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Parametric and non-parametric
identification of macro-mechanical
models

Michele Sebag and Marc Schoenauer and Habibou Maitournam

Ecole Polytechnique, Palaiseau, France

1.1 INTRODUCTION

Since the very beginning of Engineering Sciences, engineers have been interested in
numerical simulations of whatever physical system they were considering, in order
to obtain accurate predictions of the behavior of the system they were building
under various circumstances: such predictions allow one in turn to optimize the target
realization (mechanical structure, chemical plant, ...).

The main causes of errors in simulated models are recognized to be the too large
simplification of the underlying physical phenomenon (e.g. using linear elastic models
in Structural Mechanics), or the numerical errors during the numerical computations
(e.g. due to the non-linearities when using some plastic model). However, a third
cause of error should not be neglected: even under given physical hypotheses, some
internal laws must be given before actually computing a simulated behavior. Those
can reduce to a few coeflicients (e.g. Young and Poisson modules in the elastic model),
or take more complex form (e.g. the whole plasticity convex for elasto-plastic models
of structures).

This paper is concerned with the identification of the constitutive law of materials in
the framework of one-dimensional elasto-visco-plastic rheological models. The behavior
of such a material can be approached by considering it is well approximated by
the reaction of an assembly of elementary modules representing the basic possible
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behaviors (i.e. elasticity, viscosity and plasticity). The way these elementary modules
are connected gives the shape of the underlying system of differential equations whose
resolution gives access to the simulated behavior of the material. Hence different
assemblies give birth to a wide range of global behaviors.

The identification of rheological models proceeds from experimental responses of
the target material to given loading paths in the time-strain-stress space. It can be
made either at the level of the parameters of a given assembly (i.e. elasticity modules,
viscosity coeflicients and plasticity thresholds), or at the level of the topology assembly
itself, when no knowledge about the structure of the model is available. Even in the
simplest former case of parametric identification, deterministic methods meets their
usual limitations for non-convex functions, and Evolutionary Computation seems a
good choice. But in the case where the topology of the assembly is unknown, EC is,
as far as we know, the only method that ever proved able to yield a solution [SSJ*96].

The paper is organized as follows: General model identification problems are
presented in section 1.2, and basic differences between parametric and non-parametric
problems are sketched. Section 1.3 introduces in more details the one-dimensional
rheological models for elasto-visco-plastic materials, and details the numerical
simulation of such models. Section 1.4 then presents the results of the parametric
identification for the polyethylene, in the case where the topology of the assembly is
guessed. To handle the general case, the assemblies of elementary mechanical modules
are transformed into tree structures: this allows one to use Genetic Programming
(GP) techniques to solve the non-parametric identification problem: Section 1.5 first
recalls the basic concepts of GP, together with some specific modifications that proved
necessary in the case of rheological models identification, then presents and discusses
some results of the non-parametric identification. Section 1.6 discusses the issues
related to parametric vs non-parametric optimization, and concludes the paper.

1.2 MODEL IDENTIFICATION
1.2.1 Inverse problems

The numerical simulation of a physical, chemical, mechanical phenomenon starts with
a modeling phase, during which some mathematical formulation of the studied process
is derived, usually at the cost of some simplifying hypotheses. This phase generally
relies on an internal model, or constitutive law, a microscopic description of some
underlying phenomenon. By changing this constitutive law, one models as many
different processes that satisfy the same simplifying hypotheses.

The overall simulation process can be described graphically by Figure 1.2.1: the
general purpose numerical algorithm internally uses the model at hand to derive sim-
ulated results from experimental conditions. The simulation of a direct process is said
accurate if the error between the numerical results and the experimental results for
the same experimental conditions is small. It is robust if a small change in the exper-
imental conditions results in small modifications of the simulated results.

Though in most cases such models reduce to real-valued functions (see e.g. [FS95]),
they can also take different forms, as will be seen in section 1.3.
Suppose now that a new system is to be studied, for which no precise model is
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Figure 1.1 Direct problem: Physical and simulated processes for the same
experimental conditions.
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Figure 1.2 Evolutionary approach for the inverse problem: The fitness of the
indwidual (tentative model) at hand is computed by comparing the actual
experimental results with the numerical results obtained using that individual as the
model in the simulation.

available, but which is known to be relevant to the same simplifying hypotheses
than another well-known case, and for which some experiments can be made with
different experimental conditions. Obtaining the model from those experimental data
(experimental conditions plus corresponding experimental responses) constitutes the
inverse problem.

