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We study the space of nearly Kähler structures on compact 6-dimensional manifolds. In particular, we prove that the space of infinitesimal deformations of a strictly nearly Kähler structure (with scalar curvature scal) modulo the group of diffeomorphisms, is isomorphic to the space of primitive co-closed (1, 1)-eigenforms of the Laplace operator for the eigenvalue 2scal/5.

Introduction

A nearly Kähler manifold is an almost Hermitian manifold (M, g, J) with the property that (∇ X J)X = 0 for all tangent vectors X, where ∇ denotes the Levi-Civita connection of g. A nearly Kähler manifold is called strictly nearly Kähler if (∇ X J) is non-zero for every tangent vector X. Besides Kähler manifolds, there are two main families of examples of compact nearly Kähler manifolds: Naturally reductive 3-symmetric spaces, which are classified by A. Gray and J. Wolf [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF] and twistor spaces over compact quaternion-Kähler manifolds with positive scalar curvature, endowed with the nonintegrable canonical almost complex structure (cf. [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF]).

A nearly Kähler manifold of dimension 4 is automatically a Kähler surface, and the only known examples of non-Kähler compact nearly Kähler manifolds in dimension 6 are the 3-symmetric spaces G 2 /SU 3 , SU 3 /S 1 ×S 1 , Sp 2 /S 1 ×Sp 1 and Sp 1 ×Sp 1 ×Sp 1 /Sp 1 . Moreover, J.-B. Butruille has recently shown in [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF] that there are no other homogeneous examples in dimension 6.

On the other hand, using previous results of R. Cleyton and A. Swann on G-structures with skew-symmetric intrinsic torsion, the second-named author has proved in [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] that every compact simply connected nearly Kähler manifold M is isometric to a Riemannian product M 1 × . . . × M k , such that for each i, M i is a nearly Kähler manifold belonging to the following list: Kähler manifolds, naturally reductive 3-symmetric spaces, twistor spaces over compact quaternion-Kähler manifolds with positive scalar curvature, and 6-dimensional nearly Kähler manifolds.

Date: February 16, 2007.

It is thus natural to concentrate on the 6-dimensional case, all the more that in this dimension, non-Kähler nearly Kähler manifolds have several interesting features: they carry real Killing spinors (and thus are automatically Einstein with positive scalar curvature) and they are defined by a SU 3 structure whose intrinsic torsion is skewsymmetric. These manifolds were intensively studied by A. Gray in the 70's, thus motivating the following Definition 1.1. A compact strictly nearly Kähler manifold of dimension 6 is called a Gray manifold.

The main goal of this paper is to study the deformation problem for Gray manifolds. Notice that we consider simultaneous deformations of the metric and of the almost complex structure. Indeed M. Verbitsky proved in [START_REF] Verbitsky | Hodge theory on nearly Kähler manifolds math[END_REF] that on a 6-dimensional almost complex manifold there is up to constant rescaling at most one strictly nearly Kähler metric. Conversely it is well known (c.f. [START_REF] Baum | Twistor and Killing Spinors on Riemannian Manifolds[END_REF] or Section 4 below) that on a manifold (M 6 , g) which is not locally isometric to the standard sphere, there is at most one compatible almost complex structure J such that (M, g, J) is nearly Kähler.

We start by studying deformations of SU 3 structures, then use the characterization of Gray manifolds as SU 3 structures satisfying a certain exterior differential system in order to compute the space of infinitesimal deformations of a given Gray structure modulo diffeomorphisms. In particular, we prove that this space is isomorphic to some eigenspace of the Laplace operator acting on 2-forms (see Theorem 4.2 for a precise statement).

Algebraic preliminaries

Let V denote the standard 6-dimensional SU 3 representation space, which comes equipped with the Euclidean product g ∈ SymV * , the complex structure J ∈ End(V ), the fundamental 2-form ω(•, •) = g(J•, •) ∈ Λ 2 V * , and the complex volume element

ψ + + iψ -∈ Λ (3,0) V * .
These objects satisfy the compatibility relations

ω ∧ ψ ± = 0, ψ + ∧ ψ -= 2 3 ω 3 = 4dv, (1) 
where dv denotes the volume form of the metric g. It is easy to check that ψ + and ψ - are related by

ψ -(X, Y, Z) := -ψ + (JX, Y, Z). (2) 
We identify elements of V and V * using the isomorphism induced by g. For any orthonormal basis {e i } of V adapted to J (i.e. J(e 2i-1 ) = e 2i ) we have: The following formulas are straightforward (it is enough to check them for X = e 1 and use the transitivity of the SU 3 action on spheres):

