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91128 Palaiseau Cedex, France
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Abstract The classical theory of rigid bodies systems dynamics is extended into two di­
rections. First, systematic formulation of the dynamics of systems undergoing 
perfect unilateral constraints is derived. The general admissible form of the im­
pact constitutive equation is obtained. Well-posedness of the evolution problem 
is proved under the assumption that the data are analytic. Second, systematic 
formulation of systems undergoing frictional bilateral constraints is discussed. 
Well-posedness of the associated evolution problem is also demonstrated. 
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Introduction 

The point of departure of any mechanical theory is a geometric description 
of the system under study and all its possible (or, more exactly, admissible) 
evolutions. This is always a schematization. Linear forms on the space of 
admissible (virtual) velocities define on turn the most general representation of 
internal and external forces which is consistent with the geometric description. 
Naturally, obtaining their precise expression for a given system remains a part 
of the modelling process. The mass distribution leads to the definition of the 
kinetic energy of the system which is a positive definite quadratic form on the 
space of velocities. Taking a time derivative, we obtain the expression of the 
virtual power of inertia forces (or acceleration) in any virtual velocity. The 
Fundamental Principle of Classical Mechanics asserts that the virtual power 
of inertia forces should equal the virtual power of external and internal forces 
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in any admissible virtual velocity. As a consequence, we derive the equation 
of motion. For some class of geometric descriptions, the equation of motion, 
associated with some initial conditions, determines completely the subsequent 
motion of the system. We shall say that the evolution problem associated with 
the dynamics is well-posed. On the opposite, there are many examples of
mechanical theories in which initial conditions and equation of motion are not
enough to determine the subsequent motion of the system. This is generally 
attributed to the excess of schematization of the geometric description. The 
missing physical information is added through a constitutive law. Actually, 
well-posedness of the resulting evolution problem serves generally implicitly 
as a guideline to identify the general form of the constitutive law, although some 
thermodynamical considerations can also play an important part. 

In this paper, we are concerned with the dynamics of rigid bodies systems. 
Speaking of rigid bodies systems is, actually, the geometric description of the 
system. It could be said that this is the most simple geometric description of 
solids. Working in the framework of rigid bodies system means that we are 
not interested in the prediction of the deformation of the bodies. It does not 
mean that we do not consider physical situations in which bodies deformability 
play a role. Let us illustrate this by examining the impact of two billiard balls. 
Billiard balls are always deformable. But, generally we are not interested in the
deformations of the balls but only on their 'global' motion. Thus, we shall use 
a geometric description based on the rigidity assumption. However, we know 
that impacts are governed by deformation wave propagation in each of the balls. 
So, we can not expect the simple theory based on the geometric assumption of 
rigidity to be able to predict the outcome of an impact experiment. We must 
expect that some indetermination will remain. To get well-posedness of the 
theory (this is necessary to make predictions which is the final aim of any me­
chanical theory), we are led to add to the theory an impact constitutive equation. 
This is nothing but injecting back in the theory the outcome of the impact, since 
the physical phenomena which governs the impact have been eliminated. Of 
course, in practical situations, we have to identify the impact constitutive equa­
tion. The choices are, either to make experiments or to use a refined theory (the 
elasticity theory which is based on a refined geometric assumption) in order to 
g_et the outcome of each situation of impacts. In some situations, identifying 
the impact constitutive equation can represent a huge amount of work. In such 
a case, depending on the desired precision of the predictions of the theory, one 
may be led to question the relevance of the simple geometric assumption that 
has been adopted. The use of one geometric description or another to model a 
given real situation is always a compromise between the desired precision of 
the predictions, the amount of computation which is possible and the physical 
informations on the system which are available. 
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Since in this case, no constitutive law has to be identified, the main field of 
application of rigid bodies dynamics has been for a long time, celestial mechan­
ics where remarkable precision of the predictions was reached. Recently, some 
new fields of application of rigid bodies dynamics have emerged: robotics, 
granular dynamics, virtual reality, . . .  All these fields have in common that de­
termining the deformation in the bodies is of no interest. Nevertheless, in these 
applications, impacts are possible events that have to be incorporated in the 
theory. Very often, precision of the predictions is not so important and one may 
accept very approximate impact constitutive equations. Hence, the need has 
emerged to enrich the well-established theory of rigid bodies dynamics with 
the modelling of more complicated phenomena like impacts or friction, some 
of them relying physically on the deformation of the bodies. This new field is 
often called, after Jean Jacques Moreau, Non-smooth mechanics. 

Actually, those more complicated phenomena are taken into account through 
constraints. A constraint is a kinematical specification of the motion with which 
some forces are associated: the reaction forces. In general, the kinematical 
specification in itself is not enough to determine the reaction force: a constitutive 
law of the constraint has to be added. It conveys some physical assumption on 
the way the constraint acts. 

At the time being, it seems that only the rigid bodies dynamics with perfect 
holonomic bilateral constraints has firm mathematical foundations in the sense 
that the theory ensures the well-posedness of the evolution problem describing 
the dynamics. In this paper, we are concerned by the systematic formulation 
and well-posedness of the evolution problem describing the dynamics of sys­
tems involving more general constraints such as unilateral or frictional ones. 
As seen above, this program will necessarily involve the discussion of some 
constitutive law. Our aim will not be to try to identify any realistic one but just 
to characterize the general forms of constitutive laws that are compatible with
the well-posedness of the theory. My opinion is that well-posedness should 
be considered as a requirement of any theory in classical dynamics. With this 
idea in mind, the discussion of well-posedness is intimately connected with the 
discussion of constitutive laws. Actually, we shall consider well-posedness as 
the final aim of the theory. After having written the Fundamental Principle 
of Classical Dynamics, we shall look for the supplementary hypotheses that 
are necessary to get well-posedness. Each time an hypothesis will be made,
we shall try to motivate it by a counter-example. These hypotheses will be 
classified into two categories. Those which convey physical assumption will 
be called 'constitutive' hypotheses and the other one whose aim is to prevent 
from mathematical pathologies will be called 'regularity' hypotheses. Since 
one aim is to obtain general forms of constitutive laws, one has to make sure 
that the constitutive laws do not depend on any particular parametrization of the 
system. For this reason, we are going to try to obtain intrinsic formulations of 
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dynamics, that is, formulations which do not rely on a particular choice for the 
parametrization of the system. This necessarily requires the use of the language 
of differential geometry. But, only the most elementary level of differential ge­
ometry is required. 

The major enhancement of mathematical consistency which seems to be de­
sired at the time being concerns the modelling of impacts and that of friction. 
These two subjects are the major concerns in this paper and I believe that a 
mathematically satisfactory theory is obtained on both points-of-view of gen­
eral formulation as well as well-posedness. However, the task is far from being 
achieved. In this paper, we examine the cases of impacts and friction sepa­
rately. There remains to mix the two theories to discuss, for example, frictional 
unilateral constraints, which is not done here. The result would be a general 
theory of the evolution of mechanisms consisting of rigid bodies. 

Section 1 recalls briefly the basics of intrinsic formulation and well-posedness 
of the dynamics of rigid bodies systems. The aim of this section is to provide 
precise description of the framework and notations. Section 2 contains also 
only well-known material. It shows that superimposing perfect holonomic bi­
lateral constraints does not modify the structure of the theory. In Section 3 ,  
perfect unilateral constraints are discussed. The general form for the impact
constitutive equation is provided and the general formulation for the evolution 
problem is derived. Well-posedness is fully discussed. In Section 4, the case 
of general perfect non-holonomic bilateral constraints is examined. Actually, 
this type of constraint is a particular case of non-firm constraints which are 
the concern of Section 5. A complete theory of non-firm constraints is derived, 
including systematic formulation and well-posedness. In Section 6, the formal­
ism of non-firm constraints is applied to the description of frictional bilateral 
constraints. The underlying idea is that friction should be considered as a dis­
sipation mechanism obeying the Principle of Maximal Dissipation. In some 
cases (for example, systems of punctual particles), we recover standard dry 
friction laws such as Coulomb friction and, in some cases, we do not. Section 7 
provides a brief description of the situations that are not contained in the above
theories and the extensions of the content of the paper that could be done later 
on. 

1. The dynamics of rigid bodies systems

1.1 The geometric assumption: rigidity

Classical mechanics postulates the existence of a three-dimensional oriented 
affine Euclidean space£, sometimes called the (Galilean) real world, and an 
absolute chronology represented (after the choice of an origin) by a real number, 
generally denoted by t. The vector space associated with £ will be denoted by
E. 
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A solid is represented by its real world reference configuration which is 
nothing but a possible geometric locus of all the material points of the solid in 

£. The geometric assumption of rigidity can be stated as follows: the only real 
world configuration of that solid which can be observed are obtained from the
real world reference configuration by direct isometries. Therefore, once the real 
world reference configuration has been fixed, any real world conguration of the 
solid is represented by a direct isometry q. Considering a material point of the 
solid identified by its location M E £ in the real world reference configuration, 
the current location of that material point in the configuration defined by q is: 

m( M, q) = q(M) . ( 1.1 )  

Since any direct isometry on £ can be split into a translation and a rotation, the 
set of all direct isometries can be identified toE x §00 (where §03 denotes the 
set of all direct orthogonal endomorphisms on E, endowed with its standard 
manifold structure). It is said that E x §00 is the (abstract) configuration 
manifold of the rigid solid. Since its dimension is 6, we say that the rigid solid 
has 6 degrees of freedom (dot). Any (local) chart on the configuration manifold 
is called a (local) parametrization. The configuration manifold is generally 
denoted by Q and a configuration (an element of the configuration manifold), 
by q. A local chart (parametrization) will be denoted generally by '1/J. Thus, for
a rigid solid, the symbol '1/J(q) denotes an element of JR6. 

Other idealizations of rigid solids can appear: the infinitely thin rigid bar 
whose configuration manifold is Ex §2 (§2 denotes the two-dimensional sphere 
equipped with its standard manifold structure) and the punctual particle whose 
configuration manifold is simply E. 

A motion of a rigid solid is a curve on its configuration manifold (a mapping 
from a time interval I into Q). The derivative of the motion at instant t is denoted
by q(t). It is called the (abstract or sometimes, generalized) velocity. It is an 
element of the tangent bundle TQ of the configuration manifold. One often 
encounters the name ' state space' for TQ, in which case q(t) is also called a 
state of the system. Since the mapping m defined by formula ( 1 . 1 )  is obviously 
smooth, the material velocities are expressed in terms of the (abstract) velocity 
by: 

m = oqm(M, q) · q, ( 1 .2) 

where oqm(M, q) is a linear operator from the tangent space TqQ into Tm£ =
E. 

The mass distribution in the rigid solid is specified on the real world reference 
configuration. It is a bounded positive measure on £. It is denoted by p,. 
Considering an arbitrary motion (I, q( t) )  of the rigid solid, the kinetic energy
K at instant t is by definition:

K = �le llmll1 dp,(M) . ( 1 .3) 
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Combining formulae ( 1 .2) and ( 1 .3), we obtain easily the expression of the 
kinetic energy in terms of the (abstract) velocity. Then, it is easily noticed that 
the kinetic energy defines a nonnegative quadratic form on each tangent space 
TqQ of the configuration manifold. The mass distribution is said to be consistent 
with the geometric description if this quadratic form is positive definite. The 
following are easily proved: 

• A mass distribution 11- in the three-dimensional solid Ex §(())3 is consistent
if and only if its support Supp 11- contains at least three non-aligned points.

• A mass distribution 11- in the infinitely thin barE x §2 is consistent if and
only if Supp 11- contains at least two distinct points.

• A mass distribution 11- in the punctual particle E is consistent if and only
if Supp 11- is non-void.

>From now on, we shall assume that the mass distribution is always consistent 
with the geometric description. As a result, the kinetic energy defines a scalar 
product on each tangent space of Q, endowing the configuration manifold with 
a Riemannian structure. This Riemannian metric is naturally called the kinetic 
metric. From now on, whenever we speak of a configuration manifold, it will 
always be supposed to be equipped with its Riemannian structure. 

A rigid bodies system is a finite collection of rigid bodies. The configuration 
manifold of a rigid bodies system is the cross-product Q1 x Q2 x · · · x Qn of
the individual configuration manifold Qi of each rigid body of the system. 

The fundamental idea which is behind these definitions is that the config­
uration manifold conveys all the necessary information on the system and no 
more. For example, we should keep aware that the kinetic metric conveys all 
the relevant information about the mass distribution but, one can not, generally, 
recover the mass distribution from the kinetic metric. 

Remark 1. The reader who is not familiar with elementary differential ge­
ometry could have the feeling that we have expressed very simple (and well 
known) things in a complicated way. Such a reader would probably prefer a 
presentation where the parametrization of the system is introduced at first and 
each definition (the abstract configuration, the kinetic metric, . . .  ) is made in 
terms of real matrices. Such a presentation should then precise what are the 
effects on these matrices of a change of parametrization. This leads to heavy
and boring formulae and is often left aside, but this is not the main reason why 
I have chosen the above presentation. The possibility of defining every concept 
without any reference to a given parametrization ensures that all what has been 
defined is intrinsic (that is, does not depend on the particular parametrization 
under consideration) . This fact is particularly crucial when one deals with con­
stitutive equations and introducing constraints necessarily involves constitutive 
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equations. In the end, I believe that the intrinsic presentation, making appar­
ent the structure of the theory, provides deeper understanding. However, the 
reader who feels more comfortable with it, might consider that the configura­
tion manifold Q is an open subset of JRd equipped with a 'variable' symmetric
positive definite matrix (9ij ( q) ) , which is nothing but considering a particular
parametrization of the system. The following convention notations are made 
on that purpose. 

Notations. For Q being a smooth Riemannian manifold of dimension d, we 
shall denote by: 

• TQ and T* Q, the tangent and cotangent bundles, 

• Ilq and IIq, the natural projection mappings of TQ and T* Q,

• ( · , · ) q• the local duality product between tangent space Tq Q and cotangent
space T;Q,

• (·, ·)q and ll·llq' the local scalar product and norm on Tq Q (a* will be
added when referring to the scalar product and norm on T* Q), 

• 11 (and U = t>-1 , its inverse), the isomorphism of vector bundles from TQ
onto T* Q naturally associated with the Riemannian metric of Q. 

For q (t) being a curve on Q, we have decided above to denote the derivative
at t by q(t) E TQ. In order to be consistent with the suggestion made in
remark 1; we shall alternatively use the notation (q(t) ,  q (t) )  as often as it will
not be too heavy or confusing. This is clearly a redundant notation since the 
base-point q = Ilq(q) is contained in the derivative, but I believe that this
notation may help the understanding. More generally, an element v of TQ will 
also be denoted by (q , v) with q being the base-point of v. For 1/J being a local
chart on Q, '1/J(q) is an element of JRd that we denote by (q1 , q2, • . .  , qd) .  Still
to be consistent with the suggestion of remark 1 ,  we shall sometimes keep the 
notation q to refer to 1/J ( q) . Thus, for q being an abstract configuration, we might
write q = ( q1 , q2, . • .  , qd) . More generally, each time it will not be confusing,
we will keep the same notation for an object and its representative in a chart. As 
usual, the natural basis of Tq Q (resp. T;Q) naturally associated with the chart

1/J is denoted by ( e!(q), e2 (q) , . . .  , ed (q) ) (resp. ( e1 ( q) ,  e2 (q) , . . .  , ed (q) ) ) . For(q, v) belonging to TQ, we denote by vi (i = 1, 2, . . . d) its components in the
natural basis and we shall write: 

v = viei (q) . 
Einstein's summation convention will always apply unless explicitly stated. For q(t) being a curve, we shall write: 

q(t) = qi(t) ei (q (t) ) , 
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and qi (t) is the derivative at timet of the real-valued function qi (t). As usual,

Yij ( q) will be the covariant components of the metric in the considered chart and

gij ( q) its contravariant components; q k ( q) will be the associated Christoffel
symbols: 

ri. ( ) = ! ih ( ) (ogh k ( ) + 8gjh ( ) _ 8gjk ( ))J k q 2 g q aqj q oqk q oqh q · 
For q(t) being a curve on Q and v a vector field on that curve, the covariant
derivative of v along q( t) is denoted by:

� v (t) = ( :t v
i (t) + r]k (q(t) )vj (t)qk (t)) ei (q(t) ) .

1.2 Formulation of the dynamics

Consider a rigid bodies system of configuration manifold Q and a motion 
q(t) of that system. The power of inertial forces at instant t is, by definition,
the time derivative at t of the kinetic energy:

d . 
dtK (q, q) � :t (q(t) , q (t) ) q (t) '

(�q (t) , q ( t)) 'q(t) 

= I 'pd
D q(t) , q (t)) .\ t q(t) 

Hence, it is seen that the power of inertial forces at time t defines the cotangent
vector 'rJDq(t) jdt E r;(t)Q. An arbitrary element TqQ is often called a virtual

velocity of the system in the configuration q. Then, the linear form 'rJDq(t)/d t 
is called virtual power of inertial forces. 

The analysis of the dynamics has to take into account external and internal 
forces. They are usually given as a force distribution on the current real world 
configuration. This is an E-valued measure which may depend on the current 
state (q , q) and on timet. We shall denote it by cp (q , q; t) The power of the
internal and external forces at timet in the motion q(t) is:

le ( rh,d cp (q, q ; t) (m (M,q) ) ) E

= le (oqm (M, q) · q, dcp(q, q; t) (m (M, q) ) ) E , 

which also defines a linear form f (q, q; t) on TqQ by:

(f (q, q; t) , v) q �le (8qm (M, q) · v , dcp(q, q ; t) (m ( M , q) ) ) E ,
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for any virtual velocity v E TqQ. This linear form j (q, q, t) E r;Q is called
virtual power of external and internal forces. The reason for such a modelling 
of forces by duality is that it ensures the consistency of the forces modelling 
with the geometrical description of the system. The virtual power mapping 
f (q , q, t) extracts from the force field <jJ only the information which is relevant
to the dynamics analysis in the framework of the geometrical assumption of 
rigidity. 

The fundamental principle of classical mechanics asserts that the virtual 
power of inertial forces should equal at every instant the virtual power of external 
and internal forces: 

V t, P �q(t) = j (q (t) , q( t) , t) . ( 1 .4) 

Equation ( 1 .4) is referred to as the equation of motion. It is a second-order 
differential equation on the configuration manifold. To express it in a particular 
parametrization of the system, the following is useful. 

Proposition 1 (Lagrange) Let 'lj; be a local chart and q ( t) a C2 motion on Q. 
One has: 

P�q (t) = (:t(j�i K(q(t) , q( t) ) - 8�i K( q(t) , q( t) )) ei (q(t) ) .

Proof. It is straightforward since: 

( d ;j rj · k · l) i 9ij dt •r 
+ 

klq q e '
. ( d ·j + 1 jh (89h l 8gh k 8gkl ) · k · l) i 9zj dt q ?,9 8qk + 8ql - 8qh q q e '

( d 8 ( l · j · k) 8 (l·J· · k)) i --. - q g· kq - -. - q  g· kq e .dt 8qZ 2 J 8qZ 2 J 
D 

We are given an initial instant to and an initial state (q0 , vo ) E TQ. Then,
the evolution problem associated with the dynamics of rigid bodies system is 
the Cauchy problem: 

Problem I. Find T >to and q E C2 ( [t0 , T[; Q) such that:

• (q(to ) , q (to ) )  = (qo , vo ) ,

• V t  E [to , T[, P�q(t) = j( q(t) , q(t) , t) .
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1.3 Well-posedness of the dynamics

To study the well-posedness (existence and uniqueness of solution) of prob­
lem I, we have to specify regularity assumptions on Q and f.

Counter-example 1. Consider the evolution equation 

d2 1 dt2q(t) = 6l q (t) l3 
(q E �) with initial condition (q{O) , q{O) )  = {0 ,  0) . It is readily checked that
the two motions defined on �+ q (t) = 0 and q(t) = t3 provide two distinct
solutions. 

