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LARGE PLASTIC DEFORMATION OF POLYCRYSTALS 

C. Stolz 

CNRS-URA 317, Polytechnic, Palaiseau, France 

ABSTRACT 

This paper is devoted to the description of the general relationships between micro- and 
macroscales in non-linear medmnics. After a thermodynanucal presentation of these 
relations, we point out some pru-ticular cases of non-linearities, especially the case of 
polycrystalline aggregates in finite strain. In the case of the single crystal, the energy
is well defined in the frame of the crystal lattice, the deformation of which is essentially 
reversible. The plastic deformation preserves the orientation and the structure of the 
lattice. In the case of the polycrystal, the constitutive law has the same form as 
the single-crystal one, the evolution of a triad of vectors is necessary to describe the 
evolution of the microstructure and to ensme uniqueness of the decomposition of the 
deformation gradient in a reversible and a plastic part. 

The problem of the evolution of the internal state of a single crystal and of a 
polycrystal is investigaterl, induding the symmetry of the rate bmmdary-value problem. 
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1. GENERAL RELATIONSHIPS BETWEEN MICRO- AND MACRO­
MECHANICAL QUANTITIES 

1.1. Introduction 

We are concerned with a macroscopic description of a small volmne element, the local 
properties of which are known. Inside this element of material, we distinguish between 
two scales: the microscopic one, where the properties vary from point to point as in a 
highly heterogeneous body, and the macroscopic one, where the properties are those of 
a homogeneous continumn. 

In order to determine with accuracy the overall behavior of this volmne considered 
as homogeneous, it is essential to define the so-called representative volmne element 
(RVE), which must be small enough to allow us to distinguish the microscopic hetero­
geneities and sufficiently large to be representative of t.he overall behavior. 

From a thermodynamic viewpoint, it is sufficient to characterize two macroscopic 
potentials, the first one being the macroscopic free energy and the second one the 
macroscopic potP.ntial of dissipation. With this background, we can describe the state 
of the body and its evolution. 

It is easy to determine the macroscopic quantities from the microscopic ones by 
an averaging process. It is thus clear that a given microscopic state defines an unique 
macrostate. Conversely, starting with a macrostate, we must solve a boundary-value 
problem in order to find the corresponding microscopic state,and the uniqueness of 
this microstate depends on the concentration process. The determination of the two 
macroscopic potentials depend-; obviously on the solution of this boundary-value prob­
lem. 

For example, it is kwown that the value of the potential energy of a linear elastic 
system depends only on the value of the displacements and of the tractions given on 
the boundary. So, in a global description, the potential energy plays t.he role of the free 
energy. 

The purpose of this paper is mainly to emphazise the role of the global free energy 
evaluated as the total free energy at an equilibrimn state. The determination of the 
state of equilibrimn is a particular boundary-value problem, with particular bound­
ary conditions. In fact, in order to be effective, these conditions must verify some 
properties, smnmarized in the concept of concentration process or localization process. 

1.2. The Macrohomogeneity Hypothesis 

We consider a volmne n, whose material properties vary from point to point like a
highly heterogeneous body and we search in a global description for the properties of 
an equivalent homogeneous continumn. 
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To detennine with accuracy the overall properties, it is essential to define the rep­
resentative volume element (RVE), small enough to allow us to distinguish microscopic 
heterogeneities and sufficiently large to represent the overall behavior. For a polycrys­
talline aggregate it is necessary to have a minimum of information about the geometry 
of each constituent and to make assumptions of statistical homogeneity or ergodicity
in order to define the RVE in a statistical sense (Kroner, 1980; Willis, 1981; Hashin,
1983). 

The problem is to characterize the overall behavior only from a knowledge of the 
local constitutive equations of each constituent phase of the heterogeneous medium.

With every microscopic quantity J, we can associate its macroscopic value F by 
an averaging process on the RVE, extended eventually to the cases for which the RVE 
contains holes or rigid inclusions: 

F = A la f dw =< f > .

It is clear that in this way a unique macrostate quantity is defined for each microstate.
Conversely, starting with a macrostate, the definition of a suitable corresponding 

microstate requires complementary information or a concentration process to determine 
the nearest possible microstate to the real one. For the choice of a representative 
volume element suitable boundary conditions must be prescribed and must satisfy 
some requirements (Francfort et al., 1983; Germain et Al., 1983; Stolz, 1987) . 

For a choice of the boundary conditions, a local stress distribution t and a local 
deformation e: are developed over the volume n. Denote by n the unit normal to the 
boundary an of n, and assume that an = anT U anu,where anT and Gnu are disjoint 
parts of an, on which the stress vector and respectively the displacement vector are 
prescribed. The local stresses t verify the equation of equilibrium and the boundary 
condition: 

divt = 0 over n, and t.n = Tdon anT. 

The local deformation derives from a local displacement vector u which verifies in 
the small strain approximation the relations 

1 (8ui auj d Eij = -2 -
a 

+-
a 

) over n,and U = U on anu. Xj Xi 
We require that the Hill-Mandel macrohomogeneity condition be fulfilled by all 

fields t• statically admis..c;ible with T* =< t• > and by all e:• kinematically admissible 
field with E* =< e• >,so that

T* : E* =< t• : e:* > .

In particular, for the study of the macroscopic behavior these boundary conditions 
can be homogeneous. In this case, one can prescribe homogeneous stress conditions 
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(Ta = T.n on an) or homogeneous strain conditions (U = E.y for all point y over
an), where T and E are two symmetric tensors.

