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ABSTRACT 

FINITE ELEMENTS APPLICATIONS 
NUMERICAL TOOLS AND SPECIFIC FATIGUE PROBLEMS 

H. Maitournam 
Ecole Polytechnique, Palaiseau, France 

A systematic methodology for designing structures against high-cycle fatigue is developed. 
It relies upon: (i) computational methods for the calculation of the limit response of 
structures subjected to cyclic loading; (ii) numerical implementation of efficient high-cycle 
fatigue criteria. The first step in the prediction of high-cycle fatigue damage is the 
determination of stress cycles. In this paper we present three finite element procedures for 
the calculation of elastic-plastic structures subjected to cyclic loading (repeated moving 
contacts, small oscillatory contacts, etc.), namely the direct cyclic method, the stationary 
method and the simplified analysis of inelastic structures. These methods lead to easy 
determination of the possible stabilised response. Therefore, they avoid the lengthy 
repeated calculations performed with the classical finite element method and an 
incremental treatment of the loading history. The second step is the use of high-cycle 
fatigue criteria. We review some numerical tools for their implementations. Finally, some 
applications are presented. The first one is a problem of a cylinder subjected to an elliptical 
rotating pressure. The direct stationary method is used to determine the stabilised stress 
cycle and a macro-meso high-cycle fatigue criterion is used to detect crack initiation. The 
second application is the numerical simulation of a fretting fatigue map in relation with 
material fatigue properties. 
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1 INTRODUCTION 

The systematic methodology for designing structures against high cycle fatigue we use, 
is summarized on figure 1. It consists in three uncoupled steps. The first one is the 
calculation of the mechanical stabilized state of the structures subjected to repeated 
loading ; the inputs needed are therefore the geometries of the structures, the materials 
they are made of, and the fatigue loading. The second step is the application of a crack 
initiation criterion with, as inputs, the intrinsic fatigue properties of the materials. And 
if necessary, a third step consisting in the use of propagation laws is performed. 
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Fig. 1: General methodology for designing structures against fatigue

The mechanical stabilized state of the structures designed against high cycle 
fatigue is necessarily elastic. But in most of repeated contact problems, the first con-
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tacts generally generate plasticity setting up residual stresses, even in case of an elastic 
stabilized response (elastic shakedown). The quantification of those residual stresses 
is important in predicting the fatigue of such structures. It is well known that under 
a cyclic loading a rate independant elastic-plastic structure can have one of this four 
limit response : purely elastic, elastic shakedown or plastic shakedown, ratchetting. 
The possible mechanical stabilized state could be reached in few cycles or in an infinite 
number of cycles. It is therefore essential to have efficient numerical methods allowing 
a straightforward determination of this state. Classical finite element method with an 
incremental treatment of the loading history leeds to lenghty repeated calculations. 

The first part of this study is devoted to the presentation of three numerical proce­
dures for the direct calculation of the limit response of a structure subjected to cyclic 
loading : (i) the cyclic method (Dang Van et al.) for structures subjected to general 
cyclic loadings; (ii) the stationary method (Dang Van et al.) for structures subjected 
to moving loads; (iii) the simplified analysis of inelastic structures (Zarka et al.); 

The second part of this paper is devoted to numerical analysis of fatigue. We 
describe how to numerically implement some fatigue criteria. 

Finally, some applications are presented. The first one is a problem of rolling 
contact fatigue. It is represented by a cylinder subjected an elliptical rotating pressure. 
The direct stationary method is used to determinate the stabilized stress cycle. This 
limit state is necessarily elastic (or elastic shakedown) be avoid low cycle fatigue and 
incremental collapse. A macro-meso high cycle fatigue criterion is used to detect crack 
initiation. The second application is the numerical simulation of fretting fatigue tests 
on a particular experimental set-up considered as a structure. Fretting is the surface 
damage induced by small amplitude oscillatory displacements between components 
in contact. The direct cyclic method is used to evaluate the limit response of the 
structure. Then, we use macro-meso multiaxial fatigue criterion identified by classical 
fatigue tests to predict crack initiation. 

2 DIRECT CYCLIC METHOD 

As far as we are concerned by high cycle fatigue the limit response of the structure 
subjected to repeated loads is with elastic shakedown. The evolution towards this 
state is not important. The cyclic direct method allows the direct determination of 
the asymptotic response (i. e. stabilized mechanical state) of a structure subjected to a 

general cyclic loading without an incremental treatment of the whole loading history. 