To get well-posedness, we have to make further hypotheses. Throughout this 
paper, we shall distinguish two classes of hypotheses: the constitutive hypothe­
ses and the regularity hypotheses. A constitutive hypothesis is an hypothesis 
which conveys physical meaning. A regularity hypothesis conveys no physical 
meaning and is stated to eliminate mathematical pathologies. The following 
regularity hypothesis is slightly stronger than necessary. 

Regularity hypothesis. The Riemannian configuration manifold is of class C2 
and the mapping f : TQ x � --+ T* Q is of class C1. 

It should be pointed out that the first part of this hypothesis is actually no hy­
pothesis at all. The configuration manifold of the three-dimensional rigid solid, 
of the infinitely thin rigid bar or of the punctual particle, with arbitrary consis­
tent mass distribution are coo (or, even more, analytic) Riemannian manifolds. 
The configuration manifold of a rigid bodies system (with no constraint), being 
a cross-product of such manifolds, can be assumed to have arbitrarily regularity. 
This is a restriction neither on the geometry nor on the mass distribution of the 
system, but on the class of admissible parametrizations. 

Under this regularity hypothesis, we have the following well-posedness re­
sult. 

Theorem 2 (Cauchy) There exists a unique maximal solution for problem I. 
More precisely, theorem 2 states that there exists T m > t0 (T m E �U { +oo}) 

and qm E C2 { [t o ,  Tm [, Q) being a solution of problem I such that any other
solution of problem l is a restriction of qm . Of course, we expect that T m = +oo, 
in which case the dynamics is said to be eternal. This situation can not be taken 
for granted, in general. 

Counter-example 2. Consider the evolution equation 

d2 
dt2 q(t) = (q (t) ) 2 
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(q E JR) with initial condition (q(O) ,  q (O) )  = (0, 1 ) . It is readily checked that
the maximal solution is defined on the interval [0 , 1 [. 

In the usual cases encountered in mechanics, eternal dynamics is ensured by 
the following general sufficient condition. 

Theorem 3 The configuration manifold Q is assumed to be a complete Rie­
mannian manifold (this is no hypothesis in the case of rigid bodies system with 
no constraints). The mapping f is supposed to admit the following estimate:

V (q, v)  E TQ, for almost all t E [to , +oo[, 

l l f (q, v; t) l l � :S l (t) ( 1 + d(q, qo ) + l l v l l q) ,

where d(·, · ) is the Riemannian distance and l (t), a (necessarily nonnegative)
function of Lfoc(I�.; IR).

Then, the dynamics is eternal: T m = +oo.
The proof of theorem 3 relies on the Gronwall-Bellman lemma which is now 

recalled. 

Lemma 4 (Gronwall-Bellman) Let m1 E BV( [t0, T] ;  IR) andm2 E L1 (t0, T; IR) 
be two functions such that: 

for almost all t E]to , T[, m2 (t) 2::0. 

Let <P E BV( [to , T] ; IR) be such that:

Then, 

V t  E [to , T] , </;(t) :S m1 (t) + {t m2 (s)</;(s) ds .
lto 

V t  E [to , T] , <j;(t) :S m1 (t) + {t m1 (s) m2 (s) ef:m2(a)da ds .lto 

LemmaS Let m be in L1 (to , T; .!R) such that m(t) 2:: Ofor almost all t in
]to ,  T [  and a be a real nonnegative constant. Consider <P E BV([t0, T]; IR) 
such that: 

then: 

1 1 l.t
V t  E [to , T], 2</;2 (t) :::; 2a2 + m(s)<f;(s) ds ,

to 

V t  E [to , T] ,  1</J(t) l :Sa+ {t m(s) ds.
lto 
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Elementary proofs of lemmas 4 and 5 can be found in BREZIS ( 1973), p. 156. 

Proof of theorem 3. Suppose Tm is finite. From the equation of motion ( 1 .4), 
we have, for all t E [to, Tm [,

� lltim(t)JI�m<t)- � Jlvoll�o � {t (J(qm (s) ,  tim(s); s), tim(s))qm(s) ds,lto 
� rt l(s) (1 + d(qm (s) , qo )  + lltim(s)Jiqm(s)) lltim(s)llqm(s)ds,lto 

which gives, by lemma 5, 

But, by definition of the Riemannian distance, 

therefore, 

V t  E [to, Tm [, d(qm (t) , qo) � {t JJtim(s)JJqm(s) ds, lto 

V t  E [to , Tm [, d(qm (t) , qo ) + JJqm(t)JJqm(t) � 

llvo llqo + rt l(s) ds + rt ( 1  + l(s)) ( d(qm (s ) , qo ) + lltim(s) llqm(s) ) ds.lto lto 
By lemma 4, one gets: 

d(qm (t) , qo ) + JJtim(t)JJqm(t) � (llvollqo + 1: l(s)ds) eftto (l+l(s) )ds,
which shows that the function t t--+ lltim(t)Jiq(t) is bounded over [to , Tm [· By
the completeness of Q, we deduce that 

qr = lim qm (t)t-tT;;;, 
exists in Q. Then, it is an easy matter to deduce that

(qr,vr) = lim (qm (t) , qm (t) ) exists in T Q, t-tT;;;, 
and that the function qm, extended by continuity at T m satisfies the equation of
motion on [to , Tm] · Then, theorem 2 furnishes T:n > Tm and an extension of
qm, belonging to C2 ( [to , T:n[; Q) and being a solution of problem I. But, this
contradicts the definition of .Tm . D
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2 .  Perfect holonomic bilateral constraints 

A constraint describes a type of forces which are not taken into account by 
the forces mapping f. Indeed, it is possible to specify (partially) some forces 
by their kinematical effects. These kinematical effects leave in general the 
associated forces partially undetermined and we have to add phenomenological 
assumptions on the way the constraint acts, through a constitutive law of the 
constraint . 

2.1 The geometric description 

A holonomic bilateral constraint is a restriction on the admissible motions 
of the system which is expressed by means of a finite number n of smooth
real-valued functions t.pi defined on the configuration manifold Q: 

ViE { 1 , 2 , ··· , n} , t.pi(q) =0. ( 1 .5) 

The word constraint in the singular will be used indifferently to speak either of
a constraint specifically associated with a single function t.pi or of the constraint
associated with all the functions l.{)i· In this terminology, a finite collection 
of constraints is still a constraint. We denote by S the set of all admissible 
configurations: 

S = {q E Q ; ViE { 1 , 2 , ··· , n} , t.pi(q) = O}. 
The following hypothesis is usual in this framework. 

Regularity hypothesis I. The functions l.{)i are functionally independent, that
is, for all q E S, the dt.pi ( q) ( i E { 1 ,  2 ,  · · · , n} ) are linearly independent in
T*Q. 

A straightforward consequence of this hypothesis is that S is a submanifold 
of Q of dimension d - n. As a result, S inherits a Riemannian structure fromQ. We shall say that S is the configuration manifold of the constrained system.

2.2 Formulation of the dynamics 

The realization of the constraint ( 1 .5) necessarily involves a modification 
of the equation of motion (1 .4). This is done by adding to the virtual power 
of forces f(q, q; t) a corrective unknown term R called the virtual power of
reaction forces: 

V t, � � q(t) = f(q(t) ,  q(t) ,  t) + R(t) .

We might expect R to be determined by the geometric constraint ( 1 .5). It does
not work in general. We have to add phenomenological assumptions on the 
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MATHEMATICS: 

way the constraint acts. This is the constitutive law of the constraint. At this 
point, we restrict ourselves to the following. 

Constitutive hypothesis 11. The holonomic bilateral constraint (1.5) is sup­
posed to be perfect (one also says synonymous! y ideal), that is, the virtual 
power of the reaction forces R vanishes in any virtual velocity compatible with 
the bilateral constraint: 

\fv E { v E TqQ ; ViE { 1 ,  2, . .  · ,n }, (dcpi (q),v)q = 0} � TS, 

(R,v)q = 0. 

Hypotheses I and II imply that there exists n real-valued functions Ai , unique, 
such that: n 

R(t) = L Ai (t) dcpi(q) . 
i=l 

Now, we formulate the evolution problem associated with the dynamics of 
rigid bodies systems with perfect bilateral constraints. The initial condition is 
assumed to be compatible with the realization of the constraint: ( qo, vo ) E T S. 

Problemii . Find T > to ,q  E C2 ( [to,T[; Q) and n functions>.i E C0( [to,T[;�)
such that: 

• (q(to ) , q(to ) )  = (qo , vo ),

• \ft E [t0, T[, q(t)  E S,

D n 
• \ft E [to, T[, IJ di q(t) = f(q(t) , q(t), t) + L Ai (t) dcpi(q(t)).

i =l 

Here, we used the notation DQ / dt for the covariant derivative to underline 
the fact the covariant derivative is understood with respect to the Riemannian 
structure of Q (and not to that of S). 

Let q be a point of Q, v a vector in TqQ. and E a  subspace of TqQ. The 
orthogonal projection of v on E for the scalar product of TqQ induced by the 
Riemannian structure of Q is denoted by Projq [v; E] . Similarly, Proj� [v*; E*]
denotes the orthogonal projection of the cotangent vector v* on the subspace 
E* of T; Q. If q(t) is a curve on the Riemannian submanifold S of Q and v a 
vector field on that curve, then we have (CHAVEL ( 1993), p. 54): 
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Therefore, any solution of problem II is seen to be a solution of 

Problem IT'. Find T > t0 and q E C2 ( [t0 , T[; S) such that:

• (q(to ) , tj(to ) )  = (qo , vo ) ,

• V t  E [to ,  T[, � �: tj(t) = Proj�(t) [f (q(t) , tj(t) ; t) ; r;(t)s] .
Reciprocally, any solution of problem II' is readily seen to generate a solution 
of problem II: the two evolution problems are equivalent. 

The linear form (cotangent vector) Proj� [f (q, q; t) ;  r; S] equals the restric­
tion of the linear form f ( q, q; t) on the space Tq S of virtual velocities compatible
with the bilateral constraint. Therefore, it is the virtual power of external and 
internal forces in any virtual velocity compatible with the constraint. 

2.3 Well-posedness of the dynamics 

Problem II' has formally the same structure of problem I. Since problems II' 
and II are equivalent, the results of Section 1 ( 1 .3) give the well-posedness of 
the dynamics of rigid bodies systems with perfect bilateral constraints. 

Regularity hypothesis lll. The configuration manifold Q and the functions 'Pi
are of class C2 and the mapping f : TQ x JR. -+  T*Q is of class C1 .

Proposition 6 Problems I/ and I/1 have a unique maximal solution qm. More­
over, if Q and the functions 'Pi are of class GP (p 2: 2), and f of class CP-l 
then qm is of class CP. If Q, f and the 'Pi are analytic functions then so is qm. 

The second part of proposition 6 follows from standard results on ordinary 
differential equations (see, for example, CoDDINGTON & LEVINSON ( 1955)). 

The analysis of the eternity of the dynamics is provided by theorem 3. 
The regularity hypothesis I could seem very restrictive. However, dropping 

it would make us run into troubles. 

Counter-example 3. Consider a rigid homogeneous bar of length l. The two
extremities of the bar are constrained to remain on a fixed circle of diameter l. 
The two corresponding bilateral constraints are supposed to be perfect. This is a 
simple occurrence of bilateral constraint which does not satisfy hypothesis I. At 
initial instant, the bar is at rest. A constant force is applied at the middle point 
of the bar. This force is directed in the plane of the circle but not along the bar. 
The reader will convince himself that the corresponding evolution problem II 
admits no solution. 
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2.4 Illustrations and comments 

The configuration manifold Q of the rigid body system with no constraint is 
often referred to as the primitive configuration manifold, whereas the subman­
ifold S is called the reduced configuration manifold. In practice, the reduced 
configuration manifold can be often constructed directly, without introducing 
first a primitive configuration manifold. In such a case, the forces mapping is 
directly introduced with respect to the reduced configuration manifold. 

Example 4. Consider a plane system of two homogeneous rigid bars 1 and 2. 
The bar 1 ,  of length l1 and mass m1 is connected to a fixed support by means of
a perfect ball-and-socket joint equipped with a spiral spring of stiffness k1. The 
bar 2, of length l2 and mass m2 is connected to the free extremity of the bar 1
by means of another ball-and-socket joint also equipped with a spiral spring of 
stiffness k2 • A force acts on the free extremity of the bar 2. This force remains
parallel to the direction of the bar 2 and is of constant magnitude ). > 0 (see
Figure 1 . 1  ). 

Figure 1.1. Geometry of the double pendulum. 

• The configuration space is JR2 equipped with its canonical structure of
coo manifold (it is not the 2-torus since the spiral springs impose to be
able to count the 'number of turns') . This manifold may be represented
by a single chart; in other terms, there exists a global parametrization of
the system. In the sequel, we shall only use the chart (q1 , q2 ) defined by
the angular measures associated with each of the joints.
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• The kinetic energy is:

K = 

This kinetic energy defines a Riemannian structure on the configuration 
space. The expression of the metric tensor in the considered chart is: 

911 (q1' q2)

912 (q1' q2)

922 (q1' q2)

= (�1 +m2) l�,
- �m2hl2 cos (q1 -l) = 921 (q1, q2) ,

1 2 = 3m2l2. 

• The forces mapping has for expression in the considered chart:

f(q, q; t) = [>.h sin {q1- q2) - (k1 + k2) q1 + k2q2] e1(q)
+ [k2q1 - k2q2] e2(q).

The equations of motion in the chart under consideration is easily formed by 
use of proposition 1: 

(� + m2) l�iP + �hl2 cos {q1- q2) ;p + �hl2 sin (q1- q2) (q2)2

= Ah sin {q1- q2)- (k1 + k2) q1 + k2q2,
�hl2cos (q1- q2) i/ + !]2-l�iP- �hhsin(q1- q2) (q1)2

= k2 (q1 - q2) . 

By proposition 6, one can conclude that a unique maximal motion is associated 
with any initial condition. Moreover, this maximal motion is analytic and is 
defined for all time. Indeed, it is easily seen that there exists a positive real 
constant C, depending only on (h, 12, m1, m2) such that:
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where 1 · 1 denotes the canonical Euclidean norm on JR2. Therefore, the assump­
tions of theorem 3 are satisfied. 

It should be underlined that the framework of perf ect bilateral constraints 
does not require that there should be no energy dissipation physically associated 
with a constraint. Indeed, such an energy dissipation can be described, in some 
cases, in terms of internal forces . For example, suppose that, in the system
described above, some viscous damping with coefficients 'f/1 and 'f/2 is associated
with each ball- and-socket joint. Then, it is incorporated in the forces mapping 
f which should be changed into 

f(q, q; t) = [-\h sin (q1 - q2) - (k1 + k2 ) q1 + k2q2
- ('f!l + 'f/2 ) q1 + 'f/2£i2] e1(q) 

+ [k2q1 - k2q2 + 'f/2£i1 - 'f/2£i2] e2 (q) .
The above remark does not apply to the case of Coulomb type friction. 

Remark 2. As problems II and II' are equivalent, we see that the dynamics of 
the constrained system depends only on the geometry of the submanifold S and 
not on the particular choice of the functions 'Pi used to define it. In other words,
consider a constraint, say constraint 1 ,  defi ne d  by n functionally independent
functions 'Pi and another constraint, say constraint 2, defined by n functionally
independent functions 'Pi· Suppose, in addition, that: 

S = {q E Q ; V i , 'Pi(q) = 0}= {q E Q ; V i, 'Pi(q) = 0}. 
Then, the dynamics of the system subjected to constraint 1 is identical to the 
dynamics of the system subjected to constraint 2. M oreover, the reaction forces 
in the motion are the same in both cases . 

Since the modelling of rigid bodies system with no constraint or with per­
fect holonomic bilateral constraint leads to the constru ction of mathematical 
stru ctures of the same type, we state the following definition. 

Definition 7 A simple discrete mechanical system is a pair ( Q, f) where: 

• Q is a finite-dimensional smooth Riemannian manifold called the config­
uration manifold.

• f : TQ x lR --+  T*Q is a smooth mapping satisfying: 

V(q, v) E TQ, Vt E JR, 
called the forces mapping. 

ITQ(f (q, v ; t) ) = q, 
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3. Perfect unilateral constraints

The consideration of elementary examples shows that the dynamics of rigid 
bodies systems can lead to some prediction of the motion where some bodies 
of the system overlap in the real world. Of course, this should not be allowed. 
Hence, very often, one has to add the statement of non-penetration conditions 
to a simple discrete mechanical system. This is a simple occurrence of uni­
lateral constraint. In this section, we shall discuss the consideration of perfect 
unilateral constraints in simple discrete mechanical systems. 

3.1 The geometric description 

Consider a simple discrete mechanical system with configuration manifold 
Q. A unilateral constraint is a restriction on the admissible motions of the
system which is expressed by means of a finite number n of smooth real-valued
functions <pi defined on the configuration manifold Q: 

V i E {1,2, . . .  , n} , c.pi (q) � 0.

We denote by A the set of all admissible configurations:

A = {q E Q ;  V i E {1,2, . . .  , n} , c.pi (q) � 0}.

( 1 .6) 

The set of all active constraints in the admissible configuration q E A is defined
by: 

J(q) = {i E {1,2, . . . , n} ; 'Pi (q) =0}.
The following hypothesis should be brought aside regularity hypothesis I of 
Section 2.2.1. 

Regularity hypothesis I. The functions <pi are functionally independent in the
sense that, for all q E A, the dcpi (q) (i E J(q) ) are linearly independent in
T*Q. 

Straightforward consequences of this hypothesis are: 

• A is a closed subset of Q,

• oA c U�=1 cpi1 ( {0}) (oA is the boundary of A),

0 0 • A= J-1 ( {0}) (A is the interior of A).

Consider a motion q(t) in A and assume that a right velocity q+ (t) E Tq(t)Q
exists at instant t, then we necessarily have:

V i E J(q(t) ) , (dc.pi (q(t) ) , q+ (t))q(t) � 0,
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or, equivalently, 

V i E J(q(t) ) ,  (V<pi (q(t) ) , q+ (t) ) q(t) � 0,

where V <pi ( q) is the gradient of <pi at q defined by V <pi ( q) = � ( d<pi ( q) ) . Thus,
if the system has configuration q and if a right velocity q+ exists, then q+ 
necessarily belongs to the closed convex cone V(q) of TqQ defined by:

V(q) = {v E TqQ ; V i E J(q) , (d<pi (q) , v) q � 0}.

V(q) is called the cone of admissible right velocities at the configuration q. In
particular, 

0 
q EA (i.e. J(q) = 0) ==> V(q) = TqQ.

Similarly, i f  a left velocity q- E TqQ exists, then q- E -V ( q )

3.2 Formulation of the dynamics 

The formulation of the dynamics follows the lines of MOREAU (1983, 
) 

1988a). 

3.2.1 Equation of motion. As for bilateral constraints, the realization 
of the constraints induces some reaction force R. The following hypotheses are
made. 

Constitutive hypothesis II. The unilateral constraints are of type contact with­
out adhesion: 

V v E V(q) , {R, v)q 2::0.

Constitutive hypothesis m. The unilateral constraints are perfect: 

Vv E { v E TqQ ; V i E J(q) , (d<pi (q) , v) q = 0 }• {R, v)q = 0. 

As an easy consequence of constitutive hypotheses II and m, we get: 

Thus, the reaction force R E T* Q must be such that:

-R E N•(q) � {t, .>.; d<p;(q) ; V i E J(q) , >.; � 0, V i� J(q) , .>.; � 0 }·
( 1 .7) 
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N* (q) is a closed convex cone of T;Q and it is the polar cone of V(q) in the
duality (TqQ, r;Q) . We will also have to consider the polar cone N(q) ofV ( q) for the Euclidean structure of TqQ:

N(q) � { t, .1, '1 <p;(q) ; Vi E J(q), A; ;:>: 0, Vi <t J(q), A; � 0} .
0 

Now, consider a motion q(t) starting at qo EA at time to with velocity vo . 0 
Assumed to be continuous, q(t) remains in A on a right neighbourhood of t0• 0 
By formula (1.7), the reaction forceR vanishes as long as q(t) is in A and the
motion is governed by the ordinary differential equation: 

(q(to ) , q(to ) )  = (qo , vo ) , 
� �i = f(q, q; t) .