Under these conditions, it is obvious that in the case of homogeneous prescribed 
stresses, the averaging stress is the applied one, i.e. 

T =< t >, 

and the local displacement u fluctuates around the overall displacement U = E.y such
that 

f (U- u) 0 n da = 0.lan 
Then, the relation between microscopic and macroscopic strains can be deduced as 

E =< e > .

Dually, if an uniform strain is prescribed on the boundary (u = U = E.y over 00), it
is clear that 

E =< e >, 
and the microstresses are such that 

/00(< t > - t). n ®y da = 0, hence T =< t > .

Some other bmmdary conditions can be used. In particular, for periodic structures 
(Sanchez Palencia 1974, Suquet 1982) the elementary cell generates the geometry of
the whole by periodicity, all the local field<> are periodic functions and the Hill-Mandel 
macrohomogeneity condition is a necessary condition resulting from periodicity. 

The construction of the macroscopic constitutive law from the microscopic behavior 
can proceed as follows: 

• starting from some macroscopic quantities, then

• using a concentration or localization process to determine local fields, and finally

• determining the missing macroscopic quantities by the averaging process.

1.3. Mode and Process of Localization 

.For a given choice of a representative volume element suitable boundary conditions 
must be prescribed to solve the problem of localization. These conditions must sat­
isfy some requirements in order to be effective: 

• the definition of an averaging process (average over a vohune or statistical aver­
aging) ; the average value of the field f will be denoted by F =< f >;
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• the equations of continuum mechanics (equilibrium, compatibility of the strain
and boundary conditions) must be verified;

• the boundary conditions must verify the hypothesis of macrohomogeneity in the
sense of Hill-Man del.

For example, we can prescribe a mode in homogeneous stresses (Ta = T.n on 00),
or in homogeneous strains (U = E.y for yE 00), or a mode associated with periodicity
conditions. 

Generally, for a given choice of boundary conditions local stresses t and strains e 
are developed over n. These two fields must satisfy the mechanical equations:

• the micro stress field t satisfies the equilibrium equations, the traction boundary
conditions and the average property

T =< t >, 

• the micro strain field satisfies the compatibility equation, the diaplacement bound­
ary conditions of the mode of localization and the average property

E =< e > . 

The stress field t and the strain field e satisfying these conditions will be said to 
be respectively statically admissible (S.A.) with T and kinematically admissible (K.A.) 
with E in the mode of localization. 

• The bmmdary conditions llllL."lt fulfil the Hill-Mandcl macrohomogeneity condi­
tion:
For any stress field t which is S. A. with T in the mode and any field e which is 

K.A. with E in the mode, the internal power is conser"ued i.e.
T :  E =< t: e > .

• The process of localization defined by a mode of localization and a constitutive 

law rrmst t:nS'un: the c:tistencc and ·uniqueness of the microscopic fields. 

These properties ensure the possibility of the determination of the general relation­
ships between microscalc and macroscalc. In particular, we can deduce the form of 
the macroscopic com;titutivc law in the following way: for the prescribed macroscopic 
qmmtitics we solve the boundary-value problem associated with the process of local­
ization, we determine the local field.;; and finally, using the averaging process, we find 
the lmknown macroscopic quantities. 
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1.4. The Case of Systems in Equilibrium 

The local behavior is given by the local free energy density 1/J( e, a, T), where e is the
strain tensor, a represents a set of internal variables and T is the absolute temperature.
'I'he state equations are given by 

A is the thermodynamical force associated with the evolution of a and s is the entropy.
When we have no viscosity, t is the Cauchy stress and is related to the equilibrium state 
via the solution of a boundary-value problem. In the following sections we describe 
only isothermal processes, so we do not consider the thermal problem. 

The equations of the boundary-value problem. U we prescribe a macroscopic
strain E =< e >, for a given distribution of internal parameters a we must find the
local fields t as functions of E and a by solving the following problem.

Find a displacement field u satisfying the equation 

E =< e >, t = : , divt = 0,

and the boundary conditions of the mode. 

Denoting then by w the macroscopic free energy density w(E, a) =< 1/J(e(u), a) >,
where e(u) is the strain associated with the solution of the above boundary-value 
problem. We deduce the equations of state by using the Hill-Mandel macrohomogeneity 
condition 

Noting that e is written as E + 1], where 1J is a strain kinematically admissible with
zero in the mode, we have 81]j8E = 0, and hence the macroscopic stress T is related
to the macroscopic strain by the state equation 

The macrostress at equilibrium is defined in the same way as the microstress, owing
to the definition of the macroscopic thermodynamic potential W. 

The other relations are expressed by 

A • ba = - { B1J; ba dw = - aw • ba,ln 8a 8 a 
then the internal state in a global description for the system is defined by the value ofa(x) in each point of n, so the internal state is defined by a field of internal variables.
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Case of a macrohomogeneous body. For linear elasticity, it is well known that the
macroscopic elastic modulus has not the same value when macrohomogeneous strain 
or stress conditions are prescribed on the boundary an. But when the body can 
be considered as macrohomogeneous in the sense of Hill (1966, 1967) and Mandel 
(1964) the difference between the two estimates vanishes. The volume of the VER is 
sufficiently large to contain enough heterogeneities to consider the whole specimen as 
a homogeneous body at the macroscale. 

