechanical properties 
for elastoplastic material with or without damage. The overall properties are 
determined in terms of the unkno wn properties of each constituent phase of 
the heterogeneous body. At first we must define a representative volume 
element (RVE) of the heterogeneous material for which the macroscopic 
mechanical fields are some spatial average of the microscopic one. The 
determination of local quantities is achieved by solving some particular 
boundary value problem on the R VE,Jrom which macroscopic quantities are 
derived. The essential structure of micro-macro relationships is presented in 
the case of elastoplastic material. A generalisation is given to take the 
temperature field into account. We present also a model of damage and its 
averaging process. Finally we discuss the determination of macroscopic 
temperature through continuum thermodynamics. 

INTRODUCTION 

There are two main steps in the determination of the overall properties 
of a material in terms of the known properties of the constituent phases. 
First, the complex geometry of the n-phase body and the micro-
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mechanical behaviour of each of the phases being given, one has to 
solve a complicated boundary value problem. The determination of the 
local mechanical fields (stress a, strain e, plastic strain eP) is achieved by
a localization process that requires some particular boundary conditions, 
from which macroscopic fields (stress :I:, strain E, . . .  ) are derived. A 
comprehensive review of methods to solve some particular localization 
process is given by Willis (1981), Walpole (1969) and Hashin (1983). 

The second step is concerned with the derivation of relationships 
between microscopic tensors and macroscopic tensors, which differ 
only by a length scale. Generally the macroscopic tensor is some spatial 
average of the microscopic one. Such a relationship is presented in 
continuum thermodynamics by Francfort et al. (1983) and Germain et 
al. (1983). This theoretical approach is summarized in the last section of 
this chapter. 

This chapter is mainly concerned with the second basic problem, i.e. 
the determination of general relationships between microscopic and 
macroscopic fields for elastoplastic materials and for some model of 
damage. The essential structure of micro-macro relationships in 
elastoplastic materials is given in the previous works of Hill (1952, 1965) 
and Mandel (1964, 1971). After a general review and a second part 
concerned with the determination of the macroscopic elastic modulus 
of a heterogeneous material, we generalize the above-mentioned works 
and also our own previous results in plasticity to take the temperature 
field into account in Section 4. 

In Section 5 we shall discuss the micromechanics of damage and its 
global average. Damage phenomena are due to microcracking in the 
body, for instance debonding between dissimilar materials, or at grain 
boundaries in polycrystals, and to the growth of holes or microcavities. 
Even if we assume small strain, the evolution of damage implies change 
of geometry, which is a non-linear and irreversible process. 

In the last section we present a discussion about the determination of 
macroscopic temperature. 

2. PRELIMINARY CONCEPTS

We consider a volume V, in which we distinguish two different scales, 
the micro one where the material properties vary from point to point like 
a highly heterogeneous medium, and the macro one where the 
properties are those of a homogeneous continuum. 
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To describe a heterogeneous medium it is essential to define a volume 
element which is small enough to allow us to distinguish the 
microscopic heterogeneities and sufficiently large to represent with 
accuracy the overall behaviour. This volume element is called a 
representative volume element (RVE); for example, the RVE of a 
periodic composite is simply the elementary cell (Suquet, 1982). For a 
randomly distributed composite of a polycrystalline aggregate it is 
necessary to have a minimum of information about the geometry of the 
constituent phases and to make assumptions like statistical homogeneity 
or ergodicity in order to define the RVE in a statistical sense (Beran, 
1978; Fokin, 1979; Kroner, 1980; Willis, 1981; Hashin, 1983). 

The problem is to characterize the overall behaviour only from a 
knowledge of the local constitutive equation of each constituent phase 
of the heterogeneous medium. On the microscopic level the mechanical 
properties vary from point to point with the local scale y while the 
average quantities vary smoothly with the macroscopic scale x. 

With every microscopic quantity f (stress a, mass per unit volume
p, deformation e, heat flux q, ... ) we can associate its macroscopic value 
J by an averaging process on the RVE, extended eventually in the cases
for which RVE contains holes or rigid inclusions: 

- 11. 
f = <f) = V /(y) dvY (2.1) 

It is clear that eqn (2.1) defines a unique macro state quantity for each 
micro state. 

Conversely, starting with a macro state, the definition of a suitable 
corresponding micro state requires complementary information or a 
localization process to determine the nearest possible micro state of the 
real one. For the choice of a representative volume element suitable 
boundary conditions must be prescribed and must satisfy some 
requirements (Francfort et al., 1983; Germain et al., 1983). 