Suppose that the solution of this Cauchy problem meets 8A at some instant
greater than to . Denote by T the smallest of these instants. The motion admits a
left velocity vector v:;. at time T. Of course, there may happen: v:;. fl. V ( q(T) ) .
In this case, no differentiable prolongation of the motion can exist in A for t 
greater than T. The requirement of differentiability has to be dropped. An 
instant such T is called an instant of impact. 

However, we are still going to require the existence of a right velocity vec­
tor q+(t) E V(q(t) )  at every instant t. The right velocity need not to be a
continuous function of time and the equation of motion 

o·+ 
� :t = f(q, q+ ; t) + R,

should be understood in sense of Schwartz's distribution. Actually, we require 
R to be a vector valued measure rather than a general distribution. 

We denote by MMA{I; Q) (motions with measure acceleration) the set of all
absolutely continuous motions q(t) from a real interval I to Q admitting a right
velocity q+ ( t) at every instant t of I and such that the function q+ ( t) has locally
bounded variation over I. Naturally, bounded variation is classically defined 
only for functions taking values in a normed vector space. However, for any 
absolutely continuous curve q( t) on a Riemannian manifold, parallel translation
along q(t) classically provides intrinsic identification of the tangent spaces at
different points of the curve and so, the definitions can easily be carried over 
to this case. The precise mathematical setting is postponed to Appendix A. 
The reader will notice from Appendix A that any motion q E MMA (I; Q)
admits a left and right velocity, q- and q+, in the classical sense at any instant.
Moreover, with any motion q E MMA(I; Q) is intrinsically associated the 
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covariant Stieltjes measure Dq+ of its right velocity q+. The equation of

motion ta es the form: 

I1Dq+ = j (q , q+; t)dt + R, 
where d t denotes the Lebesgue measure. We have to give a precise meaning to
condition ( 1 .  7) with R being a vector valued measure.

Convention. We shall write: 

R E -N* (q(t) )  

to mean: there exist n nonpositive real measures Ai such that:

n 
R = L Ai d<pi (q(t) ) ,

i=l 
V i E { 1 ,  2 ,  . .  · , n}, Supp ).i c {t ; <pi (q (t) )  = 0}. ( 1 .8) 

Using this convention, the final form of the equation of motion is : 

R = I1Dq+- j(q(t) , q+( t) ;  t) dt E -N* (q( t) )  ( 1 .9) 

A straightforward consequence of the equation of motion is that an impact 
(that is, a discontinuity of the right velocity q+ by proposition 43) can only
occur at an instant t such that J(q(t) ::f 0. This fact is a justification for the
following definition. 

Definition 8 An impact occuring at time t is said simple if J(q(t) contains
exactly one element. If J(q(t) ) contains at least two elements, the impact is
said multiple. 

3.2.2 The impact constitutive equation. We begin this section by 
an example. Consider the one degree-of-freedom mechanical system whose 
configuration space is lR equipped with its canonical Euclidean structure. The 
forces mapping f vanishes identically and the unilateral constraint is repre­
sented by the single function <p1 ( q) = q so that the admissible configuration setA is JR-. At initial time to = 0, we consider an initial state (q0, v0) such that
qo < 0 and vo > 0. It is readily seen from the equation of motion (1 .9) that an
impact necessarily occurs at timet = -qofv0• At this time, the left velocity is
v0• But, the right velocity can take any negative value and whatever it is, it is
compatible with the equation of motion. 

The reason for this indetermination lies in the phenomenological nature of 
the interaction of the system with the obstacle. This missing information has 
to be added. 

Constitutive hypothesis IV. The interaction of the system with the obstacle 
at timet is completely determined by the present configuration q( t) and the
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present left velocity q- ( t) . In other terms, we postulate the existence of a
mapping :F : TQ -+ TQ describing the interaction of the system with the
obstacle during an impact: 

V t, q+ (t) = :F (q(t) , q- (t) ) . ( 1 . 10) 

To ensure compatibility with the equation of motion ( 1 .9), the mapping :F 
should satisfy: 

:F (q, v- ) E V(q) , :F (q, v- )  - v- E -N(q) . ( 1 . 1 1 ) 

Moreover, we add the assumption that the kinetic energy of the system can not 
increase during an impact: 

V q E A, 'v' v- E -V(q) , ( 1 . 1 2) 

Let us comment on hypothesis N. When two solids hit, their bouncing is 
actually governed by the propagation of deformation waves in each the two 
solids. But, from the very beginning, we have adopted the simple framework 
in which each solid is supposed to be rigid, that is, for sake of simplicity, we 
have chosen to do not take under consideration any phenomena relying on the 
deformation of the solids. Thus, we cannot expect the theory to be able to predict 
the outcome of an impact experiment. The aim of constitutive hyposthesis N 
is to introduce in the theory the missing information. Of course, in practical 
situations, we have to identify the unknown mapping :F. This can be done 
either by means of experiments or by use of a refined theory. For example, the 
theory of elastodynamics could be used to predict the outcome of an impact 
in every impact configuration. The result would be an identification of the 
mapping :F. In any case, there is a very big amount of work to get a precise 
identification of :F. This is the price we have to pay to describe sophisticated 
physical phenomena in a very simple framework. Actually, this issue is faced in 
any mechanical theory (one could think of the theory of elasticity). Naturally, 
in each mechanical theory, the question arises to know what amount of lacking 
constitutive information should be introduced. Most of the time, well-posedness 
of the resulting evolution problem serves as a guideline to state the constitutive 
hypotheses. 

Definition 9 Equation ( 1 .10 ), with mapping :F fulfilling both requirements ( 1 . 11)
and (1. 12) is called the impact constitutive equation. An impact constitutive 
equation which ensures the conservation of kinetic energy during an impact: 

is called elastic. 
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There always exist many mappings F satisfying requirements (1.11) and 
(1.12). 

Example 5. Let e : TQ -t [0, 1] be an arbitrary function. The mapping F 
defined by: 

(1 . 13)  

is easily seen to satisfy requirements (1.11)  and (1.12). The associated impact 
constitutive equation is often called the canonical impact constitutive equation. 
It is elastic if and only if e = 1 .  The function e is classically called the restitution 
coefficient. 

The reason why the canonical impact constitutive equation is distinguished 
is that in situations where only simple impact can occur (for example, if the 
unilateral constraint is represented by a single function cp1), then the impact 
constitutive equation must be the canonical one (it is a simple consequence 
of requirements (1.11) and (1. 12)). However, in case of multiple impacts, the 
canonical impact constitutive equation has no specific physical relevance. A 
simple occurence of multiple impact is provided by Newton's cradle. The 
principle of the experiment is sketched on Figure 1.2.a. Its outcome is sketched 
on Figure l.2.b. It should be compared with the prediction of the canonical 
elastic impact constitutive equation which is sketched on Figure 1.2.c. 

a b c 

Figure 1.2. Newton's cradle. 

The following proposition is a straightforward and useful consequence of 
requirements (1.11) and (1.12). 

Proposition 10 Let F be a constitutive mapping satisfying requirements ( 1.11) 
and (1.12). Then, we have: 

'V q E A, 'tlv- E V(q) n ( -V(q)) , 
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Proof. Define v+ = F(q, v- ) . By requirement ( 1 . 1 1) ,  we have v- - v+ E 
N(q) . Since v- E V (q) n (-V(q) ) , we obtain:

(v- - v+ , v- ) q = 0,

that is, 

(v+ , v- ) q  = l l v- 1 1 � · 
The use of Cauchy-Schwarz inequality and requirement ( 1 . 1 2) gives the desired 
result. 0 

We conclude this section by a comment on requirement ( 1 . 1 2). At first 
glance, it could seem to be unnecessary. The following counter-example proves 
that if it was omitted, then, uniqueness of solution for the resulting evolution 
problem would surely not hold. 

Counter-example 6. Consider the one degree of freedom discrete mechanical 
system whose configuration space is lR equipped with its canonical structure 
of Riemannian manifold. The forces mapping is supposed to be constant: 
f ( q, q; t) = 2 . To this simple discrete mechanical system, we add the unilateral
constraint described by the single function cp1 ( q) = q. Thus, A = JR- . The
impact constitutive equation is given by formula ( 1 . 13) where the restitution 
coefficient is supposed to be the constant 1 /2 : e ( q, q- ) = 1/2 . This mechanical
system is a formal description of the physical occurence of a single particle 
subjected to gravity and bouncing on the floor. Consider the initial instant 
to = 0 and the initial state ( q0 ,  v0 ) = ( - 1 ,  0) . It is readily seen that the
function q : JR+ --+ JR- defined by:

Vt E (0, 1] ,

Vt E ( 1 , 2] ,

Vt E [3 - 2nl_l , 3 - 2� ) , 
Vt E [3, +oo[, 

q(t) = t2 - 1 ,

q(t) = t2 - 3t + 2 ,

q(t) = t2 - (6 - 2� ) t + (3 - 2nl_r)  {3 - 2� ) , 
q(t) = 0,

(n E N) belongs to MMA(JR+ ; JR- ) and satisfies:

• the initial condition,

• the equation of motion ( 1 .9) (with f (q , q; t) = 2),

• the impact constitutive equation ( 1 . 13) (with e(q, q) = 1/2).

This motion is pictured on Figure 1 .3 .  Note, by the way, that it exhibits an 
infinite number of impacts on a compact time subinterval. It could easily be 
proved that no motion, defined on [0, oo [, with finite number of impact on every
compact interval can exist. 
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q(t) � f

Figure 1.3. Motion of a punctual particle subjected to gravity and bouncing on the floor. 

Now, we are going to analyse what happens when the flow of time is reversed.
Define q by:

1 { [0, 4] -+ JR-q t r+ q(4 - t) 
Considering the initial state (q0 , v0) = (0, 0) at t0 = 0, it is easily seen that q' 
satisfies: 

• that initial condition,

• the equation of motion ( 1 .9) (with f(q, q ; t) = 2),
• the impact constitutive equation ( 1 . 13) (with e (q, q) = 2).

But, q" = 0 is also seen to satisfy the same initial condition, equation of motion
and impact constitutive equation. This example demonstrates that we cannot 
expect uniqueness of solution when adopting the canonical impact constitutive 
equation ( 1 . 1 3) with restitution coefficient e = 2 (or any real number strictly
greater than 1). But the canonical impact constitutive equation with restitution
coefficient strictly greater than 1 violates requirement ( 1 . 1 2) .

3.2.3 The evolution problem. Now, we formulate the evolution prob­
lem associated with the dynamics of rigid bodies systems with perfect bilateral 
and unilateral constraints. The initial condition is assumed to be compatible 
with the realization of the constraint: v0 E V ( qo ) . 
Problem m. Find T > to and q E MMA([to ,  T[; Q) such that:

• (q(to ) , q+ (to ) )  = (qo , vo ) ,
• 'V t E [to , T[, q(t) E A,
• R � bDq+ - f (q(t) , q+ (t) ;  t) dt E -N* (q(t) ) ,
• 'V t E]t0 , T[, q+ (t) = F (q(t) , q- (t) ) .  
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The equation of motion is understood in sense of convention ( 1 .8) and the impact 
constitutive equation is supposed to fulfill requirements ( 1 . 1 1 ) and ( 1 . 1 2). 

Yet, no regularity assumption has been made on the mapping f . This will
be done in the next section where well-posedness of problem Ill is studied. 
However, we can infer from Section 1 . 1 .3 that f will be assumed to be at least 
of class G1 . We can state an elementary property of any solution (if there are
any) of problem Ill. 

Proposition 11 (Energy inequality) Let (T, q) be anarbitrary solution ofprob­
lem Ill. Then, it satisfies: 

V t1 , t2 E [to , T[, t1 :S: t2 , K (q(t2 ) , q+ (t2 ) ) - K (q(h ) , q+ (h) ) =
� l l ti+ (t2 ) 1 1 !(t2 ) - � l l ri+ (td l l !(h ) :::; rt2 (f (q(s) , q+ (s) ; s) , q+ (s) ) q(s) dsltl 
Proof. We have the following equality between real measures: 

(q+ (t) + q- (t) ' Dq+) =2 q(t) 
I q+ (t) + q- (t) ' f (q(t) , q+ (t) ; t) ) dt + I q+ (t) + q- (t) ' R) 0 \ 2 q(t) \ 2 q(t) 

Integrating over ] t1 , t2] and using proposition 41  of Appendix A, we get:

Consider 

D = { t E]t1 , t2] ; q+ (t) ; q- (t) -:/= q+ (t) } .
D is (at most) countable and therefore Lebesgue-negligible. We obtain: 

� 1 1  q+ ( t2 ) 1 1  !(t2 ) - � 1 1 4+ ( tl ) l l !(tl ) = 

rt2 (q+ (t) , J (q(t) , q+ (t) ; t) )q(t) dt + r 1 4+ ; 4- , R) . ltr l]tl h] \ q 
Therefore, to prove proposition 1 1 , there remains only to prove: 

q + q- , R  < 0 .1 ( 
·+ 0 ) ] tl h] 2 q - ( 1 . 14) 
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But, on one hand, 

r J q+ + q_- , R) = r (q_+ , R)q = r (q_- , R)q , 1]t1 ,t2 ]\D \ 2 q 1]t1 .t2 ]\D 1]tlh]\D 
where the second integral is nonnegative by convention (1.8) whereas the third 
integral is nonpositive. As a consequence: 

q q R = 0  1 ( · + + · - ) ]tth]\D 2 ' q . ( 1 . 1 5) 

On the other hand, 

r ( q+ (t) + q- (t) R) 1 D 2 ' q(t) r ( q+ (t) + q_- (t) , ng_+) ,1 D 2 q(t) � 2: ( l l g_+ (t) l l �ct) - l l iJ- (t) l l �ct) ) ,
tED 

< 0, ( 1 . 16) 

by virtue of formula ( 1 . 12) . Bringing together formulae ( 1 . 1 5) and (1.16), we 
get inequality (1. 14). D 

3.3 Well-posedness of the dynamics 

To study the well-posedness of problem m, we need to state regularity as­
sumptions on the data. Looking at those of Section 2.2.3, we could expect to be 
able to prove well-posedness of problem m under the assumption that the func­
tions <fJi and the mapping f are of class C2 and C1 respectively. The following
counter-example originally due to B RESSAN (1960) and SCHATZMAN (1978) 
shows that uniqueness does not hold in general even if the data are supposed to 
be of class coo. 
Counter-example 7. Consider a simple discrete mechanical system whose 
configuration space is lR equipped with its canonical structure of Riemannian 
manifold. This is the configuration space of a particle with unit mass constrained 
to move along a line. A fixed obstacle at the origin is taken into consideration. 
It gives rise to a unilateral constraint described by the single function: 

cpi (q) = q
Therefore, the admissible configuration set is A = JR-. The impact constitutive 
equation is supposed to be elastic. Here, the geometry is so poor that this state­
ment determines completely the impact constitutive equation. It is necessarily 
the canonical one with restitution coefficient e = 1 . The forces mapping f is

28



supposed not to depend on the state but only on time. It will be denoted byf (t) . The initial instant is to = 0 and the initial state is (qo ,  vo ) = (0 , 0) .  Thecorresponding problem Ill admits here the simple formulation: find T > 0 and q E MMA( [O, T[; �) such that: 
• (q(O) , q+ (o) )  = (o, o) , 
• V t E [0, T[, q(t) � 0,
• R � dq+ - f (t) dt is a nonpositive real measure such that: Supp R c {t E [0, T[ ; q(t) = 0} ,  { q(t) i= 0 => q+ (t) = q- (t) • V t E]O, T[, q(t) = O => q+ (t) = -q- (t)

Here dq+ is merely the classical Stieltjes measure associated with the func­tion with locally bounded variation q+ . We investigate uniqueness under the assumption that f is of class coo and nonnegative: 
V t E �+ , f (t) � O. 

Then, it  is readily seen that the null function ij = 0 on �+ is a solution of that problem, whatever is the nonnegative coo function f. Now, we are going to construct an explicit example of such a function f in such a way that the associ­ated evolution problem Ill admits another solution, distinct from the identically vanishing one. First, define a Massin function p by: 
p 0 {

�
-+ JR.  X 1---7 1 Ce z (z- 1 )  

if X E] - oo, 0] U [ 1 ,  +oo[i f  x E]O, 1 [

where C i s  a real constant which i s  chosen to get: 

Define: 
r+oo }_00 p(x) dx = 1 .

T - � (n + 5)2 
- � (n + 1 ) (n + 2) (n + 3) (n + 4) ' 
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and, for every n E N,
00 (i + 5)2 � (i + 1) (i + 2) (i + 3) (i + 4) '

n + 5 
(n + 1 ) (n + 2) (n + 4) 1 fn = n! ' 1
(n + 3) ! "  

(i.e. c5n = � : !  (an - an+l )) ,

Now, the functions f (t) and v (t) , from [0 , T[  to JR. are defined by: 
f (O) = 0 

and: 

Finally the function q : [0 , T[--+ lR is defined by:
q(t) = lot v(s) ds .

The graph of the functions f (t) and q(t) is sketched on Figure 1 .4. The reader will easily check that: 
• f (t) is a C00 nonnegative function on [0 , T[,

• (T, q) is a solution of the considered evolution problem, 
• the only instants at which q(t) = 0 are 0 and the an . Therefore, q and fj provide two solutions of the evolution problem. Thesetwo solutions do not coincide on any open subinterval of (0 , T[. Therefore, uniqueness of solution for problem m cannot be asserted, even in the case 
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where the data are supposed to be of class 000 • PERCIVALE ( 1 985, 1 99 1 )  wasthe first to notice that, in the above example, if f ( t) is supposed to be analytic,then uniqueness of solution does hold. Recently, a complete discussion of the one-degree-of freedom problem was obtained by S cHATZMAN ( 1 998). The general case is treated in BALLARD (2000) and is now recalled. Let us just mention that prior existence results had been obtained, but they were limited to the case where the unilateral constraint is represented by a single function (see 
MONTEIRO MARQUES ( 1 993) and S CHATZMAN ( 1 978)). 

f(t) 
f(t) . i 

Figure 1.4. Bressan-Schatzman counterexample. 

Regularity hypothesis V. The Riemannian configuration manifold, the func­tions 'Pi and the mapping f :  TQ x lR --+  T*Q are analytic.

The proof of the following proposition can be found in BALLARD (2000). An earlier proof can also be found in LOTSTEDT ( 1 982). 
Proposition 12 Let qo E A and vo E V(qo ) . Then, there exist Ta > to, an 
analytic curve qa : [to , Ta [--+ Q and n analytic functions Aai : [to , Ta [--+ lR such
that: 
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• ( qa ( 0) , q;_f- ( 0) ) = ( qo , vo ) ,  
• V t E [to , Ta [, P�qa (t) = f (qa (t) , qa (t) ; t) + t, Aai (t) dcpi (qa (t) ) , 
• � � : ��2�a·[,· , n, Aai ( t) ::::; 0, 'Pi ( Qa ( t) )  ::::; 0, Aai ( t) 'Pi ( qa ( t) )  = 0.