ω =
ψ + ∧ (X ψ + ) = X ∧ ω 2 , ψ + ∧ (X ψ -) = -JX ∧ ω 2 , (3) 
ψ -∧ (X ψ + ) = JX ∧ ω 2 , ψ -∧ (X ψ -) = X ∧ ω 2 . ( 4 
)
Let Λ : Λ p V → Λ p-2 V denote the metric adjoint of the wedge product with ω,

Λ = 1 2 i Je i e i . It is easy to check that Λ(X ψ ± ) = 0, Λ(X ∧ ψ ± ) = JX ψ ± , ∀X ∈ V (5) 
and

Λ(τ ∧ ω) = ω ∧ Λτ + (3 -p)τ, ∀τ ∈ Λ p V. (6) 
We next describe the decomposition into irreducible summands of Λ 2 V and Λ 3 V . We use the notation Λ (p,q)+(q,p) V for the projection of Λ (p,q) V onto the real space Λ p+q V .

Λ 2 V = (Λ (1,1) 0 V ⊕ Rω) ⊕ Λ (2,0)+(0,2) V , (7) 
where the first two summands consist of J-invariant and the last of J-anti-invariant forms. Here Λ

(1,1) 0

V is the space of primitive (1, 1)-forms, i.e. the kernel of the contraction map Λ. The map

ξ → ξ ψ + (8) 
defines an isomorphism of the second summand Λ (2,0)+(0,2) V with V . For 3-forms we have the irreducible decomposition

Λ 3 V = (Λ 1 V ∧ ω) ⊕ Λ (3,0)+(0,3) V ⊕ Λ (2,1)+(1,2) 0 V. (9) 
The second summand Λ (3,0)+(0,3) V is 2-dimensional and spanned by the forms ψ ± . The third summand Λ

(2,1)+(1,2) 0

V is 12-dimensional and can be identified with the space of symmetric endomorphisms of V anti-commuting with J. We note that because of the Schur lemma, the map given by taking the wedge product with ω vanishes on the last two summands.

An endomorphism A of V (not necessarily skew-symmetric) acts on p-forms by the formula

(A ⋆ u)(X 1 , . . . , X p ) := - p i=1 u(X 1 , . . . , A(X i ), . . . , X p ). ( 10 
)
A more convenient way of writing this action is

A ⋆ u = - p i=1 A * (e i ) ∧ e i u, (11) 
where A * denotes the metric adjoint of A. Taking A = J we obtain the form spaces Λ (p,q)+(q,p) V as eigenspaces of the J-action for the eigenvalues -(p -q) 2 . In particular, we see that J ⋆ ϕ = 0 for any J-invariant 2-form ϕ ∈ Λ (1,1) V .

Let Sym -V denote the space of symmetric endomorphisms anti-commuting with J. This space is clearly invariant by composition with J. The map S → S ⋆ ψ + , with S ∈ Sym -V , defines an isomorphism of SU(3)-representations

Sym -V ∼ = Λ (2,1)+(1,2) 0 V,
showing in particular that Sym -V is irreducible. Taking (2) into account, we remark that for S ∈ Sym -V we have

S ⋆ ψ + = (JS) ⋆ ψ -. (12) 
Notice that tr(S) = 0 for all S ∈ Sym -V .

Let h be any skew-symmetric endomorphism anti-commuting with J. Then the map h → g(h•, •) identifies the space of skew-symmetric endomorphism anti-commuting with J with Λ (2,0)+(0,2) V . Using the isomorphism ( 8) we can state this as Lemma 2.1. An endomorphism F of V anti-commuting with J can be written in a unique way

F = S + ψ + ξ for some S ∈ Sym -V and ξ ∈ V , where ψ + ξ denotes the skew-symmetric endomorphism of V defined by g(ψ + ξ •, •) = ψ + (ξ, •, •).
Corresponding to the decomposition of Λ 3 V given in (9), we have Lemma 2.2. An exterior 3-form u ∈ Λ 3 V can be written in a unique way

u = α ∧ ω + λψ + + µψ -+ S ⋆ ψ + ,
for some α ∈ V , λ, µ ∈ R and S ∈ Sym -V . Its contraction with ω satisfies

Λu = 2α. ( 13 
)
Proof. The contraction map Λ obviously vanishes on Λ (3,0)+(0,3) V ⊕ Λ

(2,1)+(1,2) 0

V , so by [START_REF] Gray | The Structure of Nearly Kähler manifolds[END_REF] we have Λu = Λ(α ∧ ω) = 2α.