Assuming that all constituent phases are linear elastic, the local free energy is 

1 '!}; = -e : c : e.. 2 . 
where c depends on the point X den. The solution of the boundary-value problem of the 
equilibrium is the minimum of the potential energy of the system, when one prescribes 
the boundary condition as a homogeneous displacement over 00, the potential energy 
W depends only of the given E, and of the spatial distribution of the mechanical phases. 

When homogeneous boundary conditions are prescribed in stress (Ta = T.n on 00, 
with T a symmetric tensor) the local stress t is obtained as the solution of an elastic
linear problem, and this proves the existence of a concentration tensor A;jpq such that

t;j = AjpqTpq. 

Actually, this tensor A is the elastic concentration tensor introduced by Mandel ( 1964) 
in the case of a localization process in homogeneous macrostresses. 

As < t > = T for all prescribed T, we have

1 
< A;jpq >= "2(8;p8jq + 8;q8jp)·

For fixed subscripts (p , q ) , A;jpq satisfies the equilibrium equations

A;jpq,j = 0, on n. 
and homogeneous bom1dary conditions 

1 A;jpqnj = 2(8;p8jq + O;qOjp)ni over 00,
whereas the deformation €;j = S;jklAklpq satisfies the condition of compatibility.

Moreover, from the local behavior, we can define the following relations 

t = c : e = c : B : E,

t = A : T = A : C : E,

c : B = A : C, B : S = s : A,

C =< Bt: c: B >, S =<At: s: A >= c-1•
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Elastic constitutive laws. For more general constitutive behavior, we can define 
the instantaneous elastic moduli by considering small perturbations of the state of 
equilibrium at fixed internal parameters. 

The solution associated with a variation of the macroscopic strain E is then the 
elastic response. The problem to be solved is the problem of the evolution of an 
heterogeneous medium. Denoting the local moduli by c, we have 

and the evolution is given by solving the rate boundary-value problem 

E =< t >, divi = 0, i = c: t.
This problem is a problem of linear elasticity, which can be described by the intr� 
duction of a stress or strain concentration tensor, A or l3, as influence tensors. The
solution of the problem of heterogeneous elasticity is written as 

t = l3 : :E, i = A : 'i'. 
These tensors are associated with the local elastic modulus and the macroscopic mod­
ulus satisfies 

S =< At : s : A > . 
Note that for fixed (p q), AJpq is a statically admissible field in the mode vvith the
identity and l3;jpq is a kinematically admissible field with the identity. These properties
can be resumed by 

< A >= I, < l3 >= I. 
The identity tensor is here Iijpq = �(b;p biq + biq b;p) · 
1.5. Decomposition of the Macroscopic Strain in Elast�Plasticity 

The decomposition of the strain is determined with respect to the reversibility. Let T 
be the real macrostress and t the corresponding microscopic stress. The local solution 
for a purely elastic behavior is tE = A : T. The stress field r = t -tE is then 
self-equilibrated. 

In small strains, the total deformation e is the sum of the elastic strain ee, related
tot by the elastic constitutive law ee = s: t, and of the anelastic strain ep· Then, the
stress field r is related to the local strain e;r by

which satisfies the compatibility conditions. 
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By definition the macroscopic elastic strain EE is the strain obtained by purely 
elastic unloading. The local strains e and e E = s : t E are two kinematically admissible 
fields respectively with E and EE in the mode of localization. These strains verify the 
Hill-Mandel condition. 

For any stresses t statically admissible with < t > in the mode of localization with 
the particular choice t = A : < t >, we obtain

EE = < At:eE>, 
E = < At :e >. 

Then, for the elastic response eE = s : tE, where tE = A:< tE >=A: T, the 
definition of the macroscopic modulus can be deduced as 

s =< At : s : A > . 

The difference E- EE is a kinematically admissible field associated with the anelastic 
part of the macroscopic strain Ep = E- EE, and hence

Ep =< At : eir > . 

Since r is a self-equilibrated stress field and s : A is a !cinematically admissible field, 
the classical results of the definition of the plastic macroscopic part is then recovered: 

Ep =< At : eP > . 

It is obvious that all these equations hold also for the time derivatives of the quantities 
involved. In particular, we have 

•. t • Ep =< A :  eP >. 

This definition derives from the kinematical aspect of the evolution, its thermodynamic 
signification must be investigated. 

Global domain of elasticity and dissipation rate. At the local level we assume 
that at each point x of the RVE an elastic domain e ( x) is given by means of a convex
function f: 

e(x) = {t I f (t) < 0}.

At the macroscopic level the elastic domain eT is determined as follows. 
Let T and T* be two macroscopic stresses belonging to eT . The path T - T* 

is an elastic path, which implies that the corresponding local path t- t• is an elastic 
path, too. 

As t(x) E e(x) for all points x of the RVE, t• verifies the same property. Thus, we
have 

t- t• = A: (T-T*) 
This property induces a normality rule at the macroscopic level if such a rule holds at 
the local scale. 
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Normality rule. The normality rule is expressed in· the form of the principle of 
maximal plastic work of Hill: At each point of the RVE, if t(x) E e(x), we have for 
any t*(x) E e(x), 

(t-t*) : ep ;::: 0.

Since T E eT, we associate to any T* E eT the local field t* defined by 

t -t* = A : (T-T*). 

Such a field t* is an element of e(x) for all x. Therefore taking the average of the
inequality we obtain 

(T-T*) :<At : eP >;::: 0,.

which is equivalent to
(T-T*) : Ep ;::: 0. 