Moreover, the solution of this evolution problem is unique in the sense that 
any other analytic solution (T, q, .-\1 , · · · , .Xn ) is either a restriction or analytic
extension of (Ta , qa , Aal , · · · , Aan ) · 
Corollary 13 There exists an analytic solution (Ta , Qa) for problem Ill. 
Proof. Consider the motion Qa furnished by proposition 1 2. It obviously sat­isfies the initial condition, the unilateral constraint and the equation of motion. The only thing which remains to prove is that it satisfies the impact constitutive equation. Since qa is analytic and satisfies the unilateral constraint, we have:

V t  E]to , Ta [, q;;- (t) = q;_f- (t) E V(qa (t) )  n (-V(qa(t) ) ) , and therefore, 
V t  E]to , Ta [, q;_f- (t) = q;;- (t) = :F (qa (t) ,  q;;- (t) ) , by proposition 1 0. D Naturally, the analytic solution furnished by corollary 1 3  will cease to exist at the first instant of impact. This is the reason why we have considered the wider class MMA which contains motions which are not differentiable in the classical sense. Considering motions in MMA will allow to extend the solution beyond the first instant of impact. But, it must be made sure that admitting the wider class of solutions MMA will not introduce parasitic solutions. This is the aim of the following theorem. 

Theorem 14 Let (Ta , qa) be the solution for problem Ill furnished by corol­
lary 13, and (T, q) be an arbitrary solution for problem Ill. Then, there exists
a real number To (to < To ::::; min{Ta , T}) such that: 

qf [to ,To [  = qaf (to ,To ( · 
In other terms, there is local uniqueness for problem Ill. The proof of theorem 14 makes extensive use of the following corollary of Gronwall-Bellman lemma (lemma 4). 
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Lemma 15 Let m be a nonnegative integer, and '1/J : [0 , T] --+ ffi. an integrable 
function. If <P : [0, T] --+ ffi. is any absolutely continuous function such that
</J( t) = o( tm+ 1 ) when t tends towards 0 and such that there exists a nonnegative
real constant C such that: 

for almost all t E]O, T[, t :t <jJ(t) :::::; ( 1 + m +  Ct) <jJ(t) + tm+2'1jJ(t) ,
then, 

Proof. This is almost obvious. Dividing each member of the inequality by tm+2, we obtain:
for almost all t E]O, T[, � ( <jJ(t) ) < C <jJ(t) + . !, (t) dt tm+l - tm+l '!-' •After integration, Gronwall-Bellman lemma yields: 

V t E]O, T] , <jJ(t) :::::; {t '1/J(s) ds + {t Cec(t-s) r '1/J(o-) do- ds.tm+l Jo Jo lo Then, an integration by part gives the desired conclusion. 
Proof of theorem 14. 

Step 1. Parametrization of the problem and notations. 

D 

We denote by do :::::; d the number of elements of J(qo ) . Consider a local chart '1/J : U C Q --+ ffi.d on Q centered at qo such that the do first components of
'1/J(q) are (rpi (q) ) iEJ(qo ) · Such a chart exists since (drpi (qo ) ) iEJ(qo) is linearly independent in r;o Q by regularity hypothesis I. Next, choose a > 0, sufficiently small to have, for all t E [t0 ,  t0 + a] , 

• qa(t) E U, q(t) E U, 
• V i E  J(qo ) , :trpi (qa (t) )  = (drpi (qa (t) ) , qa{t) ) q.(t) :S 0, ( 1 . 17)
• V i E { 1 , 2 , · · · , n} \ J(qo ) , rpi (qa (t) ) < O, rpi (q(t) ) < 0. (1 . 1 8)Such a choice for a is possible because the functions 'Pi ( qa ( t) )  are analytic and the functions 'Pi (q (t) )  are continuous. We denote by fi the components of fin the natural basis ( ei ) associated with the chart under consideration. Since qa and q are local solutions for problem Ill, we have, for all i E { 1 , 2 , · · · , n } , 

gij (qa) ( iit + r{1 (qa)ti:ti!) = fi(qa, tia ; t) + Aai , ( 1 . 19) 

gii (q) ( dq+i + r{1 (q)q+kq+1dt) = fi (q, q+ ; t) dt + J-ti , (1 .20)
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where the Aai and fti are respectively d nonpositive analytic functions on [to ,  to+
a] and d nonpositive measures on [to ,  to + a] . Note incidentally that the Aai and fti vanish identically for i > d0 ,  by ( 1 . 1 8).  We denote by 1 - 1  the standard euclidean norm on Rd . Confusing (abusively) q and 'lj;(q) , we shall write:d l q l 2 = L (qi ) 2 ' and i=l i=l 
Step 2. There exist some positive real constants C1 and C2 such that the
following estimate: {t ( l q - qa l 2 (s) + l q+ - qa l 2 (s)) ds ::;lto lt ls do - Cl eC2 (t-s) L Aai (a) q+i (a) da ds .to to i=l 
holds for all t E [to ,  to + a] .By proposition 41 of Appendix A, we have: 
d (� (q+i - q!) 9ij (q) (q+i - qt)) = 

( 1 .2 1 )  

( q-i ; q+i - q!) 9ij (q) ( dq+i - qt dt + r{l (q)q+k ( q+l - q�) dt) 'and, therefore, using equation of motion ( 1 . 20), 
d (� (q+i - q!) 9ij (q) (q+i - �) ) = 

(q+i - q!) fi (q, q+ ;  t)dt - (q+i - q!) Yij (q) (;fa + r{1 (q)q+kq�) dtdo ( · -k + · +k ) "" q q ·k + L.. 2 - qa ftk · k=l But, each q:ftk i s  a nonnegative measure b y  ( 1 . 17), and, do q-k + q+k _ ( q- + q+ )L 2 
ftk - 2 , R k=l q is a nonpositive real measure by proposition 1 1 .  Therefore, 

d (� (q+i - q!) 9ij (q) (q+i - �)) ::;
[ (q+i - q!) fi (q, q+ ; t) - (q+i - q!) 9ij (q) ( qt + r{1 (q)q+kq�) J dt,
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in the sense of ordering ofreal measures. Integrating over ] to ,  t] (t E [to , to+a]), we get: 
� (4+i - 4!) 9ij (q) (4+j - tPa) �
1t [ (4+i - 4!) fi (q , 4+ ; s) - (4+i - 4!) Yii (q) ( ifa + r{l (q)4+k4�) ]  ds .to The term within the integral sign is an analytic function of the three variables q, 

4+ and s . Therefore, it is also an analytic function of the three variables q - qa, 
4+ - 4a and s . It is written under the form: 

( · +i • i ) F. ( ·+ . . )q - qa i q - qa, q - qa , S • But, each function Fi can be decomposed under the form:
Fi (q - qa, 4+ - 4a ;  s) = Fi (O , 0; s) + Gi (q - qa , 4+ - 4a ;  s) , where the Gi are analytic and Gi (O, 0; s) = 0. Hence, there exists a positiveconstant M such that, for all t E [t0 , t0 + a] , 

/Gi (q (s) - qa (s) , 4+ (s) - 4a (s ) ; s ) / �
M Vr-lq-( s-) ---qa-( s-)-1 2-+-lq-.+-( s-)---4-a (-s )-1 2 Hence, we have proved: 

� (4+i - 4!) 9ij (q) (4+j - tPa) � 

1t { (4+i - 4!) [fi(qa , 4a i s) - 9ij (qa) (;fa + r{l (qa)4!4�) ]to 
+Md / 4+ - 4a / V l q - qa l 2 + 1 4+ - 4a l 2} ds .  

Moreover, by a compactness argument, there exists a positive constant m suchthat for all t E [to , to + a] , 

� (4+i - 4!) 9ij (q) (4+j - tPa) 2: m / 4+ - 4a / 2 •We obtain : 
/ 4+ - lia / 2 (t) < �d 1: ( l q - qa l 2 (s) + / q+ - lia / 2 (s)) ds

l lt do . . - - L Aai (s) (4+� - 4!) ds ,
m to i=l 
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where equation of motion ( 1 . 19) has been used. Note that, actually: 
V i E { 1 ,  2, · · · , do } ,  Aaiq! = 0,and, so, by the analyticity of functions q! and Aai :

V i E { 1 , 2 ,  · · · , do } ,  Aaitl! = 0.By use of Cauchy-Schwarz inequality, we get: 

Defining: 
1 Md cl = - , c2 = - + a, 
m m multiplying each term of the above inequality by e-02 t and integrating, weobtain estimate ( 1 .21 ). 

Step 3. Estimate (1 .21) implies that the function t I-+ Ef�1 .X� (t) q+i (t) van­
ishes identically on a right neighbourhood of to Indeed, by estimate ( 1 .21) :  

V t E (to , to + a] ,  {t e-028 t t Aai (a) q+i (a) da ds � 0,fto fto i==l which is, after integration by parts: 

But, since, 
V i E { 1 , 2 , · · · , do } , V s E [to , to + a] , Aai (s) � 0 and qi (s) � 0,the two members of inequality ( 1 .22) are nonnegative and, therefore, the in­equality is preserved when taking the absolute value of each member. We get: 

£ e-c,, t. >..;(s) q' (s) ds <; 1,: e-c, ,  f t. l q' ( <T) I I A,; (u) I M ds,

< £ [ e-C,u t. 1 q' ( u) I I A,; (u) I M ds.
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Define: 
Qi (s) -e-C2 (s+to) qi (s + to ) , 
Li (s) = -Aai (s + to ) . 

With these notations, we obtain: 
t do t s do V t E [O, a] ,  1 "f_ Li (s) Qi (s) ds $, 1 1  "f_ l£i (s) I Qi (s) da ds ,( 1 .23)where the Li are nonnegative real-analytic functions and the Qi are nonnegative continuous functions which all vanish at t = 0 and are right-differentiable at t = 0. We are going to prove that inequality ( 1 .23) implies that: 

:3 {3 E]O , a] , V t E [0, {3] , V i E { 1 , 2 , · · · , do } , Li (t) Qi (t) = O. 
The functions Li being analytic nonnegative, there exist nonnegative integers 
n1 < n2 < · · ·  < nm, a partition h , h , · · ·  Jm of { 1 , 2 , · · ·  , do } , and analytic nonnegative functions Gi such that: 

V k  E { 1 , 2 , · · ·  , m} , V i E Ik , 
with either Gi (O) > 0 or Gi = 0. Inequality ( 1 .23) may be rewritten as : 

But, by the analyticity of the functions Gi : 
:3 {3  > 0 , :J N > 0, V i E J(q0 ) ,  V a E [0, {3] ,
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Therefore, for all t E [0, ,8] , 

Integrating by parts the left member of the inequality, we obtain: 
t 1t f L unk-lGi (u) Qi (u) du ::;

a k=l iElk 

1t 18 f L(nk + 1)unk -1Gi (u) Qi (u) du ds
a a k=l iElk 

+ Nt 1t 18 f L unk-IGi (u) Qi (u) du ds o ( 1.24)
a a k=l iEh 

Since each function Gi ( u) Qi ( u) j u is  bounded over [0 , .8] , there exists a nonneg­ative real constant H such that, for all k E { 1 , 2, 0 0 0 , m} and for all t E [0, ,8] ,

Since it can be assumed that ,8 < 1, inequality ( 1 .24) gives, for all t E [0, ,8] ,

t 1t L unt -lGi (u) Qi (u) du ::;
a iElt 

( 1  + nl + Nt) r r L O"n1 -lGi(u) Qi (u) du ds +  Hltn2+2 ' la la iEit where H1 is a non negative real constant. Applying lemma 15 ,  we get: 
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Coming back to inequality ( 1 .24), we get, for all t E [0, ,8] , 

Applying once more lemma 1 5 ,  we obtain: 

Proceeding inductively, we obtain: 

But, by inequality ( 1 .24), for all t E [0 , ,8) , 

Using lemma 1 5  for the last time, we get: 

which implies: 
V i E { 1 , 2 , · · · , d0 } ,  V t E [0, ,8) ,  which is nothing but: 

V i E { 1 , 2 , · · ·  , do } ,  V t E [to , to + ,B] , But, the analyticity of the functions Aai implies:
V i E { 1 , 2 , · · ·  , d0 } , V t E [t0 , t0 + ,8] , 
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and the assertion of step 3 is proved. 
Step 4. Conclusion of the proof of local uniqueness. Bringing together the results of steps 2 and 3, we get: 

V t  E [to , to + ,8] , 1t ( J q - qa J 2 (s) + l ti+ - tia l 2 (s)) ds � 0,to which yields the desired conclusion: 
V t E [to , to + ,8] , q (t) = qa (t) . 

Corollary 16 There exists a unique maximal solution for problem Ill. 
D 

It was noticed above that the analytical solution for problem m furnished by corollary 13  stops to exist at the first instant of impact. To overcome this fact, we have proved that local uniqueness still holds in the wider class of motion 
MMA which allows impacts. But, this does not guarantee that the maximal solution for problem m is not going to stop to exist at finite time for unphysical reasons. In other terms, we still do not know if the class MMA is wide enough. Actually, it is wide enough as shown by the following theorem which should be brought aside theorem 3 .  

Theorem 17 The configuration manifold Q is assumed to be a complete Rie­
mannian manifold and the mapping f is supposed to admit the following esti­
mate: 

V (q, v) E TQ, for almost all t E [to , +oo[, 
l l f (q, v ; t) J J ; � l (t) ( 1 + d(q, qo ) + l l v l l q) , 

where d( · , · ) is the Riemannian distance and l (t), a (necessarily nonnegative)
function of Lfoc (l�; ffi! ) .

Then, the dynamics is eternal, that is, the maximal solution for problem Ill 
is defined on [to , +oo[. 
Proof. We proceed as for the proof of theorem 3. We assume that the maximal solution q is defined on [to , T[, with T finite and try to obtain a contradiction. 
Step 1. The function t t-t I J q+ (t) I J q(t) is bounded over [to ,  T[: 

3 V > O, V t E [to , T[, l l ti+ (t) l l q(t) � V. ( 1 .25) By proposition 1 1 , we have: 
� l l ti+ (t) l l �(t) � � J J vo J I �o + 1t l l f (q(s) , q+ (s) ; s) l l ;(s) l l ti+ (s) l l q(s) ds .to 
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 Applying lemma 5, we get: 

which yields, by virtue of the hypotheses of the theorem: 

But, 

therefore, 

V t E [to , T[, d(q(t) , qo ) � {t 
l i ti+ (s) i i q(s) ds ,lto 

d(q(t) , qo ) + l l ti+ (t) l l q(t) � 
l l vo l l qo + lot 

l (s) ds + l: ( 1  + l (s ) )  ( d(q(s) , qo ) + l l ti+ (s ) l l q(s)) ds .

By Gronwall-Bellman lemma (lemma 4), we have, for all t E [to , T[: 
d(q(t) , qo ) + l l ti+ (t) l l q(t) � ( l l vo l l qo + lot 

l (s) ds) eftto (l+l (s)) ds ,

which yields ( 1 .25). 
Step 2. The right velocity q+ has bounded variation over [to , T[: 

Var (q+ , [to , T[) < oo .

By step 1 , we have: 

Since Q is assumed to be complete, we deduce that: 

qr = lim q(t) t-+T-

( 1 .26) 

exists in TQ . We denote by dr the number of elements of J ( qr) . Let ( U, '1/J)
be a local chart on Q at qr such that the dr first components of '1/J(q) in �d are 
('Pi ( q) ) iEJ( QT ) . Consider a compact neighbourhood K of qr in Q such that: 

• K c U,
• V q E K, J(q) C J(qr) .
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Define: 
t� = min {t E [to , T[ ; V s E [t, T[, q(s) E K} .

Since [t0 , t�] is compact, one has: 

Var (q+ ;  [to , tW < oo ,

therefore, it remains only to prove: 

Var (q+ ; ] t� , T[) < oo .

Denote by .xmax (resp. )..min) the maximum (resp. the minimum) of the greatest
(resp. least) eigenvalue of the matrix (9ij (q) ) i ,j=l 2 . . . d when q wanders in K.
It is readily seen that: 

' ' ' 

V i E { 1 , 2 , · · · , d} , V t E [t� , T[, 
( 1 .27) 

We denote by Bq (O, V) the closed ball of TqQ with radius V and centered at 
the origin. Considering the following compact subset K' of TQ: 

K' = U Bq (O, V) ,
qEK 

we define the following nonnegative real constants: 

and: 

F = max 
(q,v;t)EK' x  [t� ,T] , 

iE {1 ,2 , · · ·  ,d} 

G = max 
i ,j,kE{1 ,2 , · · ·  ,d} , 

qEK 

l fi (q , v ; t) i ,

Writing the equation of motion ( 1 .9) in the local chart (U, 1/; ) , we obtain: 

V i  E {1 , 2, · · · , d} , 
Yii (q) ( dq+i + r{1 (q)q+kq+1 dt) = fi (q, q+ ; t) dt + .xi ,

where the Ai are d nonpositive real measures on ] t� ; T[. Expressing the Christof­
fel symbols in terms of the metric, we have: 

Yij (q)dq+i + 
a���q) q+iq+kdt - � 89;��q) q+kq+1dt = fi(q, q+ ; t)dt + .xi ,

( 1 .28) 
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 or, equivalently, 

We deduce: 

for all i E {1 , 2, · · · , d} and all s i , s2 E [t� , T [ with si < s 2 .  There results
that the Ai are d bounded measures on ]t� ,  T[. Thanks to equation ( 1 .28), it
is readily seen that the measures dq+i are also bounded measures on J t� , T [ . 
Therefore, the d functions q+i :]t� ,  T[--7 lR have bounded variation over the
interval ] t� , T [ . Then, corollary 36 of Appendix A yields the desired result. 
Step 3. Conclusion of the proof of theorem 1 7. 

By Steps 1 and 2 and by proposition 38 of Appendix A, 

(qr , vY, ) = lim (q(t) , q+ (t) )  t---+T-

exists in TQ. Define: vr = F (qr , vY, ) 
Take it as a new initial condition at t = T. Then, theorem 1 3  furnishes T' > T 
and an extension of q on [T, T' [ such that q E M M A ( [to , T' [; Q) is a solution
of problem Ill. But, this contradicts the definition of T. D 

3.4 Illustrative examples and comments 

It is readily seen that the function q displayed in counter-example 6 is the 
unique maximal solution of problem Ill corresponding to the situation under 
consideration. This solution exhibits an accumulation of impacts on the left 
side of instant t = 3 .  However, as predicted by corollary 1 3, for each instant t E JR+ , there exists a right neighbourhood [t, t+17 [ oft, such that the restriction
of q to [ t, t + 17 [ is analytic. A straightforward and general consequence of this
is the following. 

Proposition 18 Let q be the maximal solution of problem Ill furnished by corol­
lary 16. Although infinitely many impacts can accumulate at the left of a given 
instant, such an accumulation of impacts can never occur at the right of any 
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instant. Moreover, in the particular case where the impact constitutive equation 
is elastic, the instants of impact are isolated and therefore in finite number in 
any compact interval of time. 

Proof. Since for each instant t E [t0 , T[, there exists a right neighbourhood[t , t + 17 [ of t, such that the restriction of q to [t , t + 17[ is analytic, we get the
first part of the proposition. For the second part, let T be an arbitrary instant 
in ] t0 , T [ and consider the problem m associated with the initial condition
( q( T) , -q- ( T) ) , the elastic constitutive impact equation and the force mappingg(q, v ;  t) defined by: 

g(q, v; t) = f (q, -v ;  T - t) 
which is analytic. By theorem 14, there exists an analytic function qa : [0, Ta [---+ 
Q which is a solution of this problem m. Any other solution of problem m 
coincides with qa on a right neighbourhood of t = 0. Actually, as seen in the
proof of local uniqueness (theorem 14), a little bit more is proved: any function q' E M M A( [O , T[; Q) satisfying the initial condition, the unilateral constraint,
the equation of motion ( 1 .9) and the energy inequality (proposition 1 1 ) has to 
coincide with qa on a right neighbourhood of t = 0. But, it is readily seen that
the function defined by: 

q1 (t) = q(T - t) , t E [0 , T - to [ 
fulfill these requirements. Thus, q' can not have right accumulation of impacts
at t = T and, therefore, q can not have left accumulation of impacts at t = T 
and the instants of impact are isolated. Of course, if q is the maximal solution 
defined on [to , T[, impacts can still accumulate at the left ofT, as seen on simple
examples. D 

The fact that infinitely many impacts can accumulate at the left of a given 
instant but not at the right is a specific feature of the analytical setting that is 
lost in the C00 setting as seen in counterexample 7. Actually, this counterexam­
ple shows that pathologies of nonuniqueness in the coo setting are intimately 
connected to the possibility of right accumulations of impacts. The fact that 
the analytical setting prevents from such right accumulations is the thorough 
reason why we could prove uniqueness in this case. 