The space of symmetric endomorphisms commuting with J is identified with Λ (1,1) V via the map h → ϕ(•, •) := g(hJ•, •), which in particular maps the identity of V to the fundamental form ω. If ϕ is a (1, 1)-form with corresponding symmetric endomorphism h, then

h = h 0 + 1 6 tr(h)id, ( 14 
)
where h 0 denotes the trace-free part of h. As a consequence of this formula and of the Schur Lemma we find that

h ⋆ ψ + = 1 6 tr(h)id ⋆ ψ + = - 1 2 tr(h)ψ + (15) 
for all symmetric endomorphisms h commuting with J.

In the remaining part of this section we want to recall several properties and formulas related to the Hodge * -operator, which we will use in later computations. We consider the scalar product •, • on Λ k V characterized by the fact that the basis

{e i 1 ∧ . . . ∧ e i k | 1 ≤ i 1 < . . . < i k ≤ 6}
is orthonormal. With respect to this scalar product, the interior and exterior products are adjoint operators:

X ω, τ = ω, X ∧ τ , ∀ X ∈ V, ω ∈ Λ k V, τ ∈ Λ k-1 V. ( 16 
)
We define the Hodge *-operator

* : Λ k V → Λ 6-k V by ω ∧ * τ := ω, τ dv, ∀ ω, τ ∈ Λ k V,
where dv = 1/6ω 3 denotes the volume form (dv = e 123456 in our notations). It is well-known that the following relations are satisfied:

* ω = 1 2 ω 2 , * ω, * τ = ω, τ , * 2 = (-1) k on Λ k V (17)
From the expression of ψ + and ψ -in any orthonormal basis {e i } we see that * ψ + = ψ - and * ψ -= -ψ + . For later use we compute the Hodge operator on Λ

(2,1)+(1,2) 0 V , too. Let S ∈ Sym -V and α ∈ Λ (2,1)+(1,2) 0 V . We have α ∧ ψ -= 0, whence α, S ⋆ ψ + dv (11) = - i α, S(e i ) ∧ e i ψ + dv = - i e i ∧ S(e i ) α, ψ + dv = (S ⋆ α) ∧ * ψ + = (S ⋆ α) ∧ ψ -= S ⋆ (α ∧ ψ -) -α ∧ (S ⋆ ψ -) = -α ∧ (S ⋆ ψ -) = α, * (S ⋆ ψ -) dv
(we used the fact that * 2 = -1 on 3-forms in order to get the last equality). This shows that

* (S ⋆ ψ -) = S ⋆ ψ + and * (S ⋆ ψ + ) = -S ⋆ ψ -. (18) 
There are two other formulas which we will use later. Let ϕ 0 be a primitive (1, 1)-form,

ξ ∈ V and α ∈ Λ p V then * (ϕ 0 ∧ ω) = -ϕ 0 , * (ξ ∧ α) = (-1) p ξ * α . (19) 

Deformations of SU 3 structures

Let M be a smooth 6-dimensional manifold.

Definition 3.1. A SU 3 structure on M is a reduction of the frame bundle of M to SU 3 . It consists of a 5-tuple (g, J, ω, ψ + , ψ -) where g is a Riemannian metric, J is a compatible almost complex structure, ω is the corresponding fundamental 2-form ω(•, •) = g(J•, •) and ψ + + iψ -is a complex volume form of type (3, 0).

If M carries a SU 3 structure, each tangent space T x M has a SU 3 representation isomorphic to the standard one, so all algebraic results of the previous section transpose verbatim to global results on M. In the remaining part of this article we will most of the time identify tangent vectors and 1-forms on M using the isomorphism induced by the metric g.

Let (g t , J t , ω t , ψ + t , ψ - t ) be a smooth family of SU 3 structures on M. We omit the index t when the above tensors are evaluated at t = 0, and we use the dot to denote the derivative at t = 0 in the direction of t.

We start with the study of the 1-jet at t = 0 of the family of U 3 structures (g t , J t , ω t ). Lemma 3.2. There exist a vector field ξ, a section S of Sym -M and a section h of Sym + M (i.e. a symmetric endomorphism commuting with J), such that

J = JS + ψ + ξ , (20) 
ġ = g((h + S)•, •), (21) ω 
= ϕ + ξ ψ + , ( 22 
) where ϕ is the (1, 1)-form defined by ϕ(•, •) = g(hJ•, •).
Proof. Differentiating the identity J 2 t = -id T M yields that J anti-commutes with J. The first formula thus follows directly from Lemma 2.1.