The macroscopic domain of elasticity is then convex, since it is the intersection of 
the convex domains e ( x). 

Dissipation rate. For elastoplasticity, another characterization is obtained when the
dissipation rate is studied. Firstly, one considers at the local level an elastic-perfectly
plastic material. The density of energy being 1/J(e, ep) = 1/J(e- ep), the dissipation rate 
takes the form 

Dp =< t : ep > ;::: 0.

Expressing it in terms of macroscopic quantities, we find 

The macroscopic free energy takes the form given in terms of stress 

1 1 w =< 'ljJ >= -T: S: T + - < r :  s :  r >,
2 2 

and the dissipation rate shows the role played by the energy embedded in the residual 
stresses . 1 d 

Dp = T : Ep -2 < 
dt 

r : s : r > ;::: 0. 

This result is due to the fact that Eir is a kinematically admissible field, and that the
residual stresses r are self-equilibrated 

0 =< r : eir >=< r : s : r + r : ep > . 
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Macroscopic viscoplastic potential. This equation and the definition of the macro­
scopic convex of elasticity show that a macroscopic viscoplastic potential n exists if a 
local one w is given. n is defined by the averaging process as

O(T, r) =< w(t) > .

The local normality rule is expressed by 

. 8w 
ep = 8t.

Since t = .A : T + r, it is clear that the normality rule results from the set of
equations 

an 
8r 
an 
8T 

8w . = -=ep8r 
T 8w • 

= < .A : 8r >= Ep.
Generalization to other behaviors. These equations can be extended to more 
complicated behaviors, by using the definition of standard generalized materials. 

For example, to describe hardening, the free energy density is supposed to possess 
the following expression 

1 '1/J(e, ep, a) = '2 (e- ep) : c : (e- eP) + wb(ep, a:) , 
with the associated equations of state 

t = 8'1j; u = _ EN = t _ 8wb A = _ 87/J
8e' 8ep 8ep' 8a' 

If there is no viscosity effects, t is the stress at equilibrium. If the domain of elasticity 
is defined by 

f(u, A) = J�s: s + A- k0:::; 0,

where s is the deviatoric part of u ,we recognize immediatly three particular cases : 
• when wb = 0, i.e.in the case of perfect plasticity, the normality rule gives the rate

of plastic strain

Ep = J.t ��, J.tf = 0 and f :::; 0, J.t ?. 0,

• when wb = ieP : H : eP, i.e. in the case of linear hardening, the normality rule
defines the rate of internal variables as :

Ep = J.t ��, J.tf = 0 and f :S 0, J.t ?. 0,
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• when wb = H(a), i.e. in the case of isotropic hardening, the evolution of the
hardening fL is defined by the normality rule 

. 8j 1 fLS . 8j ..;2. . eP = fL n.... =- rr::-::• a = IL8A = ep: ep,u:; 2 vis : s 
ILl = 0 and f ::; 0, fL � 0.

In the general case, we can combine isotropic and kinematic hardening. The dissi­
pation rate is 

dp = u : ep + Aa � o.
By the averaging process, with the decomposition of u =A : T +up, we can show that

where Up = r- !JJ:' . " 
We can show then that the global viscoplastic potential is : 

O(T,up,A) = fnw(u,A)dw 

where a = A : T + up· The normality rule at the local state

implies that 

. 8w . 8w 
€p = 8a' a = 8A' 

These equations are true for plasticity, as a limit case of viscoplasticity. In fact, 
because the potential is convex, we can use the definition of the dissipative function 
d( ep, a) instead of the potential of dissipation, such that

d(ep, a) =Sup (w(u, A)- u: ep- Aa), u,A 
and then 
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The characterization of this normality law, which is always true is 

(a, A) E 8d(ep, a) if and only if V'(e*, a*) admissible

d(ep, a) +  u: (e*- ep) +A( a*- a) :S d(e*, a*) 
This definition is generalized on the macroscopic level by means of the definition of the 
dissipative function with the fields Ep, a as argument

D(ep,a) =< d(ep,a) >,

D(ep, a)+< u: (.s*- ep) > + < A( a*- a) > :S D(.s*, a*), 
with the determination 

(a, A) E 8D(ep,a) if and only ifV'(.s*,a*) admissible,

D(ep, a)+ < u : (e*- ep) > + <A( a*- a) > :S D(e*, at). 

Taking into account that r is self-equilibrated, the dissipation function is reduced to 
D(Ep,Ep- Ep,a), where we have separated the overall definition of an irreversible
strain, and the part due to the change of the internal state which is the source of two 
kinds of hardening 

• the hardening due to the incompatibility of the plastic strain,

• the self-hardening of each constituent.

The hardening is described in the energy embedded in the n�idual stresses and in 
the self-hardening energy 

1 1 "Ill =< '1/J >= -T :< At : s : A >: T + - < r : s : r > +"Ill b. 2 2 
The total dissipation has the expression 

which emphasizes the role of the embedded energy in the hardening. 

1.6. Generalization to Finite Strain 

Consider a body n in its initial state. The body moves under a given loading. The 
material point initially in X has actual position x, and the deformation gradient of the
motion x = x(X, t) is then
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which verifies obviously the average equality 

1 1. ox 1 la 
< f >= - - dJ..,; = - X 0 N dS = F. 

fl Oo oX fl OOo 
IT the free energy density is a given function of the actual deformation for each 

microelement from its natural state, we must take into account that at the stress free 
state of the body n each microelement has constraints fo such that the microelement 
is transformed as f = f. f0• The free energy '1/J density is then a function off, and of
the internal parameters o:. 