The structure considered is made of von Mises elastoplastic material. It is subjected 
to a cyclic external loading composed of prescribed forces fd and displacements ud(t), 
which are time-periodic with a period T. 
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2.1 Principle of the method

We seek directly for the stabilized mechanical response of the structure by using the 
two following procedures : ( i) large time incremental method developed Ladeveze et

al. ( [9, 10]), departing form step by step scheme and using a single "large" increment
of time ; ( ii) research of the solution in the space of periodic responses ( [11]).

In the incremental method, the time interval [0, T] is discretized in n subintervals
0 < t1 < . . . < tn = T. For each loading increment (!:J.fd, !:J.ud), the incremental
quantities !:J.u, !:J.e, !:J.eP are evaluated such as to satisfy static, plastic and kinematic
admissibility conditions. The loading path is followed step by step and cycle by cycle 
until the limit response is reached. 
The approach we propose here, is also iterative. But, it consists, 

• ( i) first, in calculating , for the whole cycle, the statically and kinematically ad­
missible responses ; practically, we calculate this solution at the discrete instants

t; of the cycle; for each iteration j, at instant t;, we determine the stress tensor
u(, which satisfies equilibrium for the loading (fd(t,)) and the strain tensor E{,
which respects with the prescribed displacements ud(t , ) corresponding to instant
t,; these two conditions are equivalent to the resolution of equilibrium equations;
for instance, when a constant stiffness is used, they are given by :

in which F,, F,P'-1 and K are the vector of nodal external forces corresponding
to fd(t,), the vector of plastic forces due to plastic strain Ef1-1 (assumed known)
and the stiffness matrix of the linear elastic structure, respectively; 

• in a second stage, in determining for the whole cycle, the plastically admissible
response (the stress tensor u;:1, the plastic strain €��1, the internal parameters
at(•+I)) ; at each time, the plastic strain €��1 is obtained by projecting the strain

increment €;+1- E{ on the elastic convex defined by the initial state ( u(, E/1, at,) p 
at time t, which is known; u;+l is then calculated from the constitutive law

written in incremental form : 

• The stabilized state is obtained when the plastic strain E 1 P' and the internal pa­
rameters (a�1) are periodic i.e. their values at the beginning of the cycle are
equal to those at the end of the cycle( €�1 and a�n; otherwise, the same steps are
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performed in iteration j + 1 by initializing ( �::f1+1, o:17 1
) to ( E�1, o:1"!;

1
) and the pro­

cess is repeated until the obtention of elastic or plastic shakedown. Ratchetting 
is revealed by the non convergence of the procedure. 

This method is typically used for fretting problems in which we are concerned 
by small oscillatory contacts. 

3 STATIONARY METHODS 

3.1 Recall of the principle of the 'stationary methods' 

The method is applicable in the case of structures subjected to repeated moving loads. 
The full details of the 'stationary methods' used in this paper and their finite elements 
implementation can be found in [3]. Here, we just recall the principle of the analysis. 
Let us consider a prismatic structure made of an elastic-plastic material (let's say a rail) 
subjected to loads (let's say normal and tangential pressures) moving with a velocity 
V= Vex (Fig. 2).

Fig. 2: Structure under repeated moving load

We assume that there is a steady state in a reference frame moving with the 
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loads ; for any material quantity A, it leads to the following relation :

A. = -VA,x (1) 

3.1.1 Mechanical problem

The first idea consists in writing the equations governing the mechanical problem in 
the moving loads reference. Thus one obtains [4] : 

with 

-equations of motion 

-constitutive laws 

u = L: (e:::e- aBI) + Uo 

p - A8f-€ ,x- 8u f � 0, A 2: 0, Af = 0

f � 0, A 2: 0, Af = 0

1 8f 8f A = -( (--8 :L:e:::,x+aB,xtr(-8 ) )H u u 

( = 1 if f = 0

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10 ) 
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( . ) meaning positive part, and

( = 0 if f < 0 (11) 

(12) 

A is the plastic multiplier, (f = 0) defines the elastic domain, ke is the shear yield
stress, a the coefficient of thermal expansion, (} the temperature elevation, u0 the ini­
tial stress, ak are internal parameters and Ak their associated forces, L tensor of elastic
coefficients, Z and l are assumed known.