The quality of a tentative model can be easily derived by comparing, under given
experimental conditions, the actual experimental responses with their numerical sim-
ulations obtained using that tentative model: a good model should give simulated
results close to the experimental ones. Hence, Figure 1.2 represents a possible fitness
for evolutionary inverse problem solving.

The critical issue is the choice of the search space in which to look for a solution.
It should be large enough to include high quality solutions, but not too large, as the
search would then be intractable.

Some constraints can result from the simplifying hypotheses made during the
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modeling phase: For instance, if some law was assumed linear, only a few coefficients
completely describe it.

Some guidelines can be also gathered from the experts in the application domain,
resulting in constraints on the search space: For instance, the parameter representing
the density of any fluid must be strictly positive.

But another important question also influences the choice of the search space: What
do the experts of the application domain expect from the identification? If the em-
phasis is put on understandability, then only analytical models should be used (for
model reducing to real-valued functions), while the choice is larger if only predictive
accuracy matters (including, for real-valued models, Neural Networks, for instance).

Another important issue in inverse problem solving is the generalization capability of
the solution: How good is the resulting model when used with experimental conditions
that are different from those used during the identification process? The answer to
that question can in turn give some advantage to complex but robust representations
vs simpler but unstable ones: Neural Networks are known to better generalize than
polynomials, for instance, in the case of data fitting.

The computation of the fitness should take the generalization issue into account:
one usually considers during the identification process more than one experimental
condition, also termed fitness cases. The fitness is then the average of the error over
all fitness cases (as in Figure 1.2). Of course, the computational cost is proportional
to the number of fitness cases.

1.2.2  Parametric vs non-parametric identification

Among all search spaces, a special attention is paid to those that can be mapped onto
the Euclidean vector space R", for some integer n, e.g. the set of polynomials of a
given degree, the set of Neural Networks of a fixed architecture. When the target of
the identification is a vector of real-valued parameters, the inverse problem is termed
parametric identification.

When parametric models are used, the identification of parametric models is
amenable to classical optimization problems. It can thus often be handled by stan-
dard deterministic optimization procedures, ranging from linear programming to non
convex constrained optimization algorithms (e.g. Uzawa method, the interior point
method, ...). In the worst cases, the well understood Euclidean structure of the search
space makes it easy to design local search operators, and to use hill-climbing-like meth-
ods for local optimization.

Parametric models may however impose too many restrictions on the solution:
limiting the degree of the target polynomial, or imposing the topology of the Neural
Network might as well forbid the discovery of a good solution. In such cases, one must
therefore explore a larger search space (polynomials of any degree, or Neural Networks
of any topology). The inverse problem is then termed non parametric identification.

Non parametric model identification involves weird spaces, on which no obvious
distance generally exists, and where even the basic topological concept of neighborhood
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cannot be easily defined. These characteristics of non parametric models make them
almost intractable for standard deterministic optimization algorithms.

1.3 MACRO-MECHANICAL RHEOLOGICAL MODELS
1.8.1 onstitutive laws

The design of modern structures requires ever more detailed knowledge of the
constitutive properties of materials. Such knowledge is needed to predict through
numerical simulations the behavior of the structure under external loadings; and
reliable predictions allow for meeting the engineering requirements at a lower cost.
On the other hand, a number of new materials (composite materials, polymers), has
recently come to a wide use and no accurate model of their behavior is so far available.
The identification of a constitutive law for new materials therefore becomes a major
challenge to mechanical science and industry.

The design of an accurate law requires considerable insight in mechanics. When a
new material is expected by experts to resemble a well known material, the model of
the latter is adjusted: its numerical parameters are tuned by minimizing a distance
between the observed behavior of the material and the behavior predicted from the
law for a set of experimental conditions (as described by Figure 1.2). This stage of
identification thus amounts to parametric optimization [GZ85].

Otherwise, an ever stronger sense of mechanics is needed: Brand new models
are mostly elaborated by trial and error, where the successive models guessed by
mechanical engineers are checked against test experiments; these experiments may in
turn suggest new models [LC85].