The total f is not kinematically admissible, because of the presence of the internal 
incompatibility of the irreversible strains (it is not the derivative of a displacement 
field) .

As pointed out before, the global gradient F is related to the microscopic f, such 
that f = f.f0,where fo is the deformation of the microelement from its natural state 
to the initial state of the body. Inside the body, in its initial state, a self-equilibrated 
stress field 1f'0 is related to the state of local deformation {0•

As ·in the case of small strains, we must define now a mode of localization. C'.JOnse­
quently some requirements are the same, but the macrohomogeneity lemma is modified. 
The mode of localization is defined by a boundary-value problem, such that all me­
chanical equations are verified. 

The state of stresses are in equilibrium with respect to the boundary conditions 
in traction, the strain field is kinematical admissible with the displacement boundary 
conditions. The boundary conditions are compatible with the average process and must 
be such that the Hill-Mandel principle of macrohomogeneity be fulfilled. 

Macrohomogeneity in finite deformation. For all displacement u which is K.A. 
with the boundary conditions and all nominal stress field 8 in equilibrium with the 
boundary conditions defined by the mode of localization we have 

Global free energy. The global free energy is then pllt =< {YI/J >, and we can prove 
the thermodynamical relation 

< o >= P fJ'IjJ 1 oF = e.
For a given state F, we must define a displacement u kinematically admissible with 

the given F, such that f = I+ Gradu, the nominal stresses 8 =p o'lj;jfJf being in
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equilibriwn. At this equilibriwn state, the global free energy is a function of F, and of 
the internal state a. 

p"llt(F,f0,a) =< fYII;(f.f0,a) >, 
and - ow &r/J or or 

P oF=< P Of : 8F >=< 8 ><aF >,
but 

f = F +Gradu,
where u is kinematically admissible with 0, because< f >= F, and in a similar way
as in the small perturbation approximation, the global potential "111 gives the stresses 
at the equilibriwn. 

If we take into account the principle of objectivity, the free energy density is of
the form 'ljJ = w(�(f), a, T) , the state of deformation is defined by the Cauchy-Green
tensor or the Green-Lagrange tensor, 

1 T T -�(f) = 2(f .f- I) = f0 -�(f).fo + �(fo),

and the state equations are related to the actual state of stresses defined in the actual 
state by t 

1f 8W if T -1 t -T 
- = a�(f) 

= fo·-=-·fo = f .-.f .
Po P P 

The nominal stresses are then 

8 = : = 1r.fT = f-1.t detf.

If we have uniqueness of the local solution, the local deformation is a function of 
the macroscopic state F 

f = B(F,X). 
When some evolution occurs, we define the pseudo modulus Cas

and the local moduli by 

We have then the relations 

. B2W . . 
e = ,0 8F8F : F = C: F,

_ 02W 8BT o oB C = P oF oF = < P 8F : c : oF >' 
and the following general properties. 
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For all stresses t which are S.A. with T, and all velocities v which are K.A. with 
V= GradV.X,

GradV = < gradv >, 

T = < t >, 
T : GradV = < t : gradv > .

T t 
pDc� = < pDc- >,

p p 
e = < iJ >,

where the convective rate is defined as 

Dca =a- gradv.a-a.gradtv .

Tangent moduli and localization. The rate of the nominal stress verifies the mo­
mentum equations and the tangent constitutive law in the following form 

. t t 8 = pDc- + t.grad v,
p 

where De!= A0: gradv, then iJ = c :  gradv. For the overall behavior, we obtain

. - T T 8 = pDc� + T.Grad V, 
p 

• T • 
wtth De P = A : D, then 9 = C : GradV.

With the macrohomogeneity hypothesis and if the process of localization ensures 
uniqueness, one can define the concentration tensors in the form 

iJ = .A: 8, 
gradv = B : GradV, 
b0b <Bt:.A>. 

and the following general properties hold 

GradV 

.A: c 
<.At: gradv >, 

C0: B, 

c = < Bt : C0 : B > . 

.A and B must be independent of a rigid-body motion and possess some other properties 
due to objectivity. 

16



2. THE STUDY OF THE POLYCRYSTAL 

2.1. Introduction 

The deformation of a single crystal i..<; determined by the energy embedded in the lattice 
and the plasticity due to slip governed by the Schmid rule or a viscoplastic potential 
associated with the normality rule. 

If we refer to the triad of lattice vectors, the local deformation is described by 
additively splitting the velocity gradient into three parts (elastic rate gradient, rotation
of the triad of lattice vector, plastic rate gradient), and the elastic constitutive law is
determined by a linear relation between the elastic deformation rate and the objective 
.Jaumann rate of the Cauchy stress in the lattice vectors rotation. 

With the help of the Hill-Mandel macrohomogeneity hypothesis we can show that 
the macroscopic velocity gradient has the same decomposition as the microscopic one 
and that the stress-strain relation has the same form under an appropriate choice of 
the triad of vectors which give at each time the orientation of the polycrystal. 

With this type of description, if the plastic part of the velocity gradient derives 
from a potential at the microscale, the macroscopic one derives from a -v-iscoplastic 
potential, too. 