We conclude this section by a come back to the double pendulum of exam­
ple 4. The aim of the following example is to illustrate the generality of the 
above theory. 

Example 8. Consider the double pendulum described in example 4 and add a 
rigid obstacle on the vertical coordinate axis as represented on Figure 1 .5. This 
obstacle may be represented by two analytic functions whose expressions in 
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the global chart of Q described in example 4 are: 

'Pl ( ql ' q2 )
'P2 (ql , q2 )

-h sin q1 � 0,

-h sin q1 - 12 sin q2 � 0.

Figure 1.5. Double pendulum with obstacle. 

It is readily seen that, except in the particular case where h = 12 , these
constraints are functionally independent, that is, they satisfy regularity hypoth­
esis I. An arbitrary initial state ( qo , vo ) such that vo E V ( qo ) is given at time
t0 = 0. To fix ideas, we adopt the canonical constitutive equation with arbi­
trary restitution coefficient e ( q, q_- ) .  Then, writing the evolution problem in the
chart under consideration is straightforward. By corollary 16, we get a unique 
maximal solution for this evolution problem. By theorem 17,  we can state that 
this maximal solution is defined all over JR+ , that is, the dynamics is eternal.

4. Perfect non-holonomic bilateral constraints

In this section, we come back to simple discrete mechanical systems. Perfect 
holonomic bilateral constraints were defined to be constraints on the configu­
rations of type: 

'Pi (q) = 0.

Considering an arbitrary motion satisfying the constraint and differentiating 
with respect to time, gives : 
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Thus, the constraint may be viewed as acting on the velocity. There are practical 
situations where the constraint is given in this way. A typical occurence is the 
"rolling without slipping". Thus, we are led to consider general constraints of 
type: 

(ai (q) , q) q = 0, 
where the ai (q) are cotangent vector fields (we say also 1 -form) on the config­
uration manifolds. 

The reason that makes here desirable the study of non-holonomic constraints 
is that the "rolling without slipping" can be seen as a frictional bilateral con­
straint with a friction of infinite magnitude. Therefore, this section prepares the 
full discussion of frictional constraints in the sequel. 

4.1 The geometric description 

A non-holonomic bilateral constraint is a restriction on the admissible mo­
tions of the system which is expressed by means of a finite number n of smooth 
1 -form ai defined on the configuration manifold:

V i E { 1 , 2 , · · · , n} , (ai (q) , q) q = O. ( 1 .29) 
As in the case of holonomic constraints , the constraints are required to be 
independant in the following sense: 

Regularity hypothesis I. For all q in Q, the ai (q) (i E { 1 ,  2, · · · , n}) are
linearly independent in T*Q. 

A straightforward consequence of this hypothesis is that the set E of all 
admissible velocities : 

E = { (q, v) E TQ ; V i E {1 , 2 , · · · , n} , (ai (q) , v) q = 0} , ( 1 .30)
is a tangent subbundle of Q (that is, a vector bundle over Q which is also a 
submanifold of TQ) of dimension 2d - n. 

Of course, the terminology is a little bit confusing (but it is classical) since a 
non-holonomic constraint may turn out to be holonomic ( 'holonomic' is greek 
for 'integrable' ). A trivial example is provided in the case n = 1 when the
1 -form a1 is exact (that is, there exists <p1 such that d<p1 = a1 ) . In this case,
the non-holonomic constraint is equivalent to the holonomic one: <p1 ( q) = 
constant. The constant is determined by the initial configuration qo .  The non­
holonomic constraint defined by a1 may turn out to be holonomic even in the
case where a1 is not exact. Indeed, even if a1 is not exact, there may exist some
real valued function h(q) such that h(q)a1 (q) is exact. We shall say that the
non-holonomic constraint defined by the ai is holonomic if there exist (locally)n real-valued functions <pi such that ( 1 .29) is equivalent to:

V i E { 1 , 2 , · · ·  , n} , (d<pi (q) , q) q = 0.
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Deciding, in the general case, whether a non-holonomic constraint is holonomic 
or not, is a difficult issue. One answer is provided by Frobenius' theorem (see, 
for example, ABRAHAM & MARSDEN ( 1985), p. 93). 

Theorem 19 (Frobenius) The non-holonomic constraint defined by the O:i ( i E 
{ 1 , 2, · · · , n}) is holonomic if and only if for any two vector fields X and Y 
defined on open sets of Q and which take values in E, the Lie bracket [X, Y]
takes values in E as well. 

Hence, the study of non-holonomic bilateral constraints is more general than 
the study of holonomic ones, since the former contains formally the latter. 
However, the handling of holonomic constraints is simpler since it allows im­
mediately the elimination of the redundant parameters in any parametrization. 
So, each time a non-holonomic constraint turns out to be holonomic, it should 
be integrated. 

4.2 Formulation of the dynamics 

Here also, the realization of the constraints necessarily involves some reac­
tion forces R which should be specified through a constitutive assumption.

Constitutive hypothesis II. The non-holonomic bilateral constraint ( 1 .29) is 
supposed to be perfect, that is, the virtual power of the reaction forces R vanishes 
in any virtual velocity compatible with the bilateral constraint: 

'v' (q, v) E E, (R, v) q = 0. 
Hypotheses I and II imply that there exists n real-valued functions Ai , unique,

such that: n 
R(t) = L Ai (t) O:i (q) .

i=l 
Now, we formulate the evolution problem associated with the dynamics of 

rigid bodies systems with perfect bilateral constraints, either non-holonomic 
or holonomic (the holonomic constraint is included in the definition of the 
configuration manifold Q). The initial condition is assumed to be compatible 
with the realization of the constraint: ( q0 ,  v0 ) E E.

Problem lV. Find T > to , q E C2 ( [to , T [; Q) and n functions .Xi E C0 ( [to , T [ ; IR) 
such that: 

• (q(to ) ,  q (to ) )  = (qo , vo ) ,
• 'v' t  E [to , T[, (q(t) , q (t) )  E E,

• 'v' t E [to ,  T[, � �q(t) = f (q (t) , q (t) , t) + t Ai (t) o:i (q (t) ) .
i=l 
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4.3 Well-posedness of the dynamics

By similarity with that of Section 2.3 ,  we state the following regularity hy­
pothesis . 

Regularity hypothesis Ill. The configuration manifold Q is of class C2, the
mapping f : TQ x lR --+  T*Q and the 1-forms ai are of class C1 . 

The fundamental reason why problem N is well-posed, is, that it reduces 
to a (first order) ordinary differential equation on T E. To describe how this is 
realized, we need to introduce some new notations and definitions. 

In Section 1 .2, it has been stated briefly that the equation of motion: 

� q (t) = u 0 f (q(t) ,  q (t) , t) , ( 1 . 3 1 )  

i s  a second order differential equation on the configuration manifold Q.  We are 
going to express more precisely what is meant by that. Consider a local chart 1/J : U --+ JRd . With 1/J, we associate a natural local chart w : Tiq1 (U) --+ JR2d
on TQ by: 

\ll(q, v ) (q\ . . .  , qd , vl , . . .  , vd) ' 
( 1/Jl (q) , . . .  ' '1/Jd (q) , (d'I/Jl (q) , v}q , . . .  ' (d'I/Jd (q) , v} q) . 

Actually, W = T'l/J is nothing but the classical tangent map of 1/J (see, for
example, ABRAHAM & MARSDEN ( 1985), p. 45). We find it convenient to 
write the basis of tangent spaces to TQ at points of Tiq1 (U) by:

( 8:1 ' · · · ' 8:d , 8:1 , · · · , 8:d ) 
(this notation is standard and expresses the fact that tangents can be viewed as 
derivation operators on real valued functions and reciprocally). It is easy to 
write equation ( 1 . 3 1 )  in the chart 1/J as a first order differential equation: 

d i vi dt q = ' 
:t vi -r�k (q)vivk + gii (q)fi (q, v ; t) .

Hence, the solution of equation ( 1 . 3 1 )  is nothing but an integral curve (see 
ABRAHAM & MARSDEN ( 1985), Section 2. 1 )  of the time-dependent vector 
field Q( · ;  t) defined on Tiq1 (U) by: 

. 8 . . k 8 . .  8 
Q (t) = vt-8 . - rJ�·k (q)v3v -8 . + g�3 (q)fj (q, v ; t)-8 . .

if � � 
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Since the geodesic equations are independent of the choice of coordinates on 
Q, we conclude that g ( · ; t) defines a global time-dependent vector field on TQ.
Now, if n : ]a, ,8 [-+ TQ is any integral curve of g( · ; t) and w is the curve on Q
defined by w = IIQ o n, then it is readily seen that:

d 
dtw = n.

This last property is  easily seen to be equivalent to the following property of g: 

V (q, v ) E TQ, TIIQ (g (q, v ; t) ) = (q, v) , 

and motivates the following definition. 

Definition 20 Let Q be a manifold and E any tangent subbundle of Q. A 
time-dependent vector field X( · ;  t) on E is said to determine a second-order
differential equation on Q if: 

TIIQ (X( · ;  t) )  = idE

Now, E will be the tangent subbundle of the configuration manifold defined 
by formula ( 1 .30). We denote by Eq the fiber over q E Q. We define a map PE 
by: 

PE { TQ -+ E 
. ( q, v) 1--7 ( q, ProJq [v ; Eql ) 

Recall that Projq [v ; Eq] was defined in Section 2.2 to be the orthogonal projec­
tion of v on the subspace Eq of TqQ. The tangent map T PE of PE maps the
second tangent bundle TTQ of Q onto T E. Thus, T PE (g ( · ; t) )  is a C1 vector
field on E (we have used regularity hypothesis Ill). It is readily seen that the
vector field TPE (g ( · ; t) ) determines a second-order differential equation on 
Q.  

Theorem 21 Any solution of problem N defines an integral curve of the time­
dependent vector field T PE (g ( - ; t) ) on E and reciprocally.

Proof. Let q(t) be an arbitrary solution of problem IV. We shall denote by
O(t) = (q(t) , q(t) ) the corresponding curve in E. We have:

� q(t) = � o f (q (t) , q(t) ,  t) + r (t) ,

where r : [to , T[-+ TQ is such that, for all t ,  r (t) = ri (t) 8f8qi lies in the
orthogonal complement of Eq(t) in Tq(t) Q· As a result,

d
dt n (t) = g(n (t) ; t) + n(t) ,
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where 'R.(t) is the curve in TE which is expressed by 'R.(t) = ri (t)ofovi in any
local chart. By PE (r (t) ) = 0, we get immediately TPE(R(t) )  = 0. Moreover,
since f!(t) is in E for all t, we have:

:/2 (t) d TPE dtf!(t)
TPE (Y (O(t) ; t) ) + TPE (R(t) ) 
TPE (g (O (t) ; t) ) , 

and, therefore, the first part of the proposition. Reciprocally, let f! be an integral
curve of T PE (Y ( · ; t) ) ) .  We define q(t) by:

q (t) = IIQ (f!(t) )  

Since TPE (g ( · ; t) )  determines a second-order differential equation on Q, we
have: 

(q(t) , q (t) ) = f!(t) E E.

Moreover, we easily have: 

V t, PE ( �q(t) - � o f (q(t) , q(t) , t)) = 0, 

which yields the desired result. D 

Corollary 22 Problem N admits a unique maximal solution Qm· Moreover, if
Q is of class GP (p � 2), and f and the ai are of class CP-l then Qm is of classCP. IJQ, f and the ai are analytic functions then so are Qm and the functions
>..i . 

Similarly to theorem 3, we have: 

Theorem 23 The configuration manifold Q is assumed to be a complete Rie­
mannian manifold and the mapping f is supposed to admit the following esti­
mate: 

V (q , v) E TQ, for almost all t E [to , +oo[,

l l f (q, v ; t) 1 1 � � l (t) ( 1 + d(q, qo ) + l l v l l q) ,
where d( · , · ) is the Riemannian distance and l (t) , a (necessarily nonnegative)
function of L1c(1�; �) .  

Then, the dynamics is eternal, that is, Qm is defined on [to , +oo(. 

Theorem 23 is proved exactly along the same lines as theorem 3 .  

50



4.4 Illustrative example and comments 

Example 9. In the usual three-dimensional space, consider a rigid homoge­neous ball of radius R and mass M. The center of the ball is constrained toremain at distance R of a given fixed affine plane (perfect holonomic bilateral constraint) . The ball is initially at rest and a prescribed punctual force applies at the center of the ball. Also, the ball is constrained to roll without slipping on the plane (perfect non-holonomic bilateral constraint) . The holonomic bilateral constraint is taken into account by using the reduced configuration manifold Q = P x §00 where P is the affine plane containing the center of the ball. There is no global parametrization of that system. As a local chart at the initial configuration, we can use some Cartesian orthonormal coordinates ( x ,  y) in Pand some Euler angles ('If; , (}, efy) (the ball is supposed to lie 'above the plane in the z-direction' and the initial configuration has Euler angle 'If; = 0, (} = 1r /2 and efy = 0) in §00. The kinetic energy in the considered chart is given by:
M 2 2 MR2 ( · 2 · 2 · 2 · ' ) K(q, q) = 2 (x + iJ ) + -

5
- 'If; + 0 + efy + 2 cos O '!f;efy , 

which provides immediately the components 9ij (q) of the kinetic metric on Q.The force mapping f (t) is given by: 
f (t) = Fx (t) dx + Fy (t) dy,where Fx (t) , Fy (t) are the components of the real world force along x, y. The non-holonomic constraint is obtained in the given chart, by writing that the real world velocity of the contact point must vanish. It is readily seen that we need two 1 -forms a1 and a2 to express this. They are given in the chart under consideration by: 

a1 dx - R sin 'If; d(} + R cos 'If; sin (} defy, 
a2 dy + R cos 'If; d(} + R sin 'If; sin (} defy,which are clearly independent. Using a covering of the manifold Q by suchcharts, these definitions are easily globalized. Using the results of the present section, it is easy to form the evolution problem associated with the dynamics of this system. Straightforward application of corollary 22 allows to conclude to the existence of a unique maximal motion, provided Fx (t) and Fy (t) are ofclass 01 • By corollary 23, we have that this maximal motion is defined for all time. Given two arbitrary configuration Qi and QJ in Q, it can be proved that there is a smooth motion q (t) , starting at Qi , ending at QJ and satisfying the non­holonomic constraint at every instant: 

Vt, (al (q (t) ) , q (t) ) q(t) = (a2 (q (t) ) , q (t) ) q(t) = 0.
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This fact demonstrates that the non-holonomic constraint defined by a1 and
a2 is not holonomic. An alternative way to see it would have been to apply
Frobenius theorem (theorem 19). 

To conclude this example, let us write the evolution problem in the parame­
trization described above. We have to find smooth functions x (t) , y (t) , 'lj; (t) , 
(}(t) , cp(t) , >.1 (t) and .X2 (t) , satisfying the initial condition and such that:

Mx 
My 

2MR2 ( ·· · ·  · · ) -5- 'If; + cos (} cp - sin (} (}cp 

2MR2 ( . . • · )-5- (} + sin (} 'lj;cp 

2MR2 ( .. · ·  · · )-5- cp + cos (} 'If; - sin (} 'lj;(} 

0, 

= R cos 'If; sin (} >.1 + R sin 'If; sin (} >.2 ,

x - R sin 'If; iJ + R cos 'If; sin (} �  = 0,

iJ + R cos 'If; iJ + R sin 'If; sin (} �  = 0,

To solve this system, we can eliminate the unknown functions >.1 ( t) and .X? ( t) i�
order to get a first orderdifferential equation with unknown (x , y, '1/J, (}, cp, 'If; , (} , cp) . 
It turns out that this is nothing but particularizing the proof of theorem 21  to 
the given system with the particular chart under consideration. The intrinsic 
point-of-view has provided a valuable guide to perform this in a systematic way. 
Moreover, it has allowed to lighten the notations very much. 

Remark 3. A comment similar to remark 2 can be made here. The dynamics of 
the constrained system depends only on the geometry of the tangent subbundle 
E and not on the particular choice of the 1 -forms O!i used to define it.

5. Non-firm bilateral constraints

In Section 4, we have discussed general perfect bilateral constraints on simple 
discrete mechanical systems. They are described by means of a finite number 
n of linearly independent smooth 1-forms ai defined on the configuration man­
ifold. The reaction forces were seen to have general expression: 

n 
R(t) = 2: .Xi (t) ai (q) ,

i=l 
where the Ai are a priori unknown smooth real valued functions of time. Once 
the evolution problem associated with the dynamics is solved, they are uniquely 
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determined. Actually, to write the evolution problem associated with the dy­
namics, we have implicitly assumed that the constraint is firm in the following 
sense. 

Definition 24 A general perfect bilateral constraint is said to be firm if any 
value of the associated reaction force can be assumed by the system. 

In some cases, it may turn to be physically relevant to deal with non-firm 
bilateral constraints. This is the object of this section. 

5.1 Formulation of the dynamics 

We are given an arbitrary simple discrete mechanical system according to 
definition 7 and a general perfect bilateral constraint defined by n linearly
independent smooth 1-forms ai defined on the configuration manifold Q. The
general expression for the reaction force associated with that constraint is given 
by: 

n 
R = L Ai ai (q) , ( 1 .32) 

i=l 
where (A 1 , A2 , . . .  , An) is an arbitrary element of IRn in the case where the
constraint is assumed to be firm. To discuss the case of non-firm constraints, it 
is natural to introduce a closed convex subset Go of IRn , containing the origin,
and to require the following restriction for the reaction force: 

(Al , A2 , . . .  , An) E Go . 
Actually, to get more generality and in view of discussing dry friction, it will 
be convenient to allow that the convex of admissible reaction forces can depend 
on time and also on the state. We state in the following constitutive hypothesis, 
the general form of the dependency that we allow. It will be enough for our 
purpose. 

Constitutive hypothesis I. The bilateral constraint defined by the n linearly
independent 1-forms ai is non-firm in the sense that the associated reaction 
force R = I:�=1 Ai ai (q) can not assume values out of the subset G(q, q; t) ofr; Q defined by:

C(q, <j; t) = { t, A; a; (q) ;

(A, , A, , . . .  , An ) E M(q) · [Go + �  �; (q, <i; t)G;l } , 
where: 
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• Go is a given closed convex subset of JRn , possibly unbounded and con­
taining the origin,

• the Gi ( i = 1 , 2 . . . , m) are given bounded closed convex subsets of JRn ,
containing the origin, 

• the /-Li : TQ x lR --+ JR+ are given functions whose regularity will be
stated later on,

• M ( q) is a given invertible square real matrix of order n, which depends
smoothly on q.

It is readily seen that G ( q, q; t) is a closed convex subset ofT; Q which contains
the origin. 

Naturally, this formalism contains the case of firm constraints as a particular 
case: take m = 0 and Go = JRn . 

Of course, this restriction on the admissible reaction forces will not be com­
patible any more, in general, with the kinematical realization of the constraint: 

V i E { 1 , 2 , . . . , n} , (o:i (q) , q) q = O, ( 1 .33) 

which, therefore, should be relaxed. But relaxing the constraint is equivalent to 
admit some dissipation of energy associated with the reaction force. The follow­
ing constitutive hypothesis gives precise information on the way the constraint 
is relaxed. 

Constitutive hypothesis 11. The non-firm bilateral constraint obeys to the so­
called Principle of Maximal Dissipation: 

V R E  G(q, q; t) , - (R, q)q 2: - (il, q\ .