In these equations time derivatives have been replaced by space derivatives, ac­
cording to (Eq. (1)). Their integrations are performed in space, along the direction of 
the motion of the loads; so that, numerically (using the finite element method), neither 
the load, nor the structure are translated. The plastic behaviour can be very gen­
eral, for instance, in [3, 4, 5] the von Mises isotropic and/or linear kinematic hardening 
material, the non-linear kinematic hardening law proposed by Bower [14] has been used. 

The second idea is to use the stationarity of the limit state (in the absence of 
ratchetting the stress field and the internal variables are are periodic) in order to find 
its value directly. This condition is written as : 

1 f.Pdt = 0 
cycle 

and (13) 

The two following numerical procedures for the determination of the stabilized 
state are derived [3]. 

(i) The pass-by-pass stationary method (PPSM) for the calculation of a single 
pass; so by computing the successive passes by this method, one can find all the features 
of the "stabilized" state (numbers of cycles before reaching it, residual stresses, plastic 
deformations, etc). This "stabilized" state can, of course be ratchetting; in such a case, 
the ratchetting rate is immediately deduced as the increment of plastic strains caused 
by a pass. 

(ii) The direct stationary method (DSM) for the direct determination of the 
"stabilized" state if it is a shakedown (elastic or plastic); The ratchetting is indicated 
by a non-convergence of the algorithm. 
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Thus, these methods allow the description of strains and stresses due to cyclicly 
and alternatively moving contacts, the quick determination of the nature of the sta­
bilized state (elastic shakedown, plastic shakedown or ratchetting). Such analyses of 
repeated contacts using shakedown principles were carried out with semi-analytical 
methods, by Johnson [15, 16, 17]. 

4 SIMPLIFIED A NALYSIS OF STRUCTURES

The Simplified Analysis of Inelastic Structures proposed by Zarka et al. [20] leads to the 
direct calculation of the limit cycle (elastic or plastic shakedown) for an elastic-plastic 
material subjected to cyclic loading. It is based on the introduction of transformed 
variables linearly related to the internal parameters, and on simple rules for the deter­
mination of theses variables in the limit cycle. Elastic analysis are then only needed. 

5 NUMERICAL IMPLEMENTATION OF FATIGUE CRITERIA

The first step is the numerical determination of the stabilized response of the structure 
(elastic state or elastic shakedown). The application of the criteria is essentially local 
at each point of the stress evaluations. For a point M, the stress cycle for a period T is 
discretized in time, t1, t2, ... tn = T, n is the number of instants. The stress tensor u is
put in the 6-component vector form with, 0"1 = 0"11, 0"2 = 0"22, 0"3 = 0"33, 0"4 = 0"12, 0"5 =
cr23, cr5 = cr13. One defines : 

(14) 

The stress deviator is S. It is defined in a 5-dimension space. (If for instance, we choose
the stress deviator vector as 51 = (311 - 522)/2, 52 = (311 + 822)vf3j2, 83 = 833,84 =
812, 0"5 = cr23 then J2 =11 S 11). 

5.1 implementation of criteria based on stress invariants

5.1.1 Calculation of .jJ:;: and � : 

.jJ:;: is the amplitude of the square root of the second invariant of the stress deviator.
It can be defined : 
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• as half of the longest chord, so it is simply determined by ;

(15) 

and in a detailled form 

1 
10 maxmax 

2v2 i i 
(S1(t;)- S1(ti))2 + (S2(ti)- S2(ti))2 + (S3(ti)- S3(ti))2+ (16) 
2(S4(t;)- S4(ti))2 + 2(S5(t;)- S5(ti))2 + 2(S6(t;)- S6(ti))2 

In this case (see the contribution of I. Papadopoulos) the determinatioi_t of the
mean value ( p;;.) can be ambiguous.