We write g

t (•, •) = g(f t •, •) so ġ(•, •) = g( ḟ•, •). Let ḟ = h+h ′
be the decomposition of ḟ in J-invariant and J-anti-invariant parts. We have to check that h ′ = S. Differentiating the identity

g t (•, •) = g t (J t •, J t •) at t = 0 yields g(hX, Y ) + g(h ′ X, Y ) = ġ(X, Y ) = ġ(JX, JY ) + g( JX, JY ) + g(JX, JY ) = g(hJX, JY ) + g(h ′ JX, JY ) + g(JSX, JY ) +g(ψ + ξ X, JY ) + g(JX, JSY ) + g(JX, ψ + ξ Y ) = g(hX, Y ) -g(h ′ X, Y ) + 2g(SX, Y ),
showing that h ′ = S. The last formula is a direct consequence of (20) and (21):

ω(X, Y ) = ġ(JX, Y ) + g( JX, Y ) = g((h + S)JX, Y ) + g((JS + ψ + ξ )X, Y ) = g(hJX, Y ) + (ξ ψ + )(X, Y ).
This result actually says that the tangent space to the set of all U 3 structures on M at (g, J, ω) is parametrized by a section (ξ, S, ϕ) of the bundle T M ⊕Sym -M ⊕Λ (1,1) M. We now go forward and describe the 1-jet of a family of SU 3 structures. Since the reduction from a U 3 structure to a SU 3 structure is given by a section in some S 1 -bundle, it is not very surprising that the extra freedom in the tangent space is measured by a real function (µ in the notation below): Lemma 3.3. The derivatives at t = 0 of ψ + t and ψ - t are given by ψ+ = -ξ ∧ ω

+ λψ + + µψ -- 1 2 S ⋆ ψ + , (23) 
ψ-= -Jξ ∧ ω -µψ + + λψ -- 1 2 S ⋆ ψ -, (24) 
where λ = 1 4 tr(h) and µ is some smooth function on M.

Proof. By Lemma 2.2, we can write

ψ+ = α ∧ ω + λψ + + µψ -+ Q ⋆ ψ + , (25) 
for some functions λ, µ, 1-form α and section Q of Sym -M.

The fact that ψ + t defines -in addition to the U 3 structure (g t , J t ) -a SU 3 structure is characterized by the two equations

g t (ψ + t , ψ + t ) = 4 and ψ + t (J t X, Y, Z) = ψ + t (X, J t Y, Z). ( 26 
)
We consider the symmetric endomorphism f t introduced above, which corresponds to g t in the ground metric g. Since the identity acts on 3-forms by -3id, the first part of (26) reads g(f t⋆ ψ + t , ψ + t ) = -12. Differentiating this at t = 0 and using the fact that ψ + and S ⋆ ψ + live in orthogonal components of Λ 3 M, we obtain

0 = g( ḟ⋆ ψ + , ψ + ) -6g( ψ+ , ψ + ) = g((h + S) ⋆ ψ + , ψ + ) -24λ (15) = 6tr(h) -24λ.
This determines the function λ. We next differentiate the identity ψ + t ∧ ω t = 0 at t = 0. Since the wedge product with ω vanishes on ψ + , ψ -and on

Q ⋆ ψ + ∈ Λ (2,1)+(1,2) 0 M, we get 0 = ψ+ ∧ ω + ψ + ∧ ω = α ∧ ω 2 + ψ + ∧ (ϕ + ξ ψ + ) (3) = (α + ξ) ∧ ω 2 ,
showing that α = -ξ. Finally, we differentiate the second part of (26) at t = 0: ψ+ (JX, Y, Z) + ψ + ( J X, Y, Z) = ψ+ (X, JY, Z) + ψ + (X, JY, Z).

Using (20) and (25), this is equivalent to the fact that the expression

-(ξ ∧ ω)(JX, Y, Z) + (Q ⋆ ψ + )(JX, Y, Z) + ψ + (JSX, Y, Z) + ψ + (ψ + ξ X, Y, Z) is skew-symmetric in X and Y . It is easy to check that -(ξ ∧ ω)(JX, Y, Z) + ψ + (ψ + ξ X, Y, Z) = (Jξ ∧ ω)(X, Y, Z), therefore the above condition reduces to (Q ⋆ ψ + )(JX, Y, Z) + ψ + (JSX, Y, Z) = (Q ⋆ ψ + )(X, JY, Z) + ψ + (X, JSY, Z).
Using [START_REF] Verbitsky | Hodge theory on nearly Kähler manifolds math[END_REF], this last relation becomes

ψ + ((2Q + S)JX, Y, Z) = ψ + (X, (2Q + S)JY, Z), ∀X, Y, Z ∈ T M. ( 27 
)
The set of all elements of the form 2Q + S satisfying the above relation is a SU 3invariant subspace of Sym -M. But Sym -M is irreducible, and not every element of Sym -M satisfies (27) (to see this, just pick up any element in Sym -M and make a direct check). This shows that 2Q + S = 0.