In the particular case where m = 0 and Go = JRn (firm bilateral constraint),
constitutive hypothesis II implies nothing but the realization ( 1 .33) of the con­
straint. In the general case, constitutive hypothesis II specifies the way the 
constraint is relaxed. Hence, the general firm perfect bilateral constraint, as 
discussed in Section 4, appears as a particular case of non-firm bilateral con­
straints as discussed in this section. Constitutive hypothesis II can be given a 
synthetic formulation by use of elementary convex analysis and its notations 
(see Appendix B) :  

-q E 8Ic(q ,q;t) (R) ,
where 8Ic is the subdifferential (in the sense of the duality (TqQ, T;Q) ) of
the indicator function of the closed convex subset G of T;Q. Introducing the
support function Sc(q,q;t) of G(q, q; t) (that is, the conjugate or dual function

54



of Ic(q,q;t) in the duality (TqQ, T;Q ) ) , we have the equivalent formulation (see
Proposition 48 of Appendix B). 

R E 8Sc(q,q;t) ( -q) .  

Now, given any initial condition ( q0 , v0 ) E TQ compatible with the non-firm
constraint: 

-vo E Dom Sc(qo ,vo ;to) ' ( 1 .34) 

the evolution problem associated with the dynamics of simple discrete me­
chanical systems subjected to non-firm bilateral constraints is formulated as 
follows. 

Problem V. Find T > t0 and q E w'2·00 ( [t0 , T[; Q) such that:

• (q(to ) , q(to ) )  = (qo , vo ) ,

• P�q(t) - f (q(t) , q(t) ; t) E 8Sc(q(t) ,q(t) ;t) (-q(t) ) .

The reason why we look for solutions in the Sobolev class W2•00 which is
larger than the usual class C2 will be made clear later on (Section 5.2 and 
example 10). 

5.2 Well-posedness of the dynamics 

Regularity hypothesis m. The configuration manifold Q is of class C2 , the
mapping f : TQ x lR ---+ T* Q, the 1 -forms ai and the mapping M :  q t-t M(q)
are of class C1 . Also, the functions f-ti : TQ x lR ---+ JR+ are locally lipschitzian
(in the sense that the representative in a local chart at an arbitrary (qo , vo ) is
locally lipschitzian with respect to (q, q; t) E JR2d+l ) .

Then, we can prove well-posedness for problem V. 

Theorem 25 There exists a solution (T, q) for problem V. 
Proof. First, we are going to write the evolution equation (actually, inclusion) 
in a local chart. Let (U, '1/J) be a local chart on Q at q0 •  Also, taking U smaller
if necessary, we can complete the ai (q) so as to get a basis of T;Q at each q.
Now, define a new basis (wi* (q) ) of T;Q by:

d
wi* (q) = L Mji (q)aj (q) ,

j=l 
where the matrix M(q) , which has been defined as a real matrix of order n, is
transformed into a matrix of order d by adding zeroes everywhere except on
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the diagonal where we add some ones. Define a basis ( Wi ( q) ) of TqQ to be the
dual basis of ( wi* ( q) ) . If q is any element of TqQ, then we have:

q = r/wi (q) , with 'f/i = Aij (q)qi ,

where A(q) is an invertible real matrix of order d, depending smoothly on q. 
Its inverse matrix will be denoted by B(q) . Hence, the JR2d -valued mapping
(q1 , . . . , qd , 'f/1 , . . .  , "'d) defines a vector bundle local chart on TQ at (qo , vo ) .
We shall write: 

f (q, q; t) = fi(q, 'fJ, t)wi* (q) ,
where the fi are C1 functions defined on an open set of JR2d+l . The Ci which
have been defined as closed subsets of JR11 are now seen as closed subsets of 
JRd . We denote by Si their support functions which are, thus, defined on JRil .  
We define some convex functions 'Pi (i = 0 ,  1 ,  . . . , m) on JR2d by:

We shall keep the same notation for the /-Li and their representatives in the chart
( q, 'fJ) . With these notations ,  the evolution inclusion takes the following form in
the chart under consideration, thanks to propositions 44 and 47 of Appendix B :  

In evolution inclusion 1 .35, we used the following notations. (Id 0 ) G(q) =
0 tB (q) · g(q) · B(q) '

where g(q) is the real matrix of order d defined by the 9ij (q) . It is clear that the
real matrix of order 2d G(q) is symmetric positive definite for all q. Moreover,
it is a C1 function of the variable q. Also, we have denoted by F(q, 'TJ, t) the
element of JR2d defined by:

d 
Fi (Q, 'TJ, t) = - "L, Bij (q)� ,

j=l [[)Bkz (q) l n Fd+i (q, TJ, t) fi (q, 'fJ, t) + Bji (Q)9jk (q) 
[)qm Bmn (q)'fJ TJ 

+ r7m (q)Bzn (q)Bmo (q)'fJnTJo] ,

for i = 1 ,  2, . . .  , d. It is clear that the function F is of class C1 . To express the
initial condition, we introduce TJo which is easily expressed in terms of qo and vo . 
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Next, we are given a positive real number R such that the closed ball B ( qo , R) C 
JRd is contained in 7/J (U) . We denote by B the closed ball of JR2d centered at
(qo , -'f]o ) with radius R. Given a function (ij, -ij) E W1•00 (t0 , T; JR2d ) , taking
values in B, consider the following evolution problem: 
Find (q, -'f]) E W1•00 (to , T; IR2d ) such that:

• (q(to ) ,  -'f}(to ) )  = (qo , -'f]o ) ,
• for a.e. t E [to , T[,

-G( ij) · (! . ) - F( ij, ij, t) E o<po ( q , -'f]) + f J-li ( ij, ij, t)o<pi ( q, -'f] ) .'fJ i=l 

This evolution problem falls exactly into the type of those which are studied 
in proposition 52 of Appendix B .  Hence, it admits a unique solution. Using 
estimate ( l .B . l )  (proposition 52 of Appendix B), we can easily construct a 
T > to depending only on R, G, F, <po , the J-li and the 'Pi · which ensures that
the solution of the above evolution problem takes values in B. In the sequel 
of the proof, we adopt the notation u = ( q, -'f]) . We define by induction a
sequence of such functions u. First, u0 is the constant function ( qo , -'f]o ) .  The
function u1 is defined to be the solution of the above well-posed evolution 
problem with the choice (ij, -ij) = uo .  Going on inductively, we have built a
sequence UN. By use of estimate (l .B.2) of proposition 52 of Appendix B ,  we
prove easily by induction: 

(Ct)N
luN+l (t) - UN (t) l ::; -NI max l ui (s) - uo (s) l ,• sE[to ,T] 

V t E [to , T] , 

where 1 · 1 is the standard norm on JR2d and C denotes a real constant independent
on N. Therefore, the sequence u N converges towards a limit u in the Banach
space C0 ( [ t0 , T] ; JR2d ) . Moreover, use of estimate ( l .B . 1 )  of proposition 52 of
Appendix B together with the definition of T shows that the sequence l l itN I I vX>
is bounded. Thus, we have u E W1 •00 (to , T; JR2d ) . Also, reproducing the
reasoning of the proof of proposition 52 of Appendix B ,  we can conclude that 
u solves evolution inclusion ( 1 .35) and so, we have constructed a solution for
problem V .  0 

Theorem 26 There is local uniqueness for problem V, that is, if (T1 , q1 )  and 
(Tz ,  qz )  are two solutions of problem V, then, there exists To ::; min{T1 , Tz}
such that: 

ql l [to ,To [  = qz l [to ,To [  

Proof. We stick to the notations of the proof of theorem 25. The real number 
T > to being defined as in the above proof, define To = min{T, T1 , Tz}.  The
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two solutions ql and q2 define two solutions u1 = ( q1 , -'f/1 ) and u2 = ( q2 , -'f/2 ) 
in W1•00 (t0 , T0 ; JR2d ) of evolution inclusion ( 1 .35). Use of estimate ( l .B.2) of
proposition 52 of Appendix B yields: 

V t  E [to , To) , j u2 (t) - u1 (t) j � C {t j u2 (s) - u1 (s) j ds ,lto 
where C is a positive real constant. Now, use of Gronwall lemma (lemma 4)
yields the claim. D 
Corollary 27 There exists a unique maximal solution for problem V. 

Proposition 28 (Energy inequality) Let (T, q) be an arbitrary solution of prob­
lem V. Then, we have: 

V it , t2 E [to ,  T[, t1 � t2 , K (q(t2 ) ,  q (t2 ) ) - K (q(tl ) ,  q (tl ) )  =

� l ll/ (t2 ) 1 1 �(t2 ) - � lll/(it ) li �(tl ) � rt2 {j (q(s ) ,  q (s) ; s) ' q(s) )q(s) ds ltl 
Proof. For all w E 8Sc(q(t) ,q(t) ;t) ( -q( t) ), 

(w , q (  t) )  q(t) � Sc(q(t) ,q (t) ;t) (0) - SC(q(t) ,q(t) ;t) ( -q( t) )  � 0,
since SC(q(t) ,q(t) ;t) can only take nonnegative values. D 

Corollary 29 The configuration manifold Q is assumed to be a complete Rie­
mannian manifold and the mapping f is supposed to admit the following esti­
mate: 

V (q, v) E TQ, for almost all t E [to , +oo[,

llf (q, v ; t) ll; � l (t) ( 1 + d(q, qo ) + llvllq) , 
where d( · , · ) is the Riemannian distance and l (t), a (necessarily nonnegative)
function of Lfoc (IR; IR) . 

Then, the dynamics is eternal, that is, the maximal solution for problem V is 
defined on [to , +oo[. 

5.3 Illustrative examples and comments 

Non-firm bilateral constraints have been introduced principally in view of 
discussing dry friction. This is postponed to next section. However, we shall 
provide here a simple example where a non-firm constraint appears naturally. 
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Example 10. Consider the back wheel of a bicycle and its gear. We shall 
provide a simple model of their assembly in which appears naturally a non-firm 
constraint according to the above formalism. 

Two homogeneous disks, with mass M1 , M2 and radius R1 , R2 are con­
strained to rotate around the same axis, passing through the centers of the disks 
and perpendicular to their common plane. The configuration manifold is the 
2-torus and we shall use the global parametrization defined by the two angular 
measures (81 , 82 ) . The kinetic energy is given by:

1 2 . 2 1 2 . 2K = 4:M1R181 + 4:M2Rf;.02
The forces is supposed to be a constant torque r1 applied on the disk 1 .  This
defines a simple discrete mechanical system according to definition 7. Next, we 
want to describe the fact that the relative velocity of disk 1 with respect to disk 2 
has constant sign. To do this, introduce the non-firm bilateral constraint defined
by the 1-form a1 = d01 - d02 . Sticking to the notations of the beginning of the
present section, choose m = 0, C0 = IR- and M ( q) = Id. The corresponding
evolution problem V can be written in the parametrization under consideration 
in the following manner. 
Find 81 , 82 E W2•00 (0, T; IR) and ). E L00 (0, T; IR) such that, for almost every
t E [O , T] : 

1 2 .. • 2M1R1B1 (t) = r1 + .x(t) ,
1 2 ..• 2M2R2B2 (t) = -.X(t) ,

• .X(t) � 0,
• Ol (t) - 02 (t) � o, 
• .x(t) (o1 (t) - o2 (t)) = o ,
• + initial conditions . 

By corollaries 27 and 29, we know that this evolution problem admits a unique 
solution whatever is T > 0. Next, choose:

01 (0) = - 1  and 02 (0) = 0, 
as initial conditions. Suppose, in addition, that f1 > 0. Then, i t  is readily seen
that the solution of the dynamics is given by: 

if O < t < MlRt
- - 2fl '

.f t > MlRt
1 - 2fl 

. 
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The acceleration does not depend continuously on time. This example illustrates 
the fact that we can not require, in general, that the solution of problem V belongs 
to C2 ( [0, T] ; Q) .  

Also, this example explains the reason why we have allowed one of the Ci 
in the general theory, to be unbounded. 

More generally, it is seen that the formalism of non-firm constraints can 
handle those cases where the constraints appears as inequalities applying on 
the velocity. 

6. Bilateral constraints with dry friction

Usually, the dynamics of rigid bodies systems involving dry friction is for­
mulated in terms of the real world reactions. However, this standard approach 
leads to two major difficulties .  

• In case where the contact between two solids occur at more than two
points, the real world reactions are generally not defined. The only reac­
tion force which makes sense is the generalized reaction. With respect
to this, the reader is referred to example 12.

• Such a formulation leads to situations where the dynamics is ill-posed.
There may happen non-uniqueness of solutions and even non-existence
(see LOTSTEDT ( 1981)) . As stated in the introduction, my opinion is
that well-posedness should be a requirement for any theory in classical
dynamics.

In this section, the formalism of non-firm constraints is applied to derive 
a general formulation of the dynamics of rigid bodies systems involving dry 
friction associated with a bilateral constraint. This formulation relies on the 
following principles. First, we consider a holonomic bilateral constraint. The 
associated reaction forces define the so-called 'normal reaction' . Next, we are 
given in addition a general non-holonomic bilateral constraint. The associated 
reaction forces define the 'tangential reaction' .  This supplementary constraint 
is supposed to be non-firm and the tangential reaction is required to belong to 
a closed convex set depending on the magnitude of the normal reaction. Then, 
as for the general case of non-firm constraints, the flow rule is supposed to be 
governed by the Principle of Maximal Dissipation. 

As illustrated by example 1 1 , whenever we study systems of punctual par­
ticles, this new formulation encompass the usual formulation (for example, 
Coulomb friction law), since, in that case, the real world reactions are compo­
nents of the generalized reaction. 

Formulation and well-posedness of the dynamics are first derived. Next, we 
discuss in length, through many examples, how the theory is to be applied in 
practical situations. 
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6.1 Formulation of the dynamics 

Consider a simple discrete mechanical system according to definition 7. 
First, we superimpose a perfect holonomic bilateral constraint described by a 
single function cp1 as in Section 2. Hence, the motion is required to take place
in the submanifold: 

8 = { q E Q ; cp1 ( q) = 0} . 
The equation of motion was seen to be: 

11 �i q(t) = f (q(t) , q (t) ;  t) + Al (t) dcp1 (q(t) ) ,

where A1 i s  a priori unknown, but it i s  completely determined once the evolution
problem has been solved. Physically, it could be said that I I A (t) dcp1 (q(t) )  l l �(t)
is a measure of 'how much the system is constrained' at instant t to remain m S. It was also noted in Section 2 that the equation of motion can be written as :

11 �: q(t) = Proj�(t) [f (q(t) , q(t) ; t) ; T;(t) s] .
Then, q( t) being the motion of the system, we have: 

11 �i q(t) = 11 �: q(t) + Proj�(t) [f (q(t) , q (t) ;  t) ;  JR.dcp1 (q(t) )]

+ A1 (t) dcp1 (q(t) ) . 

To describe the physical phenomenon of dry friction, we shall superimpose 
a non-firm, non-holonomic bilateral constraint whose threshold depends on 
the magnitude I I AI (t) dcpl (q(t) ) l l ;(t) of the normal reaction. More precisely,
consider a non-holonomic constraint described by n ! -forms a.1j E T* S. This
constraint will be supposed to be non-firm. According to the formalism of 
Section 5, we are given: 

• a bounded closed convex subset G1 of JR.n , containing the origin,

• an invertible square real matrix M ( q) of ordern, which depends smoothly
on q,

• a smooth function ii;1 : TQ x JR. x JR.+ -t JR.+ .
Define: 

Then, following the formalism of Section 5, the equation of motion of the 
system subjected to the frictional bilateral constraint cp1 is written as: 
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• q(t) E S,
• 11 �: q(t) - Proj�(t) [f (q (t) , q (t) ;  t) ;  r;(t)s] 

E 8sSc(q(t) ,q(t) ;t;r(t)) ( -q(t) ) , 
• 11 �i q(t) = 11 �: q(t) + Proj�(t) [f (q(t) ,  q (t) ; t) ; 1Rdcp1 (q(t) ) ]

+ .\1 (t) dcp1 (q(t) ) , 
• r (t) = l l .\1 (t) dcp1 (q(t) ) l l �(t) ,
where the S in 8s recalls that the subdifferential is to be understood in the

sense of the duality (TqS, r; S) .
Now, we are going to obtain a generalization to the case of a frictional bilateral 

constraint described by l smooth and functionally independent functions 'Pi . 
The submanifold S containing the constrained motions is now defined by:

S = {q E Q ; 'V i = 1 , 2 , . . .  , l , 'Pi (q) = O} .
The other data are as follows.  

• ai are n linearly independent 1 -forms in T* S,

• Go is a given closed convex subset of IRn , possibly unbounded and con­
taining the origin,

• the Ci (i = 1 , 2 . . . , m) are given bounded closed convex subsets of IRn , 
containing the origin,

• M ( q) is a given invertible square real matrix of order n, which depends
smoothly on q E S, 

• the ,.,i : TQ x lR x (JR) 1 -t JR+ are given functions whose regularity will
be stated later on. 

How these data are to be constructed in practical situations will be seen through 
the examples of Section 6.3. Next, we define: 

C(q, <j; t ; r) � {t. �; a; (q) ;

(�, , �, , . . .  , �.) E M(q) · [Go + t. �<; (q, <i; t; r)C;] } .
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The closed convex subset C(q, q; t; r) of T; S could be called 'the set of all
admissible tangential reactions' .  

Now, given any initial condition ( q0 ,  v0 ) E TQ compatible with the frictional
constraint: 

-vo E Dom Sc(qo ,vo ;to ) C Tq0S, 
the evolution problem associated with the dynamics of simple discrete me­
chanical systems subjected to frictional bilateral constraints is formulated as 
follows. 

Problem VI. Find T > to , q E lf'2•00 ( [to , T[; Q) and Ai E C0 ( [to , T[; .IR)(i = 1 , 2, . . .  , l) such that: 

• (q(to ) , q (to ) )  = (qo , vo ) ,
• q(t) E S, V t  E [to , T[,
• P �: q(t) - Proj�(t) [f (q(t) , q(t) ;  t) ; T;(t)s] 

E 8sSc(q(t) ,q(t) ;t;rn (t)) ( -q(t) ) , 
• � � <i(t) � � �: <i(t) + Proj;(t) [/ (q(t) , <i(t) ; t) ;  � lll.d<p; (q(t) ) l 

l 
+ L >.i (t) drpi (q(t) ) , for a.e. t E [to , T[, 
i=l 

• rn (t) = (>.1 (t) , >.2 (t) , . . .  , >.z (t) ) . 

6.2 Well-posedness of the dynamics 

Regularity hypothesis I. The configuration manifold Q is of class C2, the
mapping f : TQ x lR --t T*Q, the 1-forms ai and the mapping M : q 1-t M(q)
are of class 01 • Also, the functions K.i : TQ X .IR X (JR+ ) l --t JR+ are locally
lipschitzian. 

Theorem 30 There exists a unique maximal solution for problem VI. 
Proof. We are going to prove that problem VI reduces to a problem V on S. 
Then, corollary 27 will yield the claim. 

First, consider an arbitrary chart (Us , '1/Js) at q0 on S. We shall denote
'1/Js (q) E JRd-l by (ql+l , ql+2 , . . .  qd) . Next, we construct a local chart at qo on:

Sz- 1 = {q E Q ; V i = 1 , 2 , . . .  , l - 1 , 'Pi (q) = O} ,
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by use of the flow of the vector field 

"Vt.pt (q) 
I I 'Y'�.Pt (q) 1 1 � 

on St_ 1 , The supplementary coordinate i s  denoted by q1 and it i s  readily checked
that: 

i = I.Pl (q) . 
Repeating that construction successively on St_2 , . . .  , 81 , So = Q, we obtain
a chart (U, '1/J) at q0 on Q such that:

• the l first coordinates of '1/J(q) are the I.Pi (q) (i = 1 ,  2, . . .  , l) .

• for all q E S, the ofoqi (i = 1 ,  2 ,  . . . , l) are orthogonal to the ofoqJ
(j = l + 1 ,  l + 2, . . .  ' d). 