After this description we analyse the symmetry or asymmetry of the rate boundary­
value problem in terms of the velocity gradient and the rates of internal variables for 
different yielding surfaces. 

For describing the behavior of polycrystals, we introduce macromechanical quan­
tities, such as stresses, strains and ela..;;tic strains, which must be defined from the 
knowledge of the corresponding micromechanical quantities. To determine the consti­
tutive law for polycrystals we use the Hill-Mandel method. 

We consider the polycrystal as a macrohomogeneous body. In fact it contains 
several crystals with different shapes and orientations. Inside its vohune the stress and 
strain are not uniform and are in equilibrilun with homogeneous boundary conditions. 

First we consider the behavior of an ideal single crystal. We study its evolution and 
give the decomposition into reversible and irreversible parts during the tranformation. 
The main idea is the fact that a single crystal is defined by a given triad of vectors, 
which describes the orientation of the crystal lattice, the reversible deformation being 
the deformation of the lattice. The plastic deformation due to glide on slip �.vstems, 
perfectly defined relatively to this orientation, preserves the lattice structure and his 
frame. 

The hypothesis of macrohomogeneity is formulated and the polycrystal behavior is 
analysed. The form of the macroscopic constitutive law is the same as the microscopic 
one and it is necessary to introduce a triad of vectors to ensure uniqueness of the 
decomposition of the rate. 
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2.2. The Single Crystal 

The constitutive law for a single crystal deforming by dislocation glide can be formu­
lated according to the kinematic scheme based largely on the analysis of Mandel ( 1971) 
or Hill and Rice (1972) , Zarka ( 1973) and Rice ( 1971) .  

The total deformation F can b e  decomposed as follows: a plastic deformation FP 
given by a set of successively simple shears on active slip systems which are referred to 
a fixed lattice, followed by an elastic lattice deformation Fe which deforms and rotates
the material and the lattice together so that 

By unloading the single. crystal and putting its lattice orientation back at its initial 
position one obtains a unique stress-free state CK which is defined by Fp. It is obvious
that the reversible part of the total deformation is determined by the Lagrangian strain 
tensor 1 T AK = 2(Fe .Fe- 1). 
Assmning that the hardening has no influence on the elastic properties, we can take 
on C K for the free energy density the form 

where his a frmction of the internal parameters 'Yr, which are the ammounts of slip on
each slip system (slip in the direction mr in the plane with normal nr)

The elastic constitutive law is given by : 

'Trk 8'1/J Ar &lj; = -- -- = --

where 1r k is the Piola-Kirchhoff tensor referred to C K and A,. the thermodynamic force 
associated with the internal parameter 'Yr· Then the C'.tauchy stress t 

is in equilibrium with the prescribed loading, and the dissipation rate is 

t · CTk • -1 A,. . 
D = - :  gradv-'1/J = - :  Fp.Fp + --yr ;=:: 0.

P Pk Pk 

As the plastic strain rate on CK is the sum of simple shear rates on the active slip 
systems, then 

Fp.F;1 = L 'Yrmr C?;nr,
r 
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and the expression for the dissipation D becomes 

with 
uk I t 

- =F- · - · Fe . 
Pk e P

To determine the evolution of "fr, one can define by 

uk Ar 
f = n · - · m +- - T < 0. r r r o_ . 

Pk Pr 

the yielding function such that "tr � 0 if fr = 0, and "tr = 0 in the other cases . 
This is a generalized form of the Schmid law. W ith this definition, the elastic 

domain is a c.onvex domain defined by a convex function of u k, and we have the law
of normality 

The total plastic gradient rate is determined on CK; its symmetric and antisym­
metric parts are given by the plastic potentials fr· 

In the case of small elastic strains (Fe = S.R with S = I + e and lie 11 « 1 )  the
local velocity gradient has the form 

gradv =de+ wd + R.Fp.F;1 .R-1 ,

and the objective stress-strain rate relationship in the actual state is determined by 
the equation (Mandel, 1971; Halphen, 1975; Stolz, 1982)

!!_!=Aa·d 
Dtp 

. e. 

where D( �) / Dt is the Jaumrum derivative of � in the rotation wd of the lattice (Mandel, 
1982). The instantaneneou.<J elastic moduli are the convected ones from the stress free 
state by the ela."itic deformation F" 

2.3. The Macrohomogeneity Hypothesis 

We must first consider the equation of localization. From a formal point of view, the 
equation is ohtainoo in thennodynan1ical form by replacing the strain by the defor­
mation gradient, and the stress t by the nominal stress in the expression of the en­
erg_y. The macrohomogeneity condition can be generalized as follows: for any gradient 
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field f ,  which is kinematically admissible with F =< f > in the mode of localiza­
tion and any nominal stress field 6 statically admissible with 8 in the mode, we 
have < f : 6 >= F : 9 .

This equation can be expn�sed by choosing the present state as the reference con­
figuration. The rate of the nominal stress can be expressed in terms of the Cauchy 
stress or in terms of the convective stress rate 

iJ = i + gradv.t + t divv,

0 
t --t-- t t T De(-)=(-) +gradv · - + - · grad v, 
p p p p 

. t 6 = pDc(-) + t.gradT v.
p 

Since the Cauchy stress t is statically admissible with T =< t > in the mode of
localization, for any V !cinematically admissible with V = GradV.X ' X E an ' we
have, noting also that GradV =< gradv > 

ik 1 r < t Vj,k >= 
V lan tikvink da = 7ik VJ,k·

In the same way it is easy to show that 

T t 
< P > De(-) =< pDc(-) > .p p 

On the elastic behavior. For an elastic behavior with modulus Aa ,we define the 
pseudomodulus Ca by 

. t (} = C0: gradv, De(-)= A0: d.
p 

C'.JOnsidering the localization process associated with the local elasticity tensor C0, in 
the case of stability of the elastic path, we can define the stress localization tensor A, 
or the strain localization tensor B by 

iJ A:e, 
gradv B :  GradV. 