Finally, the relation ( 24) is a straightforward consequence of (23). We simply differentiate the formula J t⋆ ψ + t = 3ψ - t (obtained from (2)) at t = 0 and compute.

Summarizing, we have shown that the tangent space to the set of all SU 3 structures on M at (g, J, ω, ψ + , ψ -) is parametrized by a section (ξ, S, ϕ, µ) of the vector bundle

T M ⊕ Sym -M ⊕ Λ (1,1) M ⊕ R. Let α : Λ 2 M → T M denote the metric adjoint of the linear map X ∈ T M → X ψ + ∈ Λ 2 M. A simple check shows that α(X ψ + ) = 2X, α(X ψ -) = -2JX, α(τ ) = 0 ∀ τ ∈ Λ (1,1) M. ( 28 
)
Using the map α, we derive a useful relation between the components ψ+ and ω of any infinitesimal SU 3 deformation:

Λ ψ+ (13) = -2ξ (28) 
= -α( ω).

(29)

Deformations of Gray manifolds

Definition 4.1. A Gray structure on a 6-dimensional manifold M is a SU 3 structure G := (g, J, ω, ψ + , ψ -) which satisfies the exterior differential system

dω = 3ψ + dψ -= -2ω ∧ ω (30) 
A Gray manifold is a compact manifold endowed with a Gray structure.

It follows from the work of Reyes-Carrión [START_REF] Reyes-Carrión | Some special geometries defined by Lie groups[END_REF] that a Gray manifold is a strictly nearly Kähler 6-dimensional compact manifold with scalar curvature scal = 30. We refer to [START_REF] Gray | The Structure of Nearly Kähler manifolds[END_REF] for an introduction to nearly Kähler geometry. We will use later on the relations

∇ X ω = X ψ + , ∇ X ψ + = -X ∧ ω,
which show that ∇ω and ∇ψ + are SU 3 -invariant tensor fields on M. Moreover the second equation immediately implies that ψ + and ω are both eigenforms of the Laplace operator for the eigenvalue 12.

Let now M be a compact 6-dimensional manifold with some Gray structure G on it. We denote by M the connected component of G in the space of Gray structures on M. Let D be the group of diffeomorphisms of M isotopic to the identity. This group acts on M by pull-back and the orbits of this action form the moduli space of deformations of G.

At the infinitesimal level, the 1-jet of a curve of Gray structures (g t , J t , ω t , ψ + t , ψ - t ) at G is a tuple γ := ( ġ, J, ω, ψ+ , ψ-) determined by a section (ξ, S, ϕ, µ) of the bundle T M ⊕ Sym -M ⊕ Λ (1,1) M ⊕ R via (20)-( 24), which satisfies the linearized system of (30)

d ω = 3 ψ+ , d ψ-= -4 ω ∧ ω. ( 31 
)
The space of all tuples γ is called the virtual tangent space of M at G and is denoted by

T G M. The Lie algebra χ(M) of D maps to T G M by X → L X G.
Its image, denoted by χ G (M), is a vector space isomorphic to χ(M)/K(g), where K(g) denotes the set of Killing vector fields on M with respect to g. The space of infinitesimal Gray deformations G is, by definition, the vector space quotient T G M/χ G (M).

The main purpose of this section is to give a precise description of this space.

Theorem 4.2. Let G := (g, J, ω, ψ + , ψ -) be a Gray structure on a manifold M such that (M, g) is not the round sphere (S 6 , can). Then the space of infinitesimal deformations of G is isomorphic to the eigenspace for the eigenvalue 12 of the restriction of the Laplace operator ∆ to the space of co-closed primitive (1, 1)-forms Λ

(1,1) 0

M.

Proof. A simple but very useful remark is that (except on the round sphere S 6 ), a Gray structure is completely determined by its underlying Riemannian metric. The reason for that is the fact that the metric defines (locally) a unique line of Killing spinors with positive Killing constant, which, in turn, defines the almost complex structure, and, together with the exterior derivative of the Kähler form, one recovers the whole SU 3 structure.

By the Ebin Slice Theorem [START_REF] Berger | Ebin Some decompositions of the space of symmetric tensors on a Riemannian manifold[END_REF], each infinitesimal deformation of G has a unique representative γ = ( ġ, J, ω, ψ+ , ψ-) ∈ T G M such that δ ġ = 0 and tr g ġ = 0.

Let (ξ, S, ϕ, µ) be the section of the bundle T M ⊕ Sym -M ⊕ Λ (1,1) M ⊕ R determined by γ via the equations (20)-(24). We have to interpret the system (31)-(32) in terms of (ξ, S, ϕ, µ). The main idea is to show that µ and Jξ are eigenvectors of the Laplace operator on functions and 1-forms corresponding to eigenvalues which do not belong to its spectrum, thus forcing them to vanish.