In particular, for study of the macroscopic behaviour these boundary 
conditions can be homogeneous; in this case one prescribes homogeneous-
stress conditions (T d = �.n on a V) or homogeneous strain conditions
(U = E.y for y E  aV) (where� and E are two symmetric tensors).

For these boundary conditions, a local stress distribution a and a
local deformation e are developed over the volume V. 

In the case of homogeneous loading the stress a verifies the equation
of equilibrium and the boundary conditions 
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diva 0 over V 
-

a.n = r on av l (2.2) 

In the other case the local deformation e derives from a local 
displacement u which verifies 

eij = i (�:� + :::) over V ] 
u = u on av 

(2.3) 

We require that the Hill-Mandel macrohomogeneity condition is 
fulfilled by all field a* with a* = (a*) and by all e* kinematically 
admissible so 

Cf*e* = (a*e*) (2.4) 

With these conditions it is obvious that, in the case of homogeneous 
loading, 

(2.5) 

and the microdisplacement u fluctuates around the homogeneous 
displacement U such that

J (U- u) ® n da 0 
av 

(2.6) 

and 

E =( e) 

Dually, if u = u over av it is clear that 

1 i 1 
E = 

V 
ovl(u ® n + n ® u) da = (e) = e (2.7) 

and the microstress is such that 

L (Cf n  -an) ® y da = 0 
av 

(2.8) 

and the macrostress I: = Cf = (a). 
Some other boundary conditions can be used; in particular, for 

periodic structures (Sanchez-Palencia, 1974; Suquet, 1982), the 
elementary cell V generates the geometry of the whole by periodicity, all 
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the local fields are periodic functions and the Hill-Mandel macro­
homogeneity condition is a necessary condition resulting from 
periodicity. 

The construction of the macroconstitutive law from the microscopic 
behaviour can proceed as follows: starting from some macroscopic 
quantities, using a localization process to determine local fields, then 
the averaging process determines the missing macro quantities. 

3. OVERALL PROPERTIES OF AN ELASTIC
COMPOSITE MATERIAL 

The main difficult problem is to determine effectively the overall 
property of a composite material. We shall restrict our discussion to 
some methods for the determination of the overall moduli for an elastic 
material. 

The heterogeneous body is characterized by n phases with different
elastic properties. The polycrystal aggregate is a particular case of a 
heterogeneous body, where the phases differ in the orientation of each 
crystal. Self-consistent theories which apply to polycrystal aggregates 
need knowledge of the properties of each grain (Hill, 1965; Berveiller 
and Zaoui, 1979). Kroner (1977, 1980), by a statistical approach, has 
compared the homogenization method of periodic media with the self­
consistent scheme. The periodic model is a representative model of 
perfect order; one needs to solve a boundary value problem in a single 
cell, and the self-consistent method is more appropriate to model 
perfect disorder, 

3.1. Bounds of the Elastic Modulus for a Heterogeneous Body 
The medium is assumed to be elastic; each phase r has an elastic 
constitutive law with modulus 1\ (e = A,. a, nr = A;1). We suppose
that the characteristic function </>, of each phase is known: 

</>,(y) = 0

</>,(y) = 1

We have the equality 

y does not belong to phase r l
y belongs to phase r 

1 n 

V L L </>,(y) dvY = 1
r = I 

(3.1) 

(3.2) 
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and the concentration of the r phase is 

c, = bL ct>,(y) dvy (3.3) 

Several works (Beran and Molyneux, 1966; Hashin and Shtrikman, 
1962; Hill, 1963) are related to the bounds of the moduli using minimum 
principles. For all displacements u* kinematically admissible with
given boundary conditions on av the real field minimizes the
energy: 

lf l U(u*) = V 2e* rr s* dvy (3.4) 

then for a localization process, which describes a homogeneous 
deformation on iJV (u* = e.y,y E iJV), the following inequality holds:

U < }ve·I J. rr,<Pr(Y) dvy. 8 
r V 

From the macrohomogeneity hypothesis we have 

U
- 1 - 1- l __ = - erre = -ae = -ae 

2 2 2 

(3.5) 

(3.6) 

and, noting ff the overall modulus (Cf = ff e), one can show that
1fv - 1f is positive semi-definite, where the estimate 1fv for the overall
modulus is the Voigt average (Voigt, 1889): 

n 

1fv = I c,n, (3.7) 
r = I 

Dually, we use the minimum of complementary energy for a localization 
process which prescribes homogeneous tensions on a V: 

U < 2�0'! f A,cp,(y) dvff
r = I 

Then, with the macrohomogeneity hypothesis, noting A the overall 
modulus (Cf = Aa), the inequality shows that Av- A is positive 
semi-definite and A;1 is an estimate of ff in the Reuss sense: 

nR = A;l = (I c,A. rl
r = I 

(3.9) 
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The two estimates rrv and rrR are lower and upper bounds. The best
estimates are such that the localization process approaches the real 
solution. In the case of periodic media the answer is clear; for such a 
material n., with many elementary cells, if homogeneous tension or 
homogeneous deformation are applied on an., far from the boundary, 
the field solution of the boundary value problem is a periodic field; the 
averages of stress or strain on V are equal to the prescribed value. The 
real localization process is the periodic localization process, so the 
overall moduli obtained with homogeneous prescribed macrostress or 
macrostrain are equal. 