Or one can also start with a thorough analysis of the mechanical behavior of the ma-
terial at the microscopic scale; a macroscopic law is then derived from the microscopic
model, for instance by homogenization [SPZ87]. However, such models often result in
tremendously time-consuming numerical simulations because of their complexity.

Much attention has been paid in designing experiments (the fitness cases defined
in Section 1.2.2) in order to adequately check a given law [ZFIKN88]. But searching
for an accurate law remains a critical issue, as all above approaches fail in many
cases: When the target material does not resemble any previous material; When the
microscopic analysis does not allow one to build a tractable model; And when the
(sometimes highly nonlinear) behavior of the material prevents from fitting any model
suggested by the expert.

1.3.2 Rheological models

We restrict ourselves to general (visco-elasto-plastic) one-dimensional models which
can be described by the equation which links the stress function o(t) to the strain
applied on this material e(t) and its time derivative é(t):

Rheological models [Per60] allow one to describe most mechanical laws in such a
one-dimensional frame; they can be thought of as an assembly of elementary com-



Figure 1.3 A tentative rheological model of polyethylene
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Figure 1.4 Ezperimental curve in the strain-stress space. A complete description of
the experiment also involves a time dependency, which cannot be seen on the above
curve.

ponents, namely springs, sliders and dashpots, which respectively symbolize elastic,
plastic and viscous behaviors. One end of the assembly is kept fixed, and the loading
is applied at the other end, whose behavior €(t),0(t) stands as the response of the
model. Figure 1.3 shows an example of such a rheological model, which was proposed
for polyethylene [KDVB96].

In particular, a rheological model, far from being a black box, provides a deep
understanding of the constitutive properties of the current material and can be
rearranged by the expert.

1.3.3 The experimental responses

The response of a rheological material to a given loading is a time-dependent (due
to viscosity) irreversible (due to plasticity) phenomenon. Hence the mechanical
experiments consists of the loading history (eezp(t), t = to,..tr at given times
t = to,..tr, and the corresponding observed stress oezp(t)). A typical experiment
is graphically represented in the strain-stress space (i.e. without the time-dependency
information) in Figure 1.4.



1.8.4 Numerical simulation of rheological models

A rheological model ultimately encodes a program mimicking the mechanical behavior
of the material. This program takes in input a loading history (the experimental
conditions as in Figure 1.2.1), and outputs the corresponding response of the model
(the simulated results).

One sequentially executes a two-step process: at each time step, the rheological
model is first transformed into a set of partial differential equations. Then, this set of
equations plus the the loading at this time-step, is solved numerically, and gives the
current response of the model.

Whenever the structure of the rheological model is fixed, the set of partial differential
equations can be written once and for all in the algorithm, i.e. compiled into an ad
hoc program [BOV95]. Hence parametric identification could be done by using such
a specialized tool. However, as non-parametric identification involves a new set of
differential equations for each new model structure, it is necessary to first interpret
the model in order to derive the differential equations, before solving it numerically. In
this paper, the same interpreter-solver program has been used for both parametric and
non-parametric identification to allow for more precise comparisons, It is described in
next subsections.

The interpreter

We restrict ourselves to rheological assemblies composed of series and/or parallel
branches, which allow for describing most known materials.

The interpreter associates to any rheological model R a set of partial differential
equations. Let ¢;(t) and o;(t) denote the local strain and stress (real-valued functions)
attached to component i. The equations attached to the elementary components are:

The elasticity equation for a spring with stiffness k; :
oi(t) = kiei(t)

The viscosity equation for a dashpot with viscosity 7; :
oi(t) = mi€i(t)

The plasticity equation for a slider with stress threshold ¢, which involves
two alternative modes: either the current stress is less than the threshold o7,
in which case the strain derivative is stuck to zero, or the stress is stuck to

o in which case the strain is undefined:
(loi(t)] <of AND é(t) =0) OR (loi(t)] =of AND SGN(oi(t))-€(t) > 0).

All €;(t) and o;(t) are related due to their connections via series or parallel
assemblies. The equation associated to a connecting point relates the stress and strain
at this point €,(t), o, (¢) to the stresses and strains of the downward connected elements
(elementary components or other connecting points) ¢i, ¢a, --Cp:

ep(t) = €, (t) + €y (t) + .. + €, (2).