• as the elastic fluctuation :

(17) 

This is a classical min-max problem, which can be solved by using the solution 
proposed by Papadopoulos, or using other numerical procedures given for instance 
in [21]. 
One defines S* as the stress deviator for which min8r max ; 11 S( t;) - sT 11 is
obtained. So, 

p;;. = � mfx 11 S(t;)- S* 11

5.1.2 Calculation of L.H,a and L.H,m : 

'L,H - � ( �H - �H . ),a - 2 ,max ,mzn 

1 �H = - ( �H + �H . ) ,111 2 ,max ,mzn 

(18) 

(19) 

(20) 

(21) 

(22) 
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5.2 Implementation of criteria based on critical planes

5.2.1 Calculation of Ca and Cm :

• As the longest projection chord

Ca = t max; maxj 1 1 e(t;)- e(tj) 11 
1 /�_:______:._�----------- (23)

= 2max;maxj y(Cl (t;)- C1(tj))2 + (C2(t;)- C2(tj))2 + (C3(t;)- C3(tj))2 

In this case (see the contribution of I. Papadopoulos) the determination of the 
mean value (Cm) can be ambiguous.

• as the elastic fluctuation :

Ca = minmax 11 e(t;)- eT 11 er ' (24) 

One defines e• as the shear stress for which miner max; 11 e(t;) - eT 11 is
obtained. So, 

Cm = max 11 e(t;) - e• 11 (25) ' 

5.3 Macro-mesa approach implementation

Dang Van et Papapoulos ([2]) criteria implementation needs the calculations of the 
microscopic stresses u(t;), which are the sum of the macroscopic stress �(M, t;) and
the microscopic residual stresses p : 

�(M, t;) = A(M)u(M, t;) + p(m, t;) (26) 

A is the localisation tensor.

The assumption of elastic shakedown for the microscopic stresses leads for time­
independant microscopic residual stresses ( S*). They are are evaluated by the following
min-max problem : 

� min max 11 5EL(M, i;)- ST 1 1= k*
v 2 sr t, 

S* := min max 11 5EL(M, i;)- 5T 11 8r t, 

(27) 

(28)

Papadopoulos gives a method for solving this problem. Another method, based 
on Faisible Sequential Quadratic Programming, can be found in [21]. 
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6 APP LICATION TO ROLLING CONTACT 

The first example is that of a rotation of a solid over a cylinder (Fig. 3). The contact 
surface is assumed to be elliptical with semi-axes a et b. a is the semi-axe along the 
longitudinal direction b the semi-axe along the circonferential one. The ratio a/b is 
fixed to 5. The material constants are : E (Young modulus) = 210 GPa, v (Poisson 
coefficient) = 0.3, k (shear yield strenght) = 200 MP a. The pressure distribution is 
also assumed to be elliptical with maximum pressure P0 = 800 MPa. The limit state 
reached is an elastic shakedown. The residual stresses obtained are shown on figure 4 . 

.. 
• 7
.� 

Fig. 3: Cylinder under rotating contact

100 .------r-----.------,-----�------.------, 

50 

0 
-. ... __ ------

-50 

- 1 00 

• _,. ---:If" --' -- / a--11 zz (lons.l 
I- 66 (coreonf.l ,. "•6 

- 1.�0 .__ ____ _._ ____ ___, ______ _!_ ____ ---�. ______ _.L_ ____ _.J 
0 2 3 

depth (mm) 

Fig. 4: Residual stresses obtained after repeated rolling (po/k 
4.,f.1 = 0.) 
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The application of fatigue criteria over the whole structure leads to a critical 
point located at the surface. On figure 5 we show in the ( T, p) diagram, loading paths 
for different depths below the contact. 

- material line 

+--+ depth= 2.67 b 

- depth=1.76b 

---- depth = 1.1 b 

--- depth= 0.61 b 

--- depth = 0.256 b 

.......... depth = 0. 

o �--��--�--��--�--�----�--�--�� 
-600 -500 -400 -300 -200 -100 0 100 200 

hydrostatic pressure p 

Fig. 5: Loading path for different depths at the contact center (po/ k = 

4., f1 = 0.) 

7 APPLICATION TO FRETTING

7.1 Fretting fatigue problem

This section is devoted to the numerical simulation of a fretting test. The experimental 
set-up is presented in [12] and in [1]. Two cylindrical fretting pads (diameter 10 mm) 
are clamped against the two surfaces of a flat uniaxial fatigue specimen tested under 
constant amplitude loading at a frequency of 20 Hz. The pads are made of 100C6 steel 
and the fatigue specimen is made of 3Cr-MoV steel. The mechanical properties are 
given below : 

Yield strength Tensile strength Young modulus Hardness 
(MPa) (MP a) (GPa) (Hv) 