For other composites, it is necessary to have complementary 
information. The calculus of overall properties is related to the 
determination of fields which satisfy equilibrium equations; perfect 
bonding across phase interfaces and some simplifications must be 
made to derive explicit results. 

In the self-consistent scheme, for example, we consider that the 
inclusions are spherical or ellipsoidal, and when the medium is 
statistically uniform the equivalent body is assumed to be isotropic. To 
estimate the overall moduli, we can consider that each inclusion is 
embedded in a homogeneous matrix with the overall moduli A as 
elastic properties, and subject to a homogeneous field at infinity. The 
interaction problem between a matrix and a spherical or ellipsoidal 
inclusion is well known (Eshelby, 1957, 1961). The microstress in the 
inclusion is homogeneous and an explicit result can be given in the 
formal equation 

a (r) = I: + J, : ( E - e(r)) (3.10) 

The interaction is described by J, which depends on the overall moduli 
A, on the inclusion geometry and on orientation (Berveiller and Zaoui, 
1979). 

If we take the statistical average and the local behaviour into 
account, 

we have the equation 

I: = (er,)
I: AE 

and£ = (e) ] 

A = (�(� + J,r1 (A + J,)) 

(3.11) 

(3.12)

with unknown A Usually this equation is complex to solve; the 
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determination ofJ, is not the easiest thing to do. Each phase seems to see 
the other phases through the homogeneous material; we have not given 
a good description of the interactions between all the inclusions. Some 
developments due to Berveiller and Zaoui (1979), Fokin (1979) and 
Andrieux (1983) can be used to solve this problem with greater 
accuracy. 

The first estimates (Voigt and Reuss estimates) are established using 
the minimull_l energy principle, and the bounds are obtained for 
extremal values associated with homogeneous boundary conditions. A 
successful method is to determine a suitable displacement field to have 
a better estimate. For this reason it is convenient to introduce a 
homogeneous comparison material with modulus Ao and to set the 
local modulus A equal to A0 with some perturbation oA: 

A= Ao + oA 
If e is the real deformation over V, the stress polarization 

p = cr- Aoe = 8A.e
verifies 

(3.13) 

(3.14) 

div(p + Aoe) = 0 over V (3.15) 
and if we know the Green's function for the comparison material we 
have 

u(x) = u0(x) + L G(x,y) div p(y) dvy (3.16) 

The deformation e is the sum of the homogeneous deformation 
E = e0 and the last term of eqn (3.16), due to heterogeneity. In this
integral formulation we can substitute the variational expression. Such 
methods are presented by Willis (1981) and Hashin and Shtrikman 
(1962ab, 1963). These authors have obtained bounds for overall moduli 
by different approximations of p and different averaging processes. 

3.2. The Case of a Macrohomogeneous Body 
In the last section we saw that the estimate of the elastic modulus is 

not the same when one prescribes macrohomogeneous strain or stress 
over V. But when the body can be considered as macro homogeneous in 
the sense of Hill (1952, 1965) and Mandel (1964) the difference between 
the two estimates is negligible. 

So when one prescribes homogeneous boundary conditions in stress 
(Td = I: ·-; on oV, with I: a symmetric tensor) the local stress is
obtained as the solution of an elastic linear problem: 
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Equation of equilibrium: 

div er = 0 over V

er . -: = r on av

Elastic constitutive law: 

e = N(y) :er (Vy E V)

Existence of a local displacement u such that

eij = !(��� + ��) 

(3.17) 

and we can prove the existence of a localization tensor Aijpq such that 

(3.18) 

The tensor A is the elastic localization tensor introduced by Mandel 
(1964) in the case of a localization process in homogeneous macro­
stresses. 

As (er) = l: for all prescribed l:, we have

(Aijpq) = �(S;p o1q + O;q o1p) (3.19)

At fixed subscripts (p, q) Aijpq satisfies the equations of equilibrium

Aijpqj = 0 (3.20) 

with the boundary conditions 

AijJK!IJ = !(o;p o1q + O;q o1p) · n1 

and the deformation 

satisfies the condition of compatibility. 