F . .
or a series connectlon,{ ap(t) = 0o(t) = Tu(t) = . = oo, ().



ep(t) = 601(0 = ecz(t) = - = 6cn(t)'

For a parallel connection,
P { 0p(t) = 0o, (t) + 0y (8) + . + 0, (8).

The state of the model, described through (o;(t), €;(t), €;(t))N.,, where N is the total
number of elements (components and connecting points) in the model, is governed by
the above set of partial differential equations.

The main difficulty here is that the structure of the system depends on the loading
history: as long as a slider ¢ is not saturated (|o;(¢)] < of), it makes inactive all
branches parallel to it and all branches in series below it. The interpreter could
proceeds by recursively checking the rheological model (given the underlying semantics
of parallel and series assemblies). However, a simpler way consists of sequentially
constructing and solving the set of equations at each time step, depending on the
state of the model at the previous time step.

The solver

One iteratively computes the response of the model at time ¢;, i.e. the global stress
oo(t;), given the current set of equations plus the equations of the loading at this time
step:

1. Derivatives are expressed via finite differences:

(t;) — ety
éi(tj):—ei(;?_;f(f ),
J J—

2. The loading history is taken into account:

{ €o(t;) = €eap(t;)

€o (tj) = €eap (tj)

3. These equations, together with the equations written by the interpreter, are
handled as a set of linear equations in the unknown o;(t;), €;(t;), éi(t;) and
6,’(t]',1).

4. Solving this set of linear equations gives the state of the model at time ¢;,
given its previous state at time ¢;_;, the initial state of the model being
(0,0,..0).

5. For each slider i, the internal stress o;(t;) is compared to threshold o7
whenever a slider happens to come to or quit saturation (|o;(t;)| < o7),
the system is rebuilt by calling the interpreter.

6. The response oy(t) for loading €cqp(t;),j = 0..T, is noted or(t, €cap, to, -, tT)-

Complexity: The complexity of this resolution amounts to T' x 2.(3N)3/3, where T
is the number of time steps of the loading history and N the size of the model (the
resolution of a linear system of size n being 2.n3/3).

Error: This resolution process involves two kinds of error. First, the mechanical mea-
sures are known with a given precision, and at given instants only; and the discretiza-
tion of the loading history is beyond our control. Second, our handling of derivatives
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induces numerical errors depending on the current model. We heuristically propose
to estimate both kinds of errors for a given model, through the difference between
the response computed from the whole loading history ec.p(t),t = tg,..tr, and the
response computed from an excerpt of the same loading history, including only one in
two consecutive instants (a loading history typically includes several dozens or a few
hundred points):

Error = 3,7, |0R(t, €copsto, tr, taes t1) — OR(E, €cps to, t2, tan.y t1)).

This estimate intends to capture both the imprecision coming from the available
data, and the error caused by the solver. In what follows, an identification algorithm
will be considered successful if the fitness of the best model falls below this estimate
of the unavoidable error.

1.4 Parametric identification

In this section, we suppose that the mechanical experts were able to predict the
structure of the rheological model for the polyethylene, from some other well-known
composite material, but that the real-valued coefficients of that model (i.e. stiffness
of springs, viscosity coefficient for a dashpot and threshold for a slider) are to be
identified.

The usual method of mechanical engineers is trial-and-error, as the discontinuous
form of the differential equations for sliders forbids any calculation of the derivatives
of the unknown variables. Hence, Evolutionary Computation is a good candidate here.

1.4.1 The Evolutionary Algorithm

As the optimization problem reduces here to parametric optimization, a good
candidate evolutionary algorithm was Evolution Strategies [Sch81, BS93]. After
different tentative settings, our choice was finally a (10+30)-ES: a population of 10
parents produces 30 offspring (3 per parent, regardless of its fitness) by Gaussian
mutation only; The standard deviation is self-adapted, i.e. each real-valued parameter
“carries” its own standard deviation, which undergoes mutation before the parameter
itself gets mutated; The best 10 individuals out of the 40 (parents + offspring) are
deterministically selected to become the parents of the next generation. The algorithm
stops whenever the fitness of the best individual (error in the time-strain-stress space)
becomes lower than the heuristically computed unavoidable error (see above), or after
a given number of generations.