As a consequence, the representative of the metric tensor in that chart satisfies: 

V q E S, V i E { 1 , 2 , . . .  , l} , Vj E {l + 1 , l + 2 ,  . . .  , d} , 
9ij (q) = gij (q) = 0.

Writing the evolution problem in the chart under consideration gives: 

>.i = 9ij (q)r{1 (q) llti1 - fi(q, q; t) ,
for i = 1 , 2 , . . .  , l . Therefore, rn (t) is determined by (q , q ; t) E TS x R
Moreover, the induced mapping rn : TS x lR --+ (JR+ ) 1 is clearly locally
Lipschitzian. Defining: 

J-li (q, q; t) = l'bi (q, q ; t ; rn (q, q; t) ) , 
we see that the evolution problem reduces to a problem V on S. Thus, the
existence and uniqueness of a maximal solution for problem VI is provided by 
corollary 27. D 
Proposition 31 The configuration manifold Q is assumed to be a complete
Riemannian manifold and the mapping f is supposed to admit the following 
estimate: 

V (q, v) E TQ, for almost all t E [to , +oo[,

l l f (q, v ;  t) l l ; � l (t) ( 1 + d(q, qo ) + l l v l l q) ,

where d( · , · ) is the Riemannian distance and l ( · ) a nonnegative function in
L}oc (JR; JR) . 
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Then, the dynamics is eternal, that is, the maximal solution for problem VI 
is defined on [to , +oo[. 

Proof. If Q is complete, then so is S. Moreover, we have:

V (q, v ;  t) E TS x R, I IProj; [f (q, v ; t) ; r; S] 1 1 :  � i i f (q, v ;  t) i i ; .

Therefore, use of corollary 29 in the proof of theorem 30 yields the claim. 0 

6.3 Illustrative examples and comments

Our general formulation of dry friction relies on the Principle of Maximal 
Dissipation through the formalism of non-firm constraints. In some cases, it 
is the same that the usual formulation of Coulomb friction, as seen on next 
example. 

Example 11.  Consider a punctual particle of mass 1 moving in the usual
Euclidean JR3 •  This particle is free of external forces but is constrained to move
in a two-dimensional submanifold of lR'I . In order to simplify the equations, we 
shall assume that this submanifold can be represented by the Cartesian equation: 

z = s (x , y) (that is, <p1 (x, y, z) = z - s (x, y) ) .

The associated 'normal reaction' has general expression: 

.X ( as as ) RN = - - dx - - dy + dz , J1 + (asjax)2 + (asjay)2 ax ay 

In order to express that this bilateral constraint is frictional, we shall superim­
pose a non-firm constraint of immobility on the constrained submanifold. So, 
we have to introduce two 1 -form fields to express that the tangential velocity 
vanishes. It could be natural to use dx and dy, but to stick to our formalism of
non-firm constraint, we project them on the orthogonal complement of 

to get: 

as as d<p1 = - - dx - - dy + dzax ay 

1 (dx + 
as dz) 'J1 + (as;ax)2 ax 

J1 + (�sjax) 2 ( dy + �� dz) · 
These 1-form fields have been normalized for sake of simplicity (this normal­
ization could also have been done by introducing appropriate matrix M ( q) 
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in the definition of C(q, RN)  below). Postulating the following convex set
of admissible 'tangential reactions' associated with the non-firm constraint of 
immobility: 

C(x , y, z, >.) = { >.1a1 + >.2a2 ; .J >-r + >.� :S M l>- 1 } ,
where 1-L is a positive real constant (the so-called Coulomb friction coefficient),
it is now an easy matter to write the equation of motion in the parametrization 
( x , y, z) . Writing the corresponding evolution problem VI, the reader will check
that one recovers the usual formulation of Coulomb friction. It is of interest 
to notice, that whenever the function s is not linear, some frictional dissipation
can be activated during the motion even if the particle is free of external forces. 

Many authors prefer to write directly the usual Coulomb friction law in 
any case rather than coming back to the Principle of Maximal Dissipation as 
we did. This method necessarily requires that the evolution problem should 
be written in terms of the 'real world reactions' instead of the 'generalized 
reaction' as in our formulation. At first glance, this makes it easier to identify 
the constitutive equations in practical situations. But, it should be stressed that 
the concept of 'real world reaction' is in general meaningless in the framework 
of rigid bodies system. Indeed, the whole theory relies on the rigid geometric 
description which determines the structure of the space of all virtual velocities .  
By duality, through the Virtual Power Principle, we obtain the representation of 
forces as linear forms on the space of virtual velocities. This is the most general 
representation of forces which is consistent with the geometric description of 
the system. 

We are going to try to illustrate these general considerations by examining 
some more complicated examples. 

Example 12. Consider a rigid four-feet table lying upon a plane floor. The 
extremity of each of the feet is supposed to be constrained to remain on the 
floor. This is a holonomic constraint which is described by three independent 
smooth functions. Some external forces are applied on the table. We aim at 
writing the evolution problem associated with the dynamics, with some dry 
friction between the table and the floor taken into account. In this example, the 
'real world' reactions in each of the feet of the table are undetermined and we 
have actually no other choice than using the generalized reactions to express 
the dry friction. 

We use the coordinates (x , y, z) of the 'center' of the table and Euler angles
( '1/J, () , 4>) to parametrize the system in such a way that the initial configuration
is given by: 

xo = Yo = zo = 0, '1/Jo = c/Jo = 0, 
1f 

Oo = 2 ,  
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Figure 1.6. Four-feet table on a frictional floor. 

and the holonomic constraint is described by: 

z = O, <P = 0, 

(see Figure 1.6). The associated reaction force (normal reaction) admits the 
general form: 

RN = Rz dz + Re dO +  R<t>d</J. 

To describe the dry friction with the floor, we superimpose the non-holonomic 
constraint defined by the three 1-forms dx, dy and d'lj;. The associated reaction 
force (tangential reaction) is written as: 

Rr = Rx dx + Ry dy + R,p d'lj;. 

This non-holonomic constraint will be assumed to be non-firm with convex of 
admissible (tangential) reaction defined by: 

C(RN) = { Rx dx + Ry dy + R,p d'lj; ;

(Rx, Ry, R,p) E �l(IRzl, IRe I ,  IR<t>i)Cl }, 
where C1 is a given bounded closed convex subset of JR3, containing the origin 
and �1 an arbitrary smooth function taking positive values. It is then an easy 
matter to write the equation of motion of the system in the parametrization 
under consideration. 
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What we want to stress is that this is the most general description of the 
physical phenomenon of dry friction which is consistent with our choice for the 
geometric description of the table. 

A general feature of this formulation is that, for each configuration qo and
each given constant 'generalized' external forces j0 , immobility will be the 
further motion of the system if and only if fo belongs to a given convex set.
But, we have seen, in Section 1 ,  that the 'generalized' forces fo are given,
in general, in terms of some 'real world' forces distribution <P (notations of 
Section 1) .  It is easy to design experiments (for example, on the system of the 
above example), in which it could be observed that there exist two 'real world' 
forces distribution </J1 and </J2 consistent with the same generalized forces fo 
and such that </J1 induces immobility of the system whereas </J2 does not. In
such a case, what is questionable is not our general formulation of dry friction, 
it is the geometric assumption of rigidity which is too rough to describe the 
physical phenomenon (dry friction) under consideration. In such a case, the 
only way to obtain a more realistic model is to refine the geometric description 
by adding some degrees-of-freedom. In the above example, this could be done 
by allowing that each foot of the table is connected to the table through a joint 
equipped with springs in such a way that some components of the generalized 
reaction can be interpreted in terms of real world reaction components. 

Of course, in any case, there remains to identify the convex set C1 and the
function i'bi which may turn out to be not so easy. But, once more this is the
price we have to pay for the simplicity of the geometric description that we have 
adopted. Making that choice of simplicity requires to inject a lot of information 
which is not necessarily at hand in the constitutive equation. We could say 
that the geometric assumption that has been made is not in accordance with the 
physical phenomena we wish to describe. 

In our formulation, the constitutive equation is completely determined by the 
data of the convex of admissible 'tangential generalized reaction' through the 
Principle of Maximal Dissipation. Of course, nothing forbids to use consid­
erations based on 'real world reactions' to derive the convex set of admissible 
'tangential generalized reaction' which should be postulated in one practical 
situation or the other. However, this method is far from working all the time as 
seen in next example. 

Example 13. Consider a rigid homogeneous bar with length L and mass M 
which is constrained to move in a fixed plane. One of the extremities of the bar is 
constrained to remain on a fixed bar. We suppose that dry friction is associated 
to that bilateral constraint. We shall use the parametrization q = (x , y, 0) as
represented on Figure 1 .7. The kinetic energy in this parametrization is given 
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Figure 1. 7. Rigid bar with frictional constraint at one extremity. 

by: 

and the external forces have general expression: 

f (q, q; t) = fx (q, q; t) dx + /y (q, q; t) dy + fo (q, q; t) dO.

The holonomic bilateral constraint is represented by the single function: 

'PI (x, y, O) = y,
which defines the 'normal' reaction as : 

To describe dry friction, we superimpose a non-firm non-holonomic constraint 
which requires that x should vanish. In the formalism of non-firm constraint,
it involves the 1-form a1 obtained by projection of dx on the orthogonal com­
plement of dy: 

d 3 cos 0 sin 0 d al = x + 4 3 
. 2 11 y.- Slll u 

The convex of admissible tangential reaction has general form: 

where C1 is a bounded closed convex subset of � containing the origin and
�1 a function. To identify the constitutive data C1 and �I .  a natural demarche
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is to specify that the 'real world' reaction Rx dx + Ry dy should belong to the
Coulomb cone: 

( 1 .36) 

(where f.t denotes the usual Coulomb friction coefficient) and to translate it in 
terms of the 'normal and tangential generalized reaction' . We obtain: 

C(q, q ; t ; RN) = {Rrat ; IRr l ::; I !:�����:Rr + RN I } 
which is not convex in general and prevents from applying the Principle of 
Maximal Dissipation. If we postulate Coulomb flow rule in such a case instead 
of the Principle of Maximal Dissipation, then we obtain an ill-posed evolution 
problem with possible multiple solutions or also no solutions at all, as it is 
well-known (see U'>TsTEDT ( 1981 )  and the references of that paper). In such 
a case, the only way to write the equation of motion which remains consistent 
with the initial geometric description is to stick to the above formalism of non­
firm constraints. Of course, some structural effects are incorporated in the 
definition of the convex of admissible 'tangential' reaction and it is hard to see 
which convex set should be postulated in that situation. Moreover, it is also 
possible that we obtain unrealistic predictions, in which case the geometric 
description should be refined. 

Now, we are going to discuss a last example which illustrates the interest of
allowing the possibly unbounded convex set Go in the formalism of this section.
It also demonstrates that some structural effects can play a role in the definition 
of the convex of admissible 'tangential' reactions. 

Example 14. Consider the same system as in example 13 ,  but suppose that, 
in addition, the free extremity of the bar is ideally constrained to remain on a 
fixed bar as on Figure 1 .8 . We keep the primitive parametrization q = (x, y, 0)
as defined in example 13 .  The external forces have general form: 

f (q, q; t) = fx (q, q; t) dx + !y (q, q; t) dy + fo (q, q; t) dO. 
The bilateral constraint associated with the 'bottom' fixed bar is still represented 
by: cpt (q) = y,
whereas the bilateral constraint associated with the 'top' bar is represented by: 

cp2 (q) = y + L sin O - d,

where d denotes the distance between the two fixed bars . The (normal) gener­
alized reaction associated with that constraint has general expression: 
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Figure 1.8. Rigid bar with frictional constraint at one extremity and perfect constraint at the 
other. 

Let us note that we could equally have represented the bilateral constraint as­
sociated with the 'top' bar by the function: 

<p� (q) = (} - Oo , 

in which case the normal generalized reaction would be expressed as : 

1-'I d<pi (q) + l-'2 d<p� (q) . 

Since neither (d<pi (q) , d<p2 (q) ) � = 0 nor (d<pi (q) , d<p� (q) )� = 0, we don't
have )q = 1-'I · In other words, we cannot intrinsically define the normal reac­
tion associated with one fixed bar or the other. Actually, this is meaningless 
to say that one of the constraint is ideal and the other is frictional. The rea­
son is that they are coupled by the kinetic metric. In the framework of rigid
bodies dynamics, the only thing which can be expressed is that there is a dis­
sipation mechanism associated with the bilateral constraint associated with the 
two functions <pi and <p2 . We shall see that this does not contradict our general
formulation through the non-firm constraint formalism. Actually, this is an 
indication that some structural effects are to be incorporated in the expression 
of the constitutive law associated with the dissipation mechanism. Therefore, 
the Coulomb friction law, which is local by nature, cannot be enough to build 
the constitutive law associated with such a dissipation mechanism. 

We are going to write the equation of motion by applying the formalism 
of frictional bilateral constraint to the bilateral constraint defined by the two 
functions <pi and <p2 . To express the non-firm non-holonomic constraint asso­
ciated with the dissipation mechanism, we first project the 1 -form dx onto the
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orthogonal complement of the subspace containing the 'normal generalized' 

reaction: 

a1 = dx - � L sin Oo dO,

We have now to postulate the constitutive law associated with the dissipation 
mechanism by defining a convex of admissible 'tangential generalized' reac­
tion. One way to proceed is to make experiments to identify the set of values 
of Ux , jy , fe ) are compatible with equilibrium. Once more, there may happen
that different experimental ways of loading the system, which correspond to 
the same value of (! x , f y , f e ) , give different outcomes of the experiment ( equi­
librium or not). In such a case, it is the simplicity of the geometric description 
which sould be questioned and refined. Another way to identify the convex of 
admissible 'tangential generalized' reaction is to express that the 'real world' 
reaction at the bottom extremity of the bar belong to some Coulomb cone. 
This method should never be considered as systematic, since, fundamentally, it 
mixes two different geometric descriptions of the system (rigid and deformable) . 
However, in some particular cases, this method can be a good guideline to iden­
tify the constitutive law corresponding to the dissipation mechanism. In the 
example under consideration, we denote by: 

the'generalized' reaction, by: 

Rxl dx + Ry1 dy 
the 'real world' reaction associated with the top bar and by: 

Ry2 dy 
the 'real world' reaction associated with the bottom bar. Assuming Oo f. 1r /2,
we obtain easily: 

Rxl 
Ryl 
Ry2 

Rr, 
1 1 -2 tan Oo Rr + RNy - L 0 RNe , cos 0 

1 1 - -2 tan Oo Rr + 0 RmJ · L cos o 

Expressing that the 'real world' reaction Rx1 dx + Ry1 dy belongs to the
Coulomb cone ( 1 . 36), we have: 

IRr l :::;: f..L � � tan Oo Rr + RNy - L c�s Oo 
RNe l · ( 1 .37) 
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In the case J-L tan 00  < 2, we easily identify:

C(RNy , Rm;) = { Rra1 ; Rr, RNy , Rm; satisties inequality ( 1 .37) } ,
which is easily put under the form: 

C(RNy, RN£;) = {Rra1 ; 
Rr E "'- (RNy , RN£;) [- 1 , 0] + "'+ (RNy , Rm;) [O, 1] } , 

where "'- and "'+ are positive Lipschitzian function. The equation of motion 
in the parametrization under consideration is: 

Mx 

0 
ML . (} . . 

- -- sm ox 2 
-x E 

fx (x , x; t) + Rr,

jy (x , x ; t) + RNy ,

fo (x, x ; t) + RNo - �L 
sin OoRr,

{)!"'_ (RNy ,RNe ) [- l ,O]+r;,+(RNy ,RNII ) [0, 1] (Rr) · 
It is well-posed by virtue of theorem 30. 

In the case J-L tan 00 � 2, inequality ( 1 .37) does not allow any more to
identify the convex of admissible tangential reaction. Some structural effects 
are to be incorporated in the definition of C ( q, q; t) . In this situation, there may
happen what is often called 'dynamical locking' :  some arbitrary large values 
of the tangential reaction can be compatible with equilibrium. To model such a 
situation, it may turn out convenient to use some unbounded convex subset Go 
of�in the definition of C ( q, q; t) . Let us underline that this situation of possible
dynamical locking has to be postulated in the constitutive law. It can not be 
theoretically investigated in the framework of the simple geometric description 
of the system that has been adopted. The only way to lead this investigation 
would be to refine the geometric description. 

One word to conclude and summarize this section. The point of view on dry 
friction that we have developed is the following: there is a dissipation mecha­
nism associated with a bilateral constraint which depends on the reaction force 
associated with that constraint. The flow rule associated with this mechanism 
obeys to the Principle of Maximal Dissipation. This point of view allows a 
systematic and intrinsic formulation of the dynamics which is proved to be 
well-posed. In case where the system contains only punctual particles (or is 
a deformable body), we recover the usual local Coulomb friction law. In the 
other cases, we obtain the most general formulation of the dynamics which 
is consistent with the geometric description of the system. Trying to use the 
local Coulomb friction law in every case is not consistent with the geometric 
description of the system and produces numerous paradoxes, as is well-known. 
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7. On frictional unilateral constraints and related open
problems

In this paper, we have extended the classical theory of the dynamics of simple 
discrete mechanical systems in two directions. 

• In Section 3, we have discussed formulation and well-posedness of the
dynamics of simple discrete mechanical systems submitted, in addition,
to perfect unilateral constraints.

• In Section 4, we have discussed the same issues for simple discrete me­
chanical systems undergoing, in addition, non-holonomic bilateral con­
straints . Since a non-holonomic bilateral constraint can be viewed as
a frictional bilateral constraint with infinitely large friction, the idea of
non-holonomic constraint has been generalized to non-firm and frictional
bilateral constraint. General and systematic formulation of the dynamics
of such systems has been derived and well-posedness has been estab­
lished.

Naturally, having in mind a general theory of the evolution of complex mech­
anisms, the question arises to take into account both unilateral constraints and 
frictional constraints. That is, we would like to be able to mix the two above 
theories. Since frictional bilateral constraint appears to be a generalization 
of non-holonomic bilateral constraint, we are going to handle the problem of 
associating unilateral constraints with non-holonomic constraints for sake of 
simplicity. 

There are essentially two ways of associating non-holonomic bilateral con­
straints with unilateral constraints : 

• the unconditional association means that the non-holonomic bilateral
constraint is always active, no matter whether the unilateral constraint
is active or not,

• the conditional association means that the non-holonomic constraint is
active only when the unilateral constraint is active.

A typical occurrence of unconditional association is the rolling without slipping 
of a billiard ball on a billiard table with possible collisions with the edges of 
the table. An example of conditional association is the rolling without sliping 
of a ball on a wavy profile with possible takeoff. 

The general theory of unconditional association can easily be derived by 
combining the contents of Sections 3 and 4. Systematic formulation and well­
posedness would be obtained as well as the general conditions that should be 
satisfied by the impact constitutive equation. Even, it is possible to extend to 
the theory on unconditional association of unilateral constraints with frictional 
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bilateral constraints . The only difficulty, which is easily overcome, is to derive 
sufficient regularity assumptions on the data of problem VI to ensure that its 
solution is analytic on a right neighbourhood of every instant. An example of 
application of such a theory could be the dynamics of the double-pendulum 
with obstacle as in example 8 where we could take into account some friction 
in each of the ball-and-socket joints in addition. 

The general theory of conditional association turns out to be more compli­
cated. Some substantial adaptation of the proof of theorem 14 seems to be 
necessary. 

As a matter of conclusion, let us underline the following remark which comes 
back in the paper as a leitmotiv. A complete theory of the dynamics of rigid 
bodies systems taking into account complicated phenomena such as impacts or 
friction is highly desirable in view of a lot of applications (granular dynamics, 
virtual reality, etc . . .  ) . However, it turns out that it is the fact that bodies are 
actually deformable and not rigid that governs those physical phenomena. In 
principle, it does not prevent to derive a complete theory of the dynamics of 
rigid bodies including these phenomena, but, we have to keep in mind that the 
structural effects (those which physically rely on the fact that the bodies are 
deformable) are incorporated in the constitutive equations. As a result, there 
will be probably many situations where the theory will be of no use because no 
realistic constitutive equation will be at hand. 