(3.21) 

(3.22) 

With the help of a macro homogeneity condition, for all prescribed I: 
we have 

(3.23) 

The macroscopic modulus A (E = A l:) is determined as a function of
the local one (e = A0 er) by replacing er in eqn (3.23) by A I:: 

Apqrs = (Aijpq"AgkiAklrs) = t.A N A (3.24)

In the following we consider only the case of a macrohomogeneous 
body. 
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4. STUDY OF A THERMOELASTOPLASTIC MATERIAL

4.1. The Macroscopic Constitutive Law 
In this example we consider a thermoelastoplastic material and we 
assume that there is no effect of viscosity. The absolute temperature T is 
given and the total deformation e is the sum of an elastic part ee and an
irreversible part eP: 

E = Se+ eP (4.1) 

The irreversible part has a standard evolution; the rate tP is normal to a 
yield surface delimited by a convex function (j> of the stress a:

eP = a(j> (4.2) a a 

The reversible part ee is related to a and to the increase of the 
temperature from its initial value T0: 

ee = A
0 
a+ a(T- T0) (4.3) 

4.2. Global Domain of Elasticity 
At the local level there exists an elastic domain 't' defined by'G' = la/
(j>(a) < Oj. At the macro level there exists an elastic domain rffdefined as
follows. 

Let two macrostresses I: and I:* belong to rt, at each point of V; the
corresponding microstresses a and a* are elements of 'G' and the 
difference a -a* is deduced from I: - I:* by means of a localization 
process with purely elastic behaviour. 

So it is obvious that 

(4.4) 

where A is the localization tensor introduced in the last section. 

4.3. On the Decomposition of the Macroscopic Deformation 
Let I: be the real macro stress and a the corresponding micro one. At the 
initial temperature T0, the local response in purely elastic behaviour 
is 

(4.5) 

The stress field r = a - aE is a self-equilibrated stress and is the sum
of two self-equilibrated stresses: 

(4.6) 
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such that the two microdeformations 

81 = A0r0 + a(T- T0) )
82 A0rp+eP

(4.7) 

are kinematically admissible. 
By definition the macroscopic elastic deformation due to the 

difference in absolute temperature T - T0 and to the given macrostress
I: is the deformation deduced from a purely elastic unloading with 
return of the temperature to its initial value (Mandel, 1971; Halphen, 
1977). 

The local deformation defined by 

eE = NaE + e1 (4.8) 
is related to the macro one E E by the lemma of macrohomogeneity 
and 

(4.9) 

and for all stresses a' statically admissible with I:' = (a') we have 

(4.10) 

For the particular choice of a' =A I:', and taking into account that r0 
is self-equilibrated, we can split EE into two terms: 

(4.11) 

We recognize the macroscopic modulus A= IAA0A and the result 
obtained is in agreement with the definition of the macroscopic elastic 
deformation. 

In the same way, the global deformation E = (e) must satisfy eqn 
( 4.10), and for the difference E P = E - E E we have the definition of the
irreversible macroscopic deformation: 

E = 1Ae p p (4.12) 

The irreversible part of the macrodeformation is not the mean of the 
micro one because the field of plastic deformation is not kinematically 
admissible (Mandel, 1964, 1971; Hill, 1965). 

The relations (4.11) and (4.12) describe the form of the stress-strain 
relation, and moreover these equations are true for quasi-static 
evolutions. If there exists a viscoplastic potential </J for the rate of the 
plastic deformation, such that 

(4.13)
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it is obvious that at the macro level the mean potential (Mandel, 1971; 

Rice, 1971) 

<I>(:E, r) = (/>(a) (4.14) 

is the macroviscoplastic potential associated with EP: (a = A:E + r)

and we obtain 

--- --
ae�> aQ> a a = 1A aQ> 
a:E aa a:E a a 
ae�> • p aQ> 
ar 

= £ = aa

£P = !AsP 

4.4. Analysis of the Dissipation 

(4.15) 

(4.16) 

At the micro level, the second law of thermodynamics gives the rate of 
dissipation: 

d = pTs + div q - q · � > o
Using the conservation of energy, 

pe = as- divq

(4.17) 

(4.18) 

and knowing the relation between the thermodynamical potentials e 
and w(e•, I), e = w - Ts, we can deduce

d = asP -q� > 0 (4.19) 

We have assumed that q is defined by q = -awl a� where w is a convex 
function of �. therefore the term -q · �is positive, and when we admit 
the decomposition of the dissipation rate in two parts, the term due to
the irreversible mechanism is also positive, a tP > 0. By integration over
V the total plastic dissipation rate gp =asP can be given in terms
of macroscopic variables: 

(4.20) 

where Wb = !r A0r is the energy of the self-equilibrated stresses. The
last result is obtained by application of eqn (4.10); for the plastic 
deformation rate and the real stresses a= A:E + r.