1.4.2 The fitness cases

As described in section 1.2.1 (Figure 1.2), a model is evaluated through the difference
between the observed stress oz, (t) and the stress og(t,€czp) computed from that
model according to the experimental loading history:

F(R, (€exp(t), Ocap(t))) = Z lor(t, €cap) — Oeap(t)|-
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Figure 1.5 Parametric identification: Simulated curves using the best model after
21 and 200 generations.
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kq n ks k3 os
?Experimental” | 790.45 6248.60 150.20 41.60 7.25
Identification 789.989 5947.84 160.243 45.4853 7.00099

Table 1.1 Results of the parametric identification for the polyethylene

However, for simplicity reasons, we considered as experimental results the results
provided by simulation from accurate numerical algorithm specific to the target
rheological model of Figure 1.6 [BOV95].

1. .3 Results

Out of 21 independent runs, about 70% reached the success criterion (fitness below
unavoidable numerical error). The total computation time was in average about 10mn
for a run of 500 generations (15000 fitness evaluations) on a Pentium 166 workstation.

Figure 1.4.3 presents, together with the experimental curve, the response curve of
the best individual discovered during a typical successful run of the algorithm, at
generations 21 (Figure 1.4.3-a) and at generation 200, after “convergence” (Figure
1.4.3-b), while Table 1.4.3 shows the parameters of the best discovered individual,
compared to the exact solution. Both curves and coefficients were judged excellent
by mechanical engineers, compared to the results of the usual trial-and-error method,
even based on the specific numerical algorithm [BOV95].

1.5 Non-parametric identification

In the preceding section, it was assumed that only the parameters of a known
rheological model were unknown. But when the new material is very different from
any existing material, the structure itself must be looked for, and the identification
problem becomes non-parametric.

The first task is to find a representation of the potential solutions covering a large
enough subspace of the whole search space, and still amenable to evolutionary search,
i.e. where evolution operators like mutation and crossover can be easily and efficiently
designed.
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Figure 1.6 The tree representing the rheological model of polyethylene (Figure 1.3).

1.5.1 Representation

Going back to the graphical model of rheological models of Figure 1.3 and the
considerations detailed in section 1.3.4, and with some knowledge of Genetic
Programming [K0z92, Koz94], a first idea is to represent rheological models as trees:
the nodes are either the parallel or the serial connectors, and the terminals are the
elementary components of the model (i.e. springs, dashpots or sliders). The model of
polyethylene of Figure 1.3 so becomes the tree of Figure 1.6.

This representation of rheological models can represent any rheological model
limited to parallel and series assemblies. Moreover, any tree using parallel or series
nodes, and spring, dashpot or slider terminals, represents a valid rheological model.
Hence, it is straightforward to transpose GP operators to rheological models, and the
following were used:

Initialization up to a given depth, all nodes and terminals chosen randomly
Crossover by exchange of randomly chosen sub-trees [Ko0z92];

Mutation by random replacement of a sub-tree;

Mutation by replacing an operator (resp. a terminal) by the (resp. an) other
operator (resp. random terminal).

Nevertheless, an important characteristic of the terminals used here (springs,
dashpots and sliders) is that they all involve a real-valued parameter that needs to
be adjusted precisely. This leads to handle the mutation of real-valued terminal in a
specific way, described in next subsection, and called surface mutation. By contrast,
the mutation operators described above will be called structural mutations.

1.5.2 Handling real-valued terminals

Like numerical functions, rheological assemblies allow for values to combine (e.g. the
series of two springs with respective stiffness k; and ky behaves as a spring with stiff-
ness %) The adjustment of numerical values could then be left to random mutation
and crossover, as in [Ko0z92]. However, this leads to a dramatic increase of the size of
the trees along evolution; and the fitness computation increases as the cube of the
size (section 1.3.4). Such adjustment of constants is therefore much more expensive

for rheological identification than for classical regression problems.
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k1 n ko k3 gs
”Experimental” | 790.45 6248.60 150.20 41.60 7.25
Identification | 998.892 8698.78 133.085 39.6647 19.0409

Table 1.2 Results of the non-parametric identification for the polyethylene, when
the ezact structure has been found.