3Cr-MoV 980 1140 215 360 
100C6 1700 2000 210 62 
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The prescribed oscillatory between the pads are linked to the prescribed oscillatory 
fatigue stress S(t) in the specimen. For a maximum stress Smax=500 MPa, the am­
plitude of displacement is 0.55 f.1m. The flexible beams are equiped with strain gauge 
in order to measure the clamping force P between pads and specimen and the friction 
force related to the displacements accommodation. The variations of the tangential 
force T ( t) are recorded for each cycle fatigue and plotted as function of fretting fatigue 
stress S ( t) (fretting fatigue loops). By varying the operating parameters ( P, Smax) ,
three regimes are established: 

• Stick regime : Fretting fatigue loops keep a non evolutive closed shape. Loops
are quite linear during the test. The macroscopic displacement between the
contacting surfaces is mainly accommodated by elastic deformation in the near
surface of the two components. No damage (wear or crack nucleation) appears
during the 107 cycles of the test.

• Mixed stick-slip regime : Loops present an elliptical closed shape. There is partial
slip and fatigue crack nucleation observed at the edges of the contact.

• Gross slip regime : Loops present a trapezoidal shape. Full slip occurs between
the two contacting surfaces. In this regime, particle detachment is observed.
The differents regimes are obtained for differents varying parameters ( P, Smax)
summarized in the map shown in Fig. 8.

7.2 Numerical prediction of wear and crack nucleation

The prediction of damage mechanisms carried in the map Fig. 8 requires first the 
calculation of the stresses history in the stabilized state. Secondly, Dang Van multiaxial 
fatigue criterion is applied if the stabilized state is elastic shakedown. 

The direct cyclic method described in Sec. 2 is used here to simulate the set-up
and to calculate the stresses history in the stabilized state. The specimen is modeled 
as a half space subjected to a constant normal force and a varying tangential force T(t) 
ami a fatigue stress S(t) varying linearly with T (t). The material is elastoplastic with
a kinematical hardening (hardening modulus C=30 GPa) and with properties given in 
the previous subsection. 
Three cases are performed corresponding to the three regimes established in the map 
( P and Smax are the prescribed parameters and T max is measured in the test). 

• Stick regime P=140 N, Smax=350 MPa and Tmax=53 N (no damage)
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T(t) 

Tmn Tmax S(t) 

® 

T = Tmin T=T max 

-a -C max +C max +a 

Fig. 6: loading path during fretting

• Mixed stick-slip regime P=100 N, Smax=600 MPa and Tmax=80 N (crack nucle­
ation)

• Gross slip regime P=80 N, Smax=500 MPa and Tmax=64 N (wear)

In the case of loading in gross slip regime, the nonlinear stress-plastic strain cycles for 
an element located at the surface under the contact zone (x = -0.4a) are shown in 
Fig. 10 illustrating plastic shakedown. Wear is then associated with plastic sakedown 
and so to low cycle fatigue properties confirming the works of Ludema [13] and John­
san [15]. Owing to this numerical method, we obtain, better still, the plastic strain 
amplitude in the stabilized state. 
Since the response of material is respectively purely elastic and elastic shakedown in 
stick regime and mixed stick-slip regime, high cycle fatigue is concerned. The stress 
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T(t) ® 
T =-Tmax -a +a 

w. 

Fig. 7: loading path during fretting

® 

-a +a 
® 

-eh T=O -c +C -a v \)•a 

cycle through the contact is multiaxial. Uniaxia.l empirical high cycle fatigue criterion 
are not applicable. As done in [12], Dang Van multiaxial fatigue crack nucleation cri­
terion is used to predict fatigue cracks. The fatigue properties of the material obtained 
by torsion t and bending f fatigue tests (i=380 MPa and f=594 MPa for 30NCD16 
steel). More details about the Dang Van multiaxial fatigue crack nucleation criterion 
arc given in references [18, 19]. The most critical point is located in the surface at 

the edge of the contact. The most critical loading path ( T ,p) for each regime resulting

from the stress cycles in the stabilized state are plotted in Dang Van's fatigue Diagram 

shown in Fig. 11. In stick regime, the loading path ( T ,p) is beneath the fatigue line

material, so, no damage occurs. And in mixed stick-slip regime, the loading path in­
tersects the fatigue line material concluding of crack failure. The prediction of crack 
initiation is in good agreement with the experimental observations. 
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Fig. 8: Fretting map (Petiot et al, [12])

Fig. 9: Contours of equivalent plastic strain
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