The physical meaning of this result is that perfect plastic behaviour at 
the micro level presents hardening behaviour on the macro scale. 
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5. THE CASE OF A SOLID HAVING LOCALLY DAMAGED ZONES

5.1. Description of the Model of Damage 
It is observed that the reduction of material rigidity is generally due to 
the evolution of defects such as cavities, cracks, etc. Under external 
loading, these zones cannot support tensile stresses. It is proposed to 
characterize the damaged material only by the property that the stress 
tensor vanishes in the damaged zone. Therefore the stress vector must 
vanish on the boundary iJz; of any damaged zone z; (e1 ·-; = 0 on iJz;).
If the volume V contains many damaged parts with total volume z(t), 
a function of the time t, the volume of the sound material is 
!l(t) = V- z(t); we note iJ!l;, the common boundary between 0 and z. 
The mechanical properties of the sound material are defined by the 
thermodynamical potential. 

The definition of the average must be changed because f is only 
defined in n: 

J = (j)0 = � .{(dv (5.1) 

We suppose that the mass per unit volume is constant: 

vx E n p(x) = Po (5.2) 

Our study is concerned with the behaviour of material introduced by 
Bui and eo-workers (Bui and Ehrlacher, 1980; Bui et al., 1981) to study 
fracture, pictured in Fig. I. 

To determine the evolution of damaged zones, it is necessary to 
introduce a rupture criterion. Rupture occurs when a threshold value (in 
stress, deformation or energy) is reached; when the strain is increasing 
the stress vanishes. 

(f (a) (b) 

E E 

Fig. 1. (a) Elastic-brittle or (b) elastoplastic-brittle behaviour. 
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To define an accurate localization process, the boundary condition 
(CT • n = 0 on an;) must be taken into account. All the stresses CT must
verify the equation of equilibrium and the new boundary conditions 
CTn = 0 at each point of an;(t). For the sake of simplicity, we assume that
the heat flux is zero on an;, and the damaged zones are considered to 
have no heat conductivity. 

The localization process gives a new fourth rank tensor A of elastic 
concentration. This tensor has the properties (3.20)-(3.22) over n and 
verifies the boundary conditions Aijpq • nj = 0 at each point of an;. 

One can define the general relations between the micro and macro 
deformations and stresses as follows: 

E �e 8-
2
�1 (u ® n). ds

an; 

'At 
- 1 

L 
(5.3) 

E = e-
2V 

(v ® n). ds
1!0; 

:I; = 0' 

The local compliance A 0 (e = Ne1) is related to the macro compliance
(E = A:I;) by the equation

(5.4) 

because the field AoA is kinematically admissible and A is statically 
admissible with A ·-; =  0 on an;. 

However, the tensor A depends on the actual volume O(t) of the 
sound material and its rate A is related to the propagation of the 
damaged zones (Bui et al., 1982). 

5.2. Determination of the Evolution of the Damaged Zone for a 
Thermoelastic Material 

Consider a thermoelastic material with free energy w(e, T) which 
depends only on the deformation e and the absolute temperature T. At 
each point of V we define the energy density e and the entropy s per unit 
mass. For simplicity we assume that damaged zones have no heat 
conductivity and that they are inert (e = 0, s = 0, v = 0). 

The first law of thermodynamics is the conservation of energy, at the 
macro level: 

� + K = P cal + Pext (5.5) 
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The variation of internal energy and kinetic energy K = !pu2 is
equal to the heat flux and the power of external loading. We consider 
only quasi-static evolution so that the contribution of kinetic energy is 
negligible. The heat flux determines Peal: 

Peal = - ( q · -; d aJav 
(5.6) 

and by means of the equilibrium equation we have, for the power of 
external loading, 

Pext = at - J anv d a
an; 

(5.7) 

The localization process depends on the evolution of damaged zones 
and all the quantities are changed with the variation of n. Ifjis a regular 
mechanical quantity and defined on n, we have the equation 

f = f-- fcda. -;- 1

1 V an· I 

(5.8) 

where c is the normal velocity of the boundary an;. So we have the local 
equation corresponding to (5.5): 

-qn 
at-divq over n l

on ani with et> > 0 . 