A specific mutation operator was thus devised to address the optimization of
floating-points values. This operator basically is a random hill-climber, termed surface
mutation: Surface mutation modifies all floating-point terminals in a given tree, via the
addition of a Gaussian random variable; the standard deviation of the mutation is here
again attached to the coefficient, and self-adapted. A surface mutation is considered
successful if it results in an improved fitness. The random hill-climber repeatedly per-
forms surface mutations, until a number O of consecutive surface mutations, termed
stubbornness, is found unsuccessful.

Any crossover or structural mutation is followed by a hill-climbing stage, in order
to get the best from the new incoming tree-structure. This strategy transposes in the
field of GP the formal memetic approach developed in the frame of GAs in [RS94]:
the aim still is to confine the genetic population in the region of local optima with
respect to the floating-point values.

This strategy is intermediate between a mutation operator that would modify a
single terminal (e.g. by once adding a Gaussian random variable to the coefficient), and
the costly complete strategy of running a full parametric optimization (as presented
in section 1.4) on any tree after crossover or structural mutation.

1.5.8 Results

For all runs presented here, the population size was set to 200. The initial maximal
depth of individuals was set to 12, while offspring could not go beyond depth 50. A
standard generational evolution was used: tournament (size 3) selection, crossover rate
of 0.4, mutation rate of 0.2, all offspring replacing the parents. The maximum number
of generation was set to 300. The total computation time was in average about 40mn
on a Pentium 166 workstation.

The stubbornness was set to 2. The influence of population size, stubbornness, and
the use of approximated fitness in the early generations are discussed in details in
[SST+96].

In about 20% of the cases, the success criterion was reached. It is important to
notice, though, that the best topologies found in most cases are not the exact ones,
and resemble that presented in Figure 1.7: according to mechanical experts, it is due
to the lack of creep in the experiments, i.e. the part of the experimental curve going
back the horizontal axis in Figure 1.4.

Nevertheless, as can be seen in Table 1.5.3, the coefficients found by the best run for
which that “good” structure was reached resemble the exact ones, though they are, as
expected, not as good as those obtained by the parametric identification. Moreover,
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Figure 1.7 A local optimum for the non-parametric identification: This simpler

tree-structure has almost the same behavior than the exact solution when no creep is
included in the experimental curve.

1.6 Conclusion

The point of this paper was the comparison between parametric and non-parametric
identification in the case of rheological models. And the first clear conclusion is, of
course, that parametric identification gives more accurate results than non-parametric,
and at a lower cost!

A first basic remark is that, in any case, and regardless of the “memetic” strategy
(see Section 1.5.2), any non-parametric identification solution should in turn become
the basis of some parametric identification: the advantages of both approaches would
so be combined, and the final accuracy would be that of the parametric part, provided
a good structure is found during the non-parametric step.

However, further work in the non-parametric case is concerned with tuning the ef-
ficiency of the hill-climbing mutation by allowing the number of surface mutations to
increase along evolution, trying to get the same accuracy than the above-mentioned
combined approach at the cost of a single non-parametric run.

[4

But non-parametric optimization not only requires more computing power.
Actually, the most difficult part of the non-parametric work was the design and
implementation of the interpreter-solver program: Hence, for mechanical engineers,
the most important, though indirect, consequence of this work is ... the availability
of an interpreter able to simulate any rheological model.

As mentioned in Section 1.3.4, the only existing tools can be thought more as “rhe-
ological compilers”, i.e. program solving the problem for one particular rheological
model [BOV95]: As no optimization algorithm was able to handle the identification
problem (even in the parametric case), the technical difficulty of designing a “rhe-
ological interpreter” probably appeared to be a too large investment to mechanical
engineers compared to its potential usefulness.

Yet, the parametric optimization could have been performed by repeated calls (i.e.
through file-based argument passing, for instance) to some up-to-date rheological
compiler, like the one described in [BOV95] for the polyethylene. The higher
accuracy of such ad hoc compilers would probably have increased the accuracy of the
results. However, though the interpreter was primarily designed for non parametric
identification, it now allows straightforward parametric optimization of any further
rheological model.



Another perspective of this work is the design of discriminant mechanical
experiments in order to decide between candidates rheological models provided by
a previous non parametric identification.
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