2.4. The Polycrystal as a Macrohomogeneous Body 

In the description of the elastoplastic behavior of single crystals, the velocity gradient 
is split into three terms: the elastic strain rate de , the spin wd of the crystal lattice
and the pla<>tic part gp, which can be decomposed into a strain rate and a rotation rate 

gradv = de + wd + gp.
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To this deformation rate, we associate the convective stress rate defined relative to 
the stress free state of each single crystal by 

t 
( 

t t t 
pDc( f) = Ao : d - dp) - gp · p - p · gp.

Then, the rate of nominal stresses can be expressed in tenns of the pseudo-modulus c0

iJ = C0 : (gradv - gp) - gp · t.

At the macroscopic level, we assume that a stress-free state exists. Then, F may be
written as F = Fe· Fp, and this decomposition is unique if we specify an orientation 
for the polycrystal by the introduction of a triad of directors. Then we have 

The local elastic response gradvE corresponds to the macroscopic velocity gradient 
GradVp; such that 

GradVE 
gradvE 

iJE 

< gradvE >,
B: GradVE, 
Co : '\lvE, 

and the corresponding macroscopic stress rate is 

By defining the velocity fields Vr and V0 as kinematically admissible fields respectively
with GP and with 0, the nominal stres..c; rates 

Or C0: (grad1'r- gp), 
iJo Co : gradvo- gp.t. 

are chosen to be statically admissible fields respectively with 0 and GP in the mode. 
With this demmposition the following properties are established 

gradv gradvE + grad1'r + grad1'0, 
iJ iJE + iJr + iJo, 
B = C: GradVE- Gp.T,

where the pseudomodulus is 
C =< Bt : C0 : B > . 
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These equations imply the following connections between the stress rate and the re­
versible part of the deformation 

which corresponds to the relation 

So the elastic part of the total velocity gradient is associated with the Piola-Kirchhoff 
stress defined on the stress-free state of the polycrystal. The following properties are 
obtained by the use of the macrohomogeneity condition 

GradV = < At : gradv > ,  
GradVe = < At : gradve > ,  

GP = < At : gradvr > . 
For any macroscopic field V , we define the local field v such that gradv1 = B :

GradV1 and the associated rate of nominal stress during purely elastic behavior 

• I I • I 8 = C0 : gradv = A : 8 .
For this particular choice we note that 

< i/ : (gradvr - gp) >= S' : < At : (gradvr - gp) >=< Or : gradv1 > =  0 ,

and we have, finally 
GP =< At : gP > . 

This result leads to a natural definition of the rotation of the triad of directors for 
the polycrystal, using the decomposition of the macroscopic velocity gradient. More 
precisely, this triad has the rate of rotation fld given by 

This result generalizes the result previously obtained by Mandel [12] ; in general, the 
rotation of the orientation of the polycrystal is not the mean value of the local rotation. 
We have shown that the macroscopic behavior of a polycrystal and that of the single 
crystal can be described by analogous equations. In order to describe thi'l macroscopic 
behavior it is necessary to specify an orientation of the stress free-state, this orientation 
is given by a triad of vectors the rotation of which is defined by a constitutive law. 
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3. EVOLUTION LAW AND THE RATE BOUNDARY-VALUE PROB­
LEM 

The amount of gliding "t r is positive if a loading condition is verified fr = 0 and ir = 0;
in other cases "tr = 0. The interpretation of the yield criterion is object of many
discussions and can be interpreted in many ways1 : 

(a) The normal nr to the slipping plane is not a material vector ; then, the evolution
of the resolved shear is reduced to 

(b) The normal nr is a material vector, and is at each time the normal of the
physical slipping plane ; in this case 

. F. F-1 {F. F-1 }  nr = p· p • nr - nr . p· p 8 .  nr nr , 

. i!'k • - 1 lTk 
fr = Ttr · ( - -Fp.Fp · -).mr = 0.

Pk Pk 

In this case the thermodynamical force is associated with Fp and defined on CK . The
proof is straightforward : the total Lagrangian strain related to the initial configuration 
Go is

T 1 T ..6. = Fv · ..6.k · Fv + "2 (Fv .Fv- 1) .

The energy becomes a function of ..6., F v and 'Y r , such that

and we have 
"P En/; 0 '-'o = PoaF · 

p 
For the sake of simplicity we do not consider the hardening case in what follows. 

The total potential energy is given by 1f-'o • so that we have 

where Td are the external forces prescribed on OOT. The equations of equilibrium are 

8E 
au 

.6u = 0.