We start by taking the exterior product with ψ + in the first equation of (31) and use (23) to get

d ω ∧ ψ + = 3 ψ+ ∧ ψ + = 3µψ -∧ ψ + = -12µdv.
On the other hand, using (22) and taking (4) into account yields

d ω ∧ ψ + = d(ϕ + ξ ψ + ) ∧ ψ + = d((ϕ + ξ ψ + ) ∧ ψ + ) = d(ξ ∧ ω 2 ), whence -12µdv = d(ξ ∧ ω 2 ). ( 33 
)
where h is the endomorphism defined by ϕ(•, •) = g(hJ•, •) and λ = 1 4 tr(h) = 1 2 Λϕ. In the above formulas, δ stands for the usual co-differential when applied to an exterior form, and for the divergence operator (cf. [START_REF] Besse | Einstein manifolds[END_REF], 1.59) when acting on symmetric tensors.

Since the proof is rather technical, we postpone it to the end of this section.

Using (21), ( 40), ( 41) and ( 43), the relation (39) becomes

ξ = Jdµ + 1 2 δh - 1 2 δS = Jdµ -Jδϕ - 1 2 δ ġ. (45) 
From ( 32) and ( 45) we obtain

ξ = Jdµ -Jδϕ. (46) 
On the other hand, (46) shows that µ is an eigenfunction of ∆ for the eigenvalue 6:

∆µ = δdµ = δ(Jξ) = - * d * (Jξ) = - 1 2 * d(ξ ∧ ω 2 ) (33) = 6µ. (47) 
Now, the Obata theorem (cf. [START_REF] Obata | Certain conditions for a Riemannian manifold to be isometric with a sphere[END_REF]Theorem 3]) says that on a compact n-dimensional Einstein manifold of positive scalar curvature scal, every eigenvalue of the Laplace operator is greater than or equal to scal/(n -1), and equality can only occur on the standard sphere. Since (M, g) is not isometric to the standard sphere and is Einstein with scalar curvature scal = 30, the Obata theorem thus implies that µ = 0. Since λ = 1 4 tr(h) = 1 4 tr( ġ), the second part of (32) also shows that λ = 0. Taking (32), (41), (42) and (46) into account, the equation (36) now becomes

-4ϕ -4ξ ψ + = -4 ω = -dJξ -Λ(dJξ)ω -3ξ ψ + - 1 2 Λd(S ⋆ ψ -) = -dJξ -Λ(dJξ)ω -3ξ ψ + + 1 2 δ(S ⋆ ψ + ) -ξ ψ + , whence dJξ = -Λ(dJξ)ω + 4ϕ + 1 2 δ(S ⋆ ψ + ).
Applying Λ to this relation and using (44) yields Λ(dJξ) = 3Λ(dJξ), so dJξ = 4ϕ + shows, by integration over M, that 4 cannot be an eigenvalue of ∆ , so ξ has to vanish identically. From Lemmas 3.2 and 3.3, we get

ψ+ = - 1 2 S ⋆ ψ + , ψ-= - 1 2 S ⋆ ψ -, ω = ϕ ∈ Λ (1,1) 0 M .
Plugging these equations into (31) yields

dϕ = -3 2 S ⋆ ψ + , δ(S ⋆ ψ + ) = - * d * (S ⋆ ψ + ) (18) = * d(S ⋆ ψ -) = -2 * d ψ-(31) = 8 * ( ω ∧ ω) (19) = -8ϕ. ( 48 
)
Thus ϕ is a co-closed eigenform of the Laplace operator for the eigenvalue 12.

Conversely let us assume that ϕ ∈ Ω

(1,1) 0

M is co-closed and satisfies ∆ϕ = 12ϕ. We have to show that ϕ defines an infinitesimal deformation of the given Gray structure. The main point is to remark that dϕ is a form in Λ

(2,1)+(1,2) 0 M. Lemma 4.4. If ϕ is a co-closed form in Ω (1,1) 0 M then dϕ ∈ Ω (2,1)+(1,2) 0 M.
Proof. Using Lemma 2.2, this amounts to check that dϕ satisfies the system

     dϕ ∧ ψ + = 0, dϕ ∧ ψ -= 0, dϕ, X ∧ ω = 0, ∀ X ∈ T M. (49) 
Each of these equations follows easily:

dϕ ∧ ψ + = d(ϕ ∧ ψ + ) = 0, dϕ ∧ ψ -= d(ϕ ∧ ψ -) -ϕ ∧ dψ -(30) = 2ϕ ∧ ω 2 (17) = 4 ϕ, ω = 0, dϕ, X ∧ ω = Λdϕ, X (40) 
= -Jδϕ, X dv = 0.