The production of entropy is necessarily positive: 

;f + ( 9__ • n d a > 0 Jan T 
I 

By eqn (5.8) we can write the inequality (5.10) in another form: 

(5.9) 

(5.10)

p0 s+�divq -q · ;; - tL
n 
(�n+p0sc)da > 0 (5.11)

I 

For an elastic material we have 

• 

1 
d" 0 PoS + T 1vq = (5.12) 

With the conductivity law q = - aw I a� where � = V TIT and w
convex, function of �. we have 
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1 -­
--q · Vq > 0 T (5.13)

Therefore the fracture dissipation rate is equal to the last term of 
(5.11): 

Using eqns (5.9), 

[hr = � { (qn +Pose ) da > 0Jan; 

1 { w 
[hr = VJ Po T e da > 0an; 

(5.14) 

(5.15) 

Per unit of area the thermodynamical force associated with e has the
dimensions of entropy. We assume a brittle criterion (Nguyen, 1978; 
Suquet, 1982; Stolz, 1984): 

y = 
W

T < .r;: e = 0 l
y = .r;: e > 0

(5.16) 

The two criteria Y = .r;: and a"�: = 0 must be satisfied along the
moving part of the boundary an;, and we must introduce the transport 
condition at a geometrical point of an; by the convected derivative 01r: 

x E ani {j, 1
. f(x + elit, t + lit) -f(x, t) 

�f = lm --'----'---,---�--"-'---_:_ ar-o lit 

On an; the two conditions are written as follows: 
� . � ...... � !')(an ) = (a+ en · V  a) · n + a!')n =

. t -T!')(Y) = W- WT- Ten VY
It is easy to show that, in the plane case (with normal k), 

!')-; = 
de . 7
ds 

(5.17) 

(5.18) 

(5.19) 

7 is the tangent vector to ani with s the curvilinear coordinate.
Taking into account the equilibrium equation 

- - - -
t' · Va ·t' +n ·Va ·n = 0 (5.20) 
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. --
and a particular form of a = at" ® t" + azk ® k , the equations 
(5.18) become 

I'M • d -
I 

.:z;(an) = an + 
ds (ea · r ) = 0. 

(5.21) 
8 t 

T ·�fl =  a--e--Tc · Vfl =  0
p T 

Knowing at each time t the thermomechanical fields and the 
geometry of !l(t), we search for the rate quantities and the normal 
velocity c on an;. The rate equations are

diva= o pTs + divq = o

8 = !(�v + �Tv) � = �logT x E !l 

a =  A0e + AT 

aw q = - -
a� 

with the boundary conditions 

q . n = Qd on avq 

on av;. 

T = r on avT )
(m = ffd on av;,. 

(5.22) 

(5.23) 

(oV = oVq U oVr = oVu U oV,., oVq n oVr = c/J, oV,. n oVu = c/J) and on
o!l; we have 

c = 0; ii: = 0; q · n = 0 l (5.24) 
c -=1= 0; �(an) = 0; �(!/) = 0; q · n = -poec 

The solution of this problem is a stationary point of the functional 
(Stolz, 1984): 

i < 8 T >
J 

c2 -- p a---e cda + -pTn · V(f/)da
an P T an. 2I I 

(5.25) 
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On the set V= {v, T/v = vd on avw t = Td on avrl· 
Once the velocity c is determined, we are able to know the variation of

all macro quantities by application of eqn (5.8). In the following part we 
suppose that c is determined, and our point of interest is the macro­
scopic behaviour of a RVE V, and we reduce our consideration on
elastoplastic material, with free energy of the form w(e- eP). The
influence of temperature could be treated as in the last example 
(Section 4). 

5.3. Evolution of Macroscopic Quantities 
Here we determine the evolution of the macroscopic modulus and we 
decompose the rate of deformation. 

By comparison of the two expressions forE and E in eqns (5.3), the 
application of eqn (5.8) shows that 

- 1 i'As - V 'Aec da = 0
ilO; 

(5.26) 

for all kinematically admissible e. One particular field e is AgpqA pqm so 
it is obvious to obtain (Bui et al., 1982) 

A = 'AAoA = � ( 'AAoAc da Jan; (5.27) 

The elastic modulus varies with the propagation of the damaged 
zones; this variation must appear in the reversible part of the rate of the 
elastic macroscopic deformation. 

When the damaged zone does not propagate inn the local stress field 
is a =AI:' + r where r is a self-equilibrated stress on the actual
geometry. For an increasing± of the macrostress from the value I: such 
that the damaged zone has a normal velocity c of propagation, the local
stresses are (;with a corresponding rate of deformation 

(5.28) 

in the case of an elastoplastic material. Let 6-E be the fictitious stresses 
obtained with purely elastic behaviour with the same velocity of 
propagation c: 

(5.29) 

whereA is related to the variation of the localization tensor A due to the 
change in the geometry of n induced by the damaged zone propagation. 
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 If the stress field r is self-equilibrated on O(t) we have, from eqn (5.8),

r = - re da
- 1

L V an· I 

(5.30) 

which shows that r is generally not self-equilibrated; we have inside n 
a redistribution of residual stresses. The rate e and A0aE are two 
kinematically admissible fields of deformation, then the macroscopic 
deformations E and EE are given by the relations (5.3). For all a' 
statically admissible with �· = (a') in the localization process we 
have 

For the particular choice of a' =A�' we have 

EE = 1AAoaE = A±+ A� 

(5.31) 

(5.32) 

which defines exactly the variations of the reversible part EE of the 
macrodeformation (EE =A�). 