1 To obtain different forms of  ir one can adopt suitable forms for T0 • The case (a) corresponds toa constant value and the case (b) to the variation of the normal n. 
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They can be differentiated with respect to time to obtain the rate equilibrium equations. 
Denoting the stress by 1r , function of � and F P • 

Deriving the equilibrium equation we obtain 

The stress rate ir verifies the local behavior 

ir = '1/J,aa : ..:i + '1/J,AFp : F�. (�= Yor)

where Y � 0 if fr = 0 and jr = 0. Then, we have : 

r 

(a) 0 (a;.Fp) : '1/J,aFp : ..:i + Hrs'Ys +a; :  (L ""fsas . �P
k )

8 k 
(b) 0 (a;.Fp) : '1/J,aFp : ..:i + Hrs'Ys

where Hrs = (a; .F.,) : 'ljJ : (F!' .as ) is symmetric en (r,s) . r ,FpFp ,., 
It is clear that the case (b) is a synunetric problem and that the case (a) is synunetric 

only for a simple plastic potential, as in the analysis due to Halphen (1975). Case 
(b) corresponds to the rate boundary-value problem in the theory of the plasticity of 
standard generalized materials. 

Case of a polycrystal. The same equations are true for a polycrystal. The decom­
position of the deformation gradient has the similar form 

gradv = Fe.F; 1 + Fe.FwF; 1 .F; 1 .  
A s  previously, the reversibility is defined on the stress-free state and is characterized 

by the strain 
1 T �k = 2 (Fe .Fe - I) . 

The choice of the free energy 'ljJ is defined as in the case of the single crystal as 
f1mction of the strain �k and of the set of internal parameters a which describe in a 
global manner the internal state of the crystal, we assumed for the sake of simplicity 
that the hardening has no influence on the elasticity i.e. V' = '1/Jk (�k ) + '1/Jb(a) . The
dissipation has the form 

t . �k • - 1  . D = - :  gradv - 'ljJ = - :  Fp.Fp + A.a � 0P Pk 
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where A = -8'1/J / 8a and :Ek has the same definition as above. We adopt the normality
rule to define the irreversibility. Then 

• 1 {)j F wF; = J.L {)'§. = J.L N,
Pk 

a 8f 
= f-t {)A

= f-t a
,

where J.L 2: 0 if f ( �,  A) = 0. The consistency condition must be taken into account:

• if !('§. , A) = 0 and j = 0 ,  then J.L > 0 ,Pk -

• if J('§. , A) = 0 and j < 0, then J.L = 0.Pk 
This law of evolution could be rewritten as the inequation 

defined on K = {J.t' I f-t1 2: 0 if f ( � ,  A) = 0 and f-t1 = 0 otherwise} .
We can write the boundary-value problem on the initial configuration, through the 

definition of the potential energy� 
Denoting by IJ!(a, F P• a) the local free energy density '!f;(ak , a, t) , the total potential

energy is given by 

where Td are the external forces prescribed on 8f2r. The equations of equilibrium are 

8E 
Bu .bu = 0.

They can be differentiated with respect to time to obtain the rate equilibrium equations. 
Denoting the stress by 1r ' function of a and FP>

{)1{1 {)1{1 {)1{1 1r = Po aa ' A = -Po aa , :E = - Po aFp '

and time differentiating the equilibrium equation, we obtain 

The stress ir verifies the local behavior 
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where FP is defined by the consistency condition 

o < (JL - JL1) [(N.Fp)T : 111.Fp� : A + (N.Fp? : 111.FpFp : (N.Fp) JL + HJL]

H = aT.W,ao: ·a  
Taking the average o f  the inequation on the whole volume, the boundary-value problem 
assumes the global form 

fn(FT.6F) : (111.�� : A +  111,.1.Fp : (NFp)JL) + 1r : (FT.6F) dw - fooT Td .6u da = 0 ,

fn (JL - JL1) [(N.Fp? : 111,Fp� : A + (N.Fp? : 111,FpFp ·: (N.Fp) JL + HJL]dw � o. 
By introducing the global potential 

[ 1 . . . J(v, JL) = Jo. 2 (d :  111.�� : d + d :  111,.1.Fp : (NFp)JL) dw
+In �JL[(N.Fp? 111,Fp� : A + (N.Fp? : 111,FpFp : (N.Fp) JL + HJL] dw

+ f �FT.1r.F dw - .X f r.v dalo. 2 lao.T 
Then, the solution ( v ,  JL) verifies the variational inequality 

{)J ( I ) {)J ( I ) fJv e V - V + fJJL e JL - JL � 0, 

on the set of admissible fields ( V1 , JL1) such that 
V1 is K.A. with the displacement boundary conditions and JL1 is positive only where 

the yielding function is reached. Let the plastic zone be determined at the actual 
position 

:Ek np = {x E n 1 !(- , A) = o} ,  
Pk 

then the admissible fields are defined on the set 

K: = { (v1 , JL)/ V1 = vd over anu , 
JL1 > 0 over np ' JL1 = 0 otherwise}

On the actual state, the rate boundary-value problem is symmetric and the fields 
verify the variational inequality 

f)J ( I ) f)J ( I ) fJv e V - V . + fJJL e JL - JL � 0,
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where J is defined as 

J = � f [(D - �tn) : C : (D - �tn) + gradv.t.grad!v ] dw 2 Jn 
+ k ��t(H' + 2(� .n) .n)�t dw - /an fd.v da.

where H' = n : C :  n + H,and n = Fe.N.F;1 .  
The moduli of elasticity are convected from the stress-free state and the above 

formula shows that the behavior is hypoelastic in the sense of Hill. 
Many other formulations can be derived in the case of isotropic elasticity, and 

classical formulations are then recovered. 
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