Consequently, there exists a unique section S of Sym -M with dϕ = -3 2 S ⋆ ψ + . Taking ξ = 0, λ = 0 and µ = 0, the equations (20)-( 24) define an infinitesimal SU 3 -deformation by ω := ϕ, ψ+ := -1 2 S ⋆ ψ + and ψ-:= -1 2 S ⋆ ψ -. It remains to show that ( ω, ψ+ , ψ-) satisfy the linearized system (31). The first equation is clear by definition and the second is equivalent to d(S ⋆ ψ -) = 8ϕ ∧ ω. Using again (18) and (19), this last equation is equivalent to δ(S ⋆ ψ + ) = -8ϕ, which follows directly from the hypothesis on ϕ and the definition of S.

Proof of Lemma 4.3. By (8), ∇ X J = ψ + X ∈ Λ (0,2)+(2,0) M so ϕ, ∇ X J = 0 for all vectors X. Identifying ϕ with the corresponding skew-symmetric endomorphism of T M, we compute in a local orthonormal basis {e i } parallel at some point:

Λdϕ = 1 2 Je i e i (e k ∧ ∇ e k ϕ) = 1 2 Je i ∇ e i ϕ - 1 2 Je i (e k ∧ (∇ e k ϕ)e i ) = 1 2 (∇ e i ϕ)Je i - 1 2 (∇ Je i ϕ)e i + 1 2 e k (∇ e k ϕ)(e i , Je i ) = (∇ e i ϕ)Je i + d ϕ, ω -e k ϕ(e i , (∇ e k J)e i ) = (∇ e i (ϕJ))e i -ϕ((∇ e i J)e i ) + 2dλ -2e k ϕ, ∇ e k J = -(∇ e i h)(e i ) + 2dλ = δh + 2dλ.
This proves (40). To prove the second relation, we notice that g((∇ e i J)(ϕe i ), X) = ψ + (e i , ϕe i , X) = 2 ψ + X , ϕ = 0, so δh = -(∇ e i h)e i = (∇ e i (Jϕ))e i = -Jδϕ + (∇ e i J)ϕe i = -Jδϕ. We will now use several times (and signal this by a star above the equality sign in the calculations below) the fact that any SU 3 -equivariant map Sym -M → Λ 2 M is automatically zero, by the Schur Lemma. For every 3-form τ we can write

Λd(τ ) = 1 2 Je i e i (e k ∧ ∇ e k τ ) = e k ∧ ( 1 2 Je i e i ∇ e k τ ) + Je k ∇ e k τ = dΛτ - 1 2 e k ∧ (∇ e k J)e i e i τ + Je k ∇ e k τ.
In particular, for τ = S ⋆ ψ + we have Λτ = 0 and e k ∧ (∇ e k J)e i e i τ = 0, so from [START_REF] Wang | Preserving parallel spinors under metric deformations[END_REF] and the remark above we get = -2δS ψ + -Λd(S ⋆ ψ -), thus proving (42). Let σ := (∇ e k S)e j ∧ (e k e j ψ + ) denote the last summand in (50). A similar calculation easily shows that J ⋆ σ = 0, so σ belongs to Λ (1,1) M. From (28) we thus get αΛd(S ⋆ ψ -) = -α(δS ψ + ) = -2δS.

Λd(S ⋆ ψ -) = Je k ∇ e k (S ⋆ ψ -) = Je k ((∇ e k S) ⋆ ψ -) + Je k (S ⋆ (∇ e k ψ -)) * = -Je k ((∇ e k S)e j ∧ e j ψ -) = -(∇ e k S)
Finally, the relation (44) can be checked in the same way:

Λδ(S ⋆ ψ + ) = - 1 2 Je k e k (e j ∇ e j (S ⋆ ψ + )) = - 1 2 e j ∇ e j (Je k e k (S ⋆ ψ + )) -e j (∇ e j J)e k e k (S ⋆ ψ + )) * = δΛ(S ⋆ ψ + ) = 0.
This proves the lemma.

Concluding Remarks

So far we have identified the space of infinitesimal deformations of a given Gray structure with the space of co-closed primitive (1, 1)-forms which are eigenforms of the Laplace operator for the eigenvalue 12. In order to proceed further there are two immediate options. One could try to compute the second derivative of a curve of Gray structures and obtain additional equations. However, this leads to quadratic expressions, which for the moment seem to be rather difficult to handle.

A second natural task is to consider the known homogeneous examples and to study the question whether or not there exist at least infinitesimal deformations. This amounts to study the Laplace operator on 2-forms on certain homogeneous spaces, which should reduce to a tractable algebraic problem.