Moreover, by subtraction in eqns (5.31) (with the same choice 
a' =A�') one obtains 

(5.33) 

The complementary term is due to the redistribution of residual 
stresses inside n, when the geometry changes with the propagation of 
the damaged zones. 

When no damage occurs eqn (5.30) shows that r is self-equilibrated 
and the classical relation ( 4.20) is recovered. However, the existence of a 
viscoplastic potential at the microlevel does not ensure the existence of a 
macro-viscoplastic potential E1R. Only the first term can be deduced 
from the average potential cl>(�, p) = </>(a). 

5.4. Study of the Dissipation Rate 
The global energy W is the sum of a reversible part and an embedded 
energy Wb in the residual stresses r. For a quadratic form w(e - eP), the
dissipation 1J can be decomposed into three terms, the first due to heat 
conduction, the second due to plasticity atP and the third due to 
fracture 1Jr. 
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So the mechanical part of £2 is given by 

£2 = af:P + - WC ds ;> 0- 1

1 V iJO· 1 

(5.34) 

With the hypothesis of macrohomogeneity applied to actual stresses, 
we can deduce 

(5.35) 

with 

w 

and the equation 

:Yr = � J wc da = ai: -ai:P -:
t 
G I;EE + wb ) (5.36) 

Using the macrohomogeneity hypothesis ai: = I;E 

where wb = !rA0r. If the damaged zones do not propagate, 9r = 0 and
the macro compliance A is constant, we recover dwb/dt = rA0r, i.e. the
variation of the stored energy is only due to residual stresses, as in 
classical plasticity (Mandel, 1971; Bui et al., 1982). 

If there is propagation of damaged zones, the first term !(I;EE - ±EE) 
does not vanish. It is analogous to Irwin's energy release rate for crack 
propagation (Bui, 1978) and it contributes to the dissipation rate. 

6. THERMODYNAMICAL CONSIDERATIONS

6.1. Relationships between Micro and Macro Scales 
In the preceding sections we were concerned by means of averaging 
processes and applications to define what are macroscopic mechanical 
quantities. We have said nothing about the macroscopic temperature or 
we have implicitly admitted that the temperature is given or corresponds 
to the temperature of the equilibrium state. 
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We have restricted our exposition to macro homogeneous bodies; can 
we then give general relations for other materials? 

To be specific, one will be concerned with materials that admit 
thermodynamical potentials, e(e, a, s) internal energy or w(e, a,(}) free 
energy, where e is the deformation, a the internal variables, (} the 
absolute temperature and s the entropy. Then the local equation of state 
may be written e.g. 

(6.1) 

where a is the elastic stress (this supposes no viscosity), and A are the
thermodynamical forces associated with the variation of the internal 
variables a. 

To determine the field of temperature, we must add to the constitutive 
equations (6.1) the heat conduction law. Noting � = V (log 0), we
assume the following form for the generalized Fourier relation between 
heat flux and temperature: 

q = (6.2) 

when w(�) is a convex no-negative function off 
As in the first section, it is clear that with every microscopic quantity f 

we can associate its macroscopic value! by an averaging process on the 
RVE V extended eventually in the cases for which V contains holes, 
damaged zones, or rigid inclusions:

J = (f) = .!_ ( f dvV)v (6.3) 

and we have remarked that some constraints are necessary to determine 
a micro state corresponding to a given macro one. For the choice of a 
representative volume element suitable boundary conditions must be 
prescribed and must satisfy special requirements (Francfort et al., 1983; 
Germain et al., 1983): 

R1 -Assume that the macro state (0', e, �, w) is given; the microscopic
quantities f must then satisfy: 

-the local constitutive law; 
-the boundary conditions on av; 
-the relation of averaging; 
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-the equation of equilibrium in stress and flux diva = 0 and 
div q = 0 over V. 

R2 -The Hill-Mandel macrohomogetl�ity condition must be fulfilled 
by all fields a*, q* with 0'* =(a*) and q* = (q*) and by all 
fields s* and �* kinematically and thermally admissible: 

- (6.4) 
0'*6* = (a* s*) l
q*� * = (q* �*) 

We have given particular localization processes for periodic structures 
and for homogeneous boundary conditions. 