Since a nearly Kähler deformation always gives rise to an Einstein deformation, we could equally well ask for the existence of infinitesimal Einstein deformations on the known nearly Kähler manifolds. Except for the standard sphere, where no deformations exist, there seems to be nothing known in this direction.

The situation for the standard sphere is quite different. Th. Friedrich has shown in [START_REF] Th | Nearly Kähler and nearly parallel G 2 -structures on spheres[END_REF] that the action of the isometry group SO 7 on the set of nearly Kähler structures on the round sphere (S 6 , can) is transitive. The isotropy group of this action at the standard nearly Kähler structure is easily seen to be the group G 2 (the stabilizer in SO 7 of a vector cross product). The space of nearly Kähler structures on the round sphere is thus isomorphic to SO 7 /G 2 ≃ RP 7 (see [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF]Prop. 7.2]). More geometrically, the set of nearly Kähler structures compatible with the round metric on S 6 can be identified with the set of non-zero real Killing spinors (modulo constant rescalings), and it is well-known that the space of real Killing spinors on (S 6 , can) is isomorphic to R 8 . The counterpart of Theorem 4.2 on the round sphere (S 6 , can) can be stated as follows:

Theorem 5.1. Let G := (g, J, ω, ψ + , ψ -) be a Gray structure on S 6 such that g is the round metric. Then the space of infinitesimal deformations of G is isomorphic to the eigenspace for the eigenvalue 6 of the Laplace operator ∆ on functions, and is, in particular, 7-dimensional.

  e 12 + e 34 + e 56 , ψ + = e 135 -e 146 -e 236 -e 245 , ψ -= e 136 + e 145 + e 235 -e 246 .

1 2

 1 δ(S ⋆ ψ + ). By (46) we have Jξ = δϕ, so ∆(Jξ) = δdJξ = 4δϕ = 4Jξ, i.e. Jξ is an eigenform of the Laplace operator with eigenvalue 4. On the other hand, the Bochner formula on 1-forms, ∆ = ∇ * ∇ + Ric = ∇ * ∇ + 5id

  e j , Je k e j ψ -+ (∇ e k S)e j ∧ (Je k e j ψ -) * = (∇ e k S)Je j , e k Je j ψ + + (∇ e k S)e j ∧ (Je k e j ψ -) = -δS ψ + + (∇ e k S)e j ∧ (Je k e j ψ -), so by[START_REF] Berger | Ebin Some decompositions of the space of symmetric tensors on a Riemannian manifold[END_REF] Λd(S ⋆ ψ -) = -δS ψ + + (∇ e k S)e j ∧ (e k e j ψ + ).(50) On the other hand, we have δ(S ⋆ ψ + ) = e k ∇ e k (Se j ∧ e j ψ + ) * = e k ((∇ e k S)e j ∧ e j ψ + ) = -δS ψ + -(∇ e k S)e j ∧ e k e j ψ + (50)

We apply the contraction Λ to the first equation of (31) and use (13), ( 22) and (23):

-6ξ = 3Λ ψ+ = Λd ω = Λdϕ + Λd(ξ ψ + ).

(34)

In order to compute the last term, we apply the general formula (29) to the particular deformation of the SU 3 structure defined by the flow of ξ:

Since dω = 3ψ + and dψ + = 0, we get

= -α(dJξ) -6ξ, which, together with (34), yields

We now examine the second equation of the system (31). From (24) we get

We apply the contraction Λ to this formula and use the second equation of (31) together with ( 5) and ( 6):

-8λω -

Applying α to this equality and using (2), ( 22) and (29) yields

From (35) we then get

Lemma 4.3. Let (g, J, ω, ψ + , ψ -) be a Gray structure on a manifold M. For every section S of Sym -M and (1, 1)-form ϕ, the following relations hold:

Λδ(S ⋆ ψ + ) = 0 (44)

Proof. Since there are no Einstein deformations on the sphere, we may assume ġ = 0 from the beginning. From (21) we get ϕ = 0, h = 0, S = 0 and in particular λ = 0 too. Then equation ( 46) gives ξ = Jdµ and (47) shows that µ is an eigenfunction of ∆ on (S 6 , can) corresponding to its first non-zero eigenvalue, 6. These eigenfunctions (also called first spherical harmonics) satisfy ∇ X dµ = -µX for all tangent vectors X.

We define the infinitesimal SU 3 deformation ω := ξ ψ + , ψ+ := -ξ ∧ ω + µψ -and ψ-:= -Jξ ∧ ω -µψ + . A short calculation easily shows that this indeed is a solution of the linearized system (31).