R3 - The process of localization must ensure the existence and 
uniqueness of the microscopic response. 

The construction of the macro constitutive law from the microscopic 
behaviour can proceed as follows: 

-starting from some macro quantities; 
-using a localization process to determine local fields then the 

averaging process to determine the missing macro quantities. 

6.2. Study of Systems in Equilibrium 
In this case the homogeneous deformation E = 6, the set of internal
variables a and the temperature T of the macroscopic description are
prescribed. Near the equilibrium we assume that the temperature is 
quasi-uniform 0 = T (but the presence of heterogeneity implies that the 
gradient � is not uniform, � * �). 

We wish to find the local quantities a, s, q, �as functions of the macro 
state E, T, a, E =�;they are solutions of the boundary value problem
(9): 

E = (s) 

E = (�) 

ow 
a = p 08 (s, a, T)

q = 
ow 
a� 

� = VlogO

= 0 ) (}'} (6.5) 
divyq = 0 

Boundary conditions of localization 

For a given localization process this solution is unique (R3). Let

p w (E; a, T) = (pw(s, a, T)) (6.6) 

where s is the solution of the problem (9). Using the hypothesis of
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macrohomogeneity of Hill (R2), we obtain 

aw < aw oe) < ae ) 
p oE = p oe oE = C1 oE 

oe= (e1) aE
and noting that e = E + 11 with (q) = 0 for all E, so (oe/oE) = 1.
The equation (6.6) gives the global behaviour 

ow 
15 aE = <(1> = 

a (6.7) 

and in the same way it can be proved that 

s = -aw;ar

T = a-e;a-s (6.8) 

The global description has the same form as the local one, and the 
equation (6.7) gives the constitutive stress-strain relation. Similarly it is 
possible to give the generalized Fourier relation between q and ""(. 

If we consider that near a state of equilibrium the two principles of 
thermodynamics are valid at the microlevel 

pe = e1t - div q l (6.9) 
pOs + div q- q · � > o 

we can write the same relations at the macrolevel, if all the equations 
(6.6)--(6.9) are valid at each time, which means that the thermostatic
description and the Gibbs equation are true for the equivalent 
homogeneous medium if they are valid for each of the constituent 
phases (Francfort et al., 1983; Germain et al., 1983). 

6.3. Non-equilibrium Evolution 
When the system is far from an equilibrium state, in particular when the 
local absolute temperature () is not uniform on V, the equilibrium 
equation and the property of macrohomogeneity are not valid. Some 
complementary terms due to inertia phenomena must be taken into 
account. However, we can try to define the macroscopic temperature by 
the concept of a local accompanying equilibrium state. 

At each time, the volume element V must be isolated and one has to 
study the dynamical evolution toward an equilibrium state and find the 
micro quantities which characterize this equilibrium. When the volume 
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element V is isolated, quantities such as the strain E = 6 and energy e, 
together with some internal parameter a, must be kept constant. Inside 
the RVE various physical dissipative mechanisms have taken place and 
each of them is described by the internal variable a. The dimensions of 
the RVE and the inertia effect define a characteristic timet", and we 
must distinguish two kinds of internal parameters a and a'. The first 
family a can be considered as constant; the second a', having a 
relaxation time shorter than t", must be considered a function of 
time. 

Under the assumption that in this transition towards equilibrium the 
two principles of thermodynamics are valid, the equilibrium state is the 
solution of the problem (6.5) where 

E = (e,), a = a, for a fl l a'l and e = (e1)

are prescribed, and we obtain 

�· - ae 
(E ,. r•) I� 

-

aE 
, a, a , 

ae 
s• = -(E a  a'• r•)ar · ' '

(6.10) 

where r• and a'• are the values of the macroscopic temperature and the
values of internal parameters at the equilibrium state, respectively. 

If the actual state is far from the equilibrium, it is obvious that 
�· * (a,). Examples are given by Francfort (1982).

The major difficulty in this study is to define correctly the absolute 
temperature for a macroscopic body which has microheterogeneity. In 
the first part of this chapter we have studied only the quasi-static 
evolution of the RVE, for which the absolute temperature is defined as 
in Section 6.2. 

7. CONCLUSION

We have presented some aspects of the general relations between micro 
and macro scales in heterogeneous media, and we have tried to exhibit 
some of the most significant lines of research in the mechanical 
behaviour of composite materials. This domain is still in a state of 
expansion, not only in solid mechanics but also in fluid mechanics and 
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in mixtures theory. In the next few years progress may be expected in 
many directions: better mathematical consistency, deepening of the 
physical interpretation and significance. 
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