Appendix: The class of motion MMA (I, Q) 
In  this section, I i s  any interval of  the real line, (E ,  1 1 · 1 1 )  a finite-dimensional normed vector

space and Q a d-dimensional Hausdorff manifold. We do not aim at being systematic nor general, 
but only at stating definitions and elementary results needed in this paper. Since they are very 
easy, proofs are generally omitted. 

Bounded variation of E-valued functions 

In this section, we briefly recall standard results whose proofs may be found, for example, in 
RUDIN ( 1966) and MOREAU ( 1988b) .

A function f : I -+ E is said to have bounded variation if 
n 

Var(f, I) � sup L l l f (t; ) - /(ti- 1 ) 1 1 < oo ,
i=l 

where the supremum is taken over all strictly increasing finite sequences to < ti < · · · < tn in
I. The property of having bounded variation does not depend on the particular choice of a norm 
on E whereas the real number Var(f, I) depends on that choice. A function f : I -+ E is said to
have locally bounded variation if it has bounded variation on any compact subinterval of I. If f 
has locally bounded variation, then it admits left and right limits at every t El (notation f- ( t) ,
J+ ( t)) . The function f is continuous at every t El (that is, r ( t) = J+ ( t) ) except, maybe,
for some t belonging to a (at most) countable subset of I. The function f is differentiable in

the classical sense at every t El except, maybe, for some t belonging to a Lebesgue-negligible
subset of I. If 'lj; : E -+  E has class C1 , then 'lj; o f  has locally bounded variation.
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A E-valued measure on I is any real-valued linear functional ll on c;!(I; E* )  satisfying the
continuity property: 

V a < b E I, 3 Ma ,b � 0, V r.p with Supp r.p c [a ,  b] ,  
l�t(r.p) l < Ma b max l l r.p(t) l l * .- ' tEI 

( (E* ,  1 1 · 1 1 * ) denotes the dual space of E). The real number ft(r.p) will also be denoted by: [ (r.p, jt) 0 
The support Supp ll of the measure ll is the complement of the union of all open subsets 0 of I 
such that: 

Vr.p E �(O; E* ) ,  ft(r.p) = O. 
For jt a E-valued measure on I, and r.p a nonnegative function of c;!(I, JR) , define:

l�t l (r.p) = sup ft(r.p) ,  JEc; (I ,E* ) , 
l l f (t J I I �'P (t) 

( l .A. l )  

where the supremum is finite, thanks to the continuity properties included in the definition of 
measures. For arbitrary r.p in c;!(I, JR) , define l�t l (r.p) by:

l�t l (r.p) = l�t l ( (r.p)+) - l�t l ( (r.p) - ) ' 
where (x)± = max{±x, O} are the classical positive and negative parts. Then, l�t l is a real
valued measure called the modulus measure of ll· We have Supp l�t l = Supp ft· Let XI the
characteristic function of I. Define �t(XI ) by means of formula ( l .A. l) .  If �t(XI ) is finite, then
the measure ll is said bounded.

Let f : I ---+ E be a function with locally bounded variation. Then, there exists a unique
E-valued measure df on I such that:

V r.p E C� (I, E* ) , � (r.p, df) = - � (:t r.p, f) . 

The measure df is called the Stieltjes measure of f. Hence, the distributional derivative of a
function with locally bounded variation is a measure. Reciprocally, if ll is a E-valued measure
on I, then the E-valued function defined on I by:

t>-+ 1 jt, 
[t0 , t] 

(to E J) has locally bounded variation. A function with locally bounded variation has bounded
variation if and only if its Stieltjes measure is bounded. If f has locally bounded variation, then,
we have: 1 df r (b) - t+ (a) 

]a ,b[ 1 df t+ (b) - !+ (a) 
]a ,b] 1 df r (b) - r (a) 
[a ,b[ 1 df t+ (b) - r (a) 
[a,b] 
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If there exists h E L11oc (I, E) such that:

df = h dt ,  

with dt denoting the Lebesgue measure on I, then the function f with locally bounded variation i s
said to  be locally absolutely continuous. A locally absolutely continuous function is continuous. 
If h E L 1 (I, E), then f is said absolutely continuous. If '1/J : E -+ E has class C1 and f is
locally absolutely continuous, then '1/J o f is locally absolutely continuous.

>From now on, E is assumed to be a Euclidean vector space. If J, g : I -+ E have locally
bounded variation, then (!, g) : t t-+ (f ( t) , g( t) )  has also locally bounded variation and we
have: (r + r ) ( g+ + g- )d(f, g) = 2 , dg + df, 2 . 

continuous curve on Q Bounded variation of vector fields over a locally ab-

solutely continuous curve on Q 

Definition 32 A curve q : I -+ Q is said locally absolutely continuous if, for all t in I, there 
exists a neighbourhood J oft in I and local chart (U, '1/J) at q(t) such that: 

• q(J) c U,

• 'ljJ o q : J -+ lRd is locally absolutely continuous.

In that case, for any local chart (U, 'ljJ) and any subinterval J of I such that q( J) C U, the
mapping 'ljJ o q : J -+ lRd is locally absolutely continuous.

Definition 33 A vector field v over a curve q : I -+ Q is a mapping v : I -+ TQ satisfying the
condition: 

V t  E I, ITq (v(t) ) = q (t) . 

From now on, q : I -+ Q denotes a locally absolutely continuous curve. 

Definition 34 A vector field v over q is said to have locally bounded variation if its components
in any chart are real valued functions with locally bounded variation. 

It is possible to define the concept of vector fields with bounded variation on an absolutely 
continuous curve by means of a locally finite covering by charts domain and partition of unity, 
but we shall not pursue in that direction. Indeed, though the definition of the concept of bounded 
variation of vector fields is possible on general manifolds, the definition of the variation itself 
requires a Riemannian structure on Q. So, we are going to particularize the definitions to that case 
and from now on, we assume that Q is equipped with a Riemannian structure. By Lebesgue's 
theorem, q(t) admits a tangent vector rj(t) E Tq(t) Q for dt-almost all t in I. The Riemannian
structure on Q and Caratheodory's theorem allow us to define classically a parallel translation 
operator along q, Tt ,s : Tq(s) Q -+ Tq(t)Q (see, for example, CHAVEL ( 1993), p. 7). The
operator Tt ,s is defined for all ( s , t) E I2 . 
Proposition 35 Let to be an arbitrary element of I and v a vector field over q. We denote by
Bt0 the mapping:

-+ Tq(to ) Q
t-+ Tt0 ,8 (v(s) )  

( l .A.2) 
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which takes values in the d-dimensional normed vector space Tq(to )Q. Then, v has locally 
bounded variation if and only if Bt0 has locally bounded variation. 

Proof. It is a consequence of the identity: 

which holds in the sense of distributions in any local chart. 0 

Corollary 36 Let J be a bounded subinterval ofi and (U, '1/J) a local chart such that q(J) C U.
Let vi be the components in that chart of the vector field v over q with locally bounded variation.
Then, 9t0 has bounded variation over J if and only if each function vi has bounded variation
over J. 

Definition 37 Let v be a vector field over q with locally bounded variation, J any subinterval
of I and Bt0 as in formula ( l.A.2). The variation of v over J is, by definition:

Var(v (,s) ; J) = Var(rt0 ,. (v (s)) ; J) .

It belongs to R U { +oo } . 
That Var(v(s) ; J) does not depend on a particular choice of t0 , relies on the identity:

l l rtt .s 1 (v (sl ) ) - Tt1 , s2 (v (s2 ) ) 1 1 q (tt ) = l l rt2 ,s 1 (v (sl ) ) - Tt2 ,s2 (v (s2 ) ) 1 1 q ( t2 ) , 

that holds for all s1 , s2 , t t , t2 E I.

Proposition 38 Let v be a vector field over q with locally bounded variation and J any suhin-o 
terval of I. Then for all to in J, the two one-sided limits limt-+t- v (t) and limt-+ t+ v(t) exist0 0 
in TQ. They satisfy: 

llQ ( li� v (t)) = ITQ ( lim+ v (t)) = q(to ) , 
t-+ t0 t-+t0 

and are denoted respectively by v- (to) and v + (to ) . They can be distinct only at points belonging
to a countable subset of J. If Var( v ; J) is finite, such one-sided limits exist also at the two end­
points of J, even if the end-points do not belong to J. 

We denote by � (I, q; TQ) the space of continuous vector fields over q with compact support
(similar definition for � (I, q; T* Q) ). By definition, a vector valued measure over q is any linear
functional p, on � (I, q; T• Q) enjoying the following continuity property:

V a < b E I, 3 Ma,b  � 0, Vcp with Supp cp c [a , b] ,  
lp,(cp) l � Ma,b �:f l l cp(t) l l ; (t ) ·

The real number p,(cp) will also be denoted by J1 (cp(t) , p,}q(t) · For p, being a vector valued
measure over q, the definitions of Supp p, and lip, are straightforward.

Definition 39 Let v be a vector field over q with locally bounded variation and 9t0 as in for­
mula (l.A.2). Then, the linear form on C1 (I, q; T* Q)) defined by:

cp* 1-t [ (rt0 ,s (� o cp* (s)) , d9t0 )q (to ) ,
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turns out to be independent on the particular choice of to and define a vector valued measure
over q, denoted by Dv and called the covariant Stieltjes measure of v. In any local chart, we
have: 

Proposition 40 Let v be a vector field over q with locally bounded variation. Then, v- and v + 
are also vector fields over q with locally bounded variation and the following identities hold:

(v+) + = v+,  (v+) - = v- ,  (v- t  = v+ ,  (v_ ) - = v- , 
Dv- = Dv+ = Dv. 

Proposition 41 Let v and w be two vector fields over q with locally bounded variation. Then,
the function t M (v (t) , w(t) )q (t ) is a real valued function with locally bounded variation over
I and we have: 

d ( v(t) , w(t)\(t) = ( v- (t) ; v+ (t) , Dw) + (Dv, w- (t) ; w+ (t) ) . 
q (t) q ( t ) 

Definition of the class MMA 
In thls section, Q is a d-dimensional Riemannian manifold. 

Definition 42 We denote by M M A(I; Q) (motions with measure acceleration) the set of all
locally absolutely continuous motions q : I --+  Q such that the right velocity q+ (t) exists (in the
classical sense) for all t in I and defines a vector field over q with locally bounded variation.

The following proposition ensures the consistency of our notations. 

Proposition 43 Let q be in M M A( I; Q). Then, q+ : I --+ TQ is right continuous:

Moreover, q(t) admits a left velocity vector at each instant and: 

Proof. Use the Mean Value Inequality in a local chart. 0 

Appendix: Some convex analysis 

In this appendix, we do not aim at providing a systematic list of the main theorems in convex 
analysis. We just want to recall those that are needed in the paper and also to prove some technical 
results which, if they had been proved in the paper when needed, could have masked the logical 
train of ideas. 

Basic convex analysis 

We denote by (E, 1 1 · 1 1 )  a finite-dimensional normed vector space. The dual will be denoted
by (E* , 1 1 · 1 1 * ) .  The bidual of E is systematically identified with E. We briefly recall some
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standard definitions and results whose proofs may be found, for example, in RocKAFELLAR 
( 1970). A function l/J : E -t lR U { +oo} is said proper if its domain:

def 
Dom l/J = {v E E ; l/J(v) :;l: +eo} ,

is non-void. A function l/J : E -t lR U { +oo} is said lower-semi-continuous if

l/J- 1 (] - oo, �] ) = {v E E ;  l/J(v) ::; �}

is closed in E for all � E JR. If l/J is convex, its domain is convex. If l/J is lower-semi-continuous,
its domain does not need to be closed. If C is any convex subset of E, then C is the domain of
its indicator function le :

le (v) = I  �eo if v E C
if v rf. C

which is convex. It is lower-semi-continuous if and only if C is closed. A function l/J : E -t 
R U {+eo} is said positively homogeneous if: 

If l/J : E -t lR U { +oo} is a proper convex function, its conjugate (or dual) function l/J* : E* -t 
R U {+eo} is defined by: 

ljJ* (v* ) = sup {(v* , v} - l/J(v)} .v EE  
It i s  a proper convex function which is, i n  addition, lower-semi-continuous. Identifying E with 
its bidual, the conjugacy is a one-to-one, involutive correspondence in the class of all proper 
lower-semi-continuous convex functions. Moreover, it maps proper, lower-semi-continuous, 
convex, positively homogeneous functions onto the class of indicator functions of non-void 
closed convex sets, and reciprocally. Let l/J : E -t lR U { +oo} be a proper convex function.
For C being a closed convex subset of E, we define the support function Se of C as being the
conjugate function of the indicator function le of C. The following result is obvious.

Proposition 44 Let C1 and C2 be two closed convex subsets of E. We have:

Proposition 45 Let C be a closed convex subset of E. Then, C is bounded if and only if its 
support function So does not take the value +oo. In that case, So is L-Lipschitzian with:

Se (v) 
L = max Se (v) = max -- = max l l v l ll l v l l * =l vEE* \ {0} l l v l l *  vee 

Definition 46 The subdijjerential {)ljJ( v) of l/J at point v is:

lJijJ(v) = {v* E E* ; Vw E E, lfJ(w) 2:: l/J(v) + (v* ,  w - v}} .
It is a closed convex subset of E* .
Let l/J and t/J be two proper, lower-semi-continuous, convex functions. We obviously have: 

{)ljJ + {)tjJ c lJ(lfJ + t/J) ,
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but the equality does not hold in general. However, a sufficient condition to get the equality is  
that one of the two functions has domain E. 
Proposition 47 Let cf> and 'if; be two proper, lower-semi-continuous, convex functions. If Dom tf; = 
E, then

Actually, in the finite-dimensional case that we consider, a convex function with domain E is 
necessarily lower-semi-continuous and even more continuous. 

Proposition 48 Let cf> : E -+ lR U {+eo} be a proper, convex, lower-semi-continuous function.
We have: 

v* E acf>(v) {:::::::} v E {)cj>* (v* )  {:::::::} cf>(v) + cf>* (v * )  = (v* , v) . 

Most of the above definitions and results can be extended to the infinite-dimensional case. 
We shall need few results of this sort. In the following proposition, a proper convex lower-semi­
continuous function is built on the space £2 (0, T; E) .  The proof can be found in BREZIS ( 1973),
p. 47).

Proposition 49 Let cf> be a proper, lower-semi-continuous, convex function on E and p, be a
non-negative integrable function on [0 ,  T). For u E £2 (0, T; E), we define:

<I>(u) = 1T p,(t)cf>(u(t) ) dt

+eo otherwise. 

Then <I> is a proper, lower-semi-continuous, convex function on L 2 ( 0, T; E). Moreover, we have:

ail>(u) = { v E £2 (0, T; E* ) ; v(t) E ap,(t)cf>(u(t) ) , for a. e. t E [0, Tl } . 
Also, it is clear that, if, in addition, cf> is positively homogeneous with domain E and p, E L 2 ,
then Dom il> = £2 {0, T; E) . Proposition 47 holds true in the case where E is a Hilbert space,
possibly infinite-dimensional (see BREZIS ( 1973), p. 41) .

Proposition 50 Let cf> and 'if; be two proper, lower-semi-continuous, convex functions on a Hilbert
space H. If Dom 'if; = H, then 

Note that in the case where H is infinite-dimensional, a convex function with domain H needs 
not be lower-semi-continuous. 

Evolution problems associated with subdifferentials 

The systematic reference for this section is BREZIS ( 1973). In the sequel, for H being a
Hilbert space, we shall systematically identify the dual of H with H. 

First, we recall a well-known result whose proof is to be found, for example, in BREZIS 
( 1973), p. 54. 

Theorem 51 Let H be a Hilbert space, cp : H -+ R U { +oo} be a convex, proper, lower­
semi-continuous function, and uo be any element of Dom cp. Then, there exists a unique u E 
W1•"" (0, T; H) such that:
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• u(O) = uo ,
• -u(t) E o<p( u(t) ) , for a. e. t E [0, T) .

Moreover, 

• the solution u admits a right-derivative u+ (t) , at all t E [0, T[ and:

• the function: 

V t  E [0, T[, u+ (t) + Proj [O; o<p(u(t) )] = 0, 

t 1-t I IProj [0; o<p(u(t) ) J I IH = min l l v i iHvE8cp(u(t) )  
is  non-increasing. 

Now, we are going to derive a modified version of theorem 5 1  which is adapted to our needs. 
In the sequel, we denote by ( u, v) = tu · v the canonical scalar product of Rn and by I · I the
associated norm. The n2 -dimensional space of real square matrices of order n is denoted by
Mn (JR) .

We are given some data as follows. 

• <po : Rn --+ R+ U { +oo} is convex, proper, lower-semi-continuous and positively
homogeneous. 

• <p; : Rn --+ R (i = 1 ,  2, . . .  , m) are convex and positively homogeneous.

• p,; E W1 '00 (0, T; R+ ) (i = 1 , 2, . . . , m).
• f E W1 '00 (0, T; Rn ) .
• G E W1'00 (0 ,  T; Mn (R) )  is such that G(t) is symmetric, positive definite, for all

t E [O, T) .
• uo E Dom <po .

B y  proposition 45, we have that the functions <p; ( i  = 1 , 2,  . . .  , m )  are all L-Lipschitzian for 
some L. We denote by .\�in > 0 (respectively .\�ax) the minimum (respectively the maximum)
of all the eigenvalues of G(t) for t wandering in [0, T] . 

Proposition 52 There exists a unique u E W1 '00 (0, T; Rn ) such that:

• u(O) = uo ,
• -G(t) · u(t) - j(t) E o<po (u(t) )  + :E;:1 p,; (t)o<p; (u(t) ) , for a. e. t E [0 , T) .

Moreover, 

�ei i6 1 1 Loo Tf>.';J" { min I v i + 1 1/ I I Loo + L f I IPi i i Loo ( l .B . l ) >- a  vE8<po(uo ) i = l  

+ T l li i iLoo + TL � I IJld i Loo } (� Cl ) . 

Finally, if u is the solution associated with the data ( G, f, p,; ) and u the one associated with the 
data ( G, j, ji; ), then, for all t E [0 , T), the following estimate holds:

l ii (t) - u(t) l :::; e i i6 1 1 L00 T/>."/;" { c,:;. t l c(s) - G(s) l ds ( l .B.2) AG h M . � )  

+ 
LA;} 1t [ 1/(s) - f(s) l + t IJ}; (s) - p,; (s) l] ds} . 

82



Proof. The proof of proposition 52 is derived from theorem 5 1  by means of very classical 
arguments. 

To prove uniqueness of solution, consider two solutions u and u and define 8 ( t) = u( t) -u( t) .
As a consequence of the monotonicity of subdifferentials, we have easily: 

8(t) · G(t) · 8(t) � � ����"" t 8(s) · G(s) · J(s) ds , 
a Jo 

for all t E [0, T] . Applying the Gronwall lemma (lemma 4), we obtain that 8(t) vanishes
identically. Therefore, the functions u and u coincide identically.

To prove existence, we define, for all N E N an approximant UN of the solution in the
following way. First, we require uN (O) = 0. Next, we define UN on [(k - 1)T /2N , kT /2N]
successively for k = 1 , 2, . . .  2N 

by:

for a.e. t E [ C k��)T , Ck��)T ] ,
- G ( Ck�J.lT) · iLN (t) - f ( Ck��)T ) E 8cpo (uN (t) )  + E �ti ( ( k�JlT ) 8cp; (uN (t) ) .

i=l 
To see that UN is well-defined, i t  is enough to apply proposition 47 and theorem 5 1  with H being
Rn equipped with the scalar product induced by the matrix G((k - 1 )T /2N ) and the function

cp being defined by:

cp(v) = 
t f ck��)T ) • V +  cpo (v) + t jti ( (k��)T ) cp; (v) .

i=l 
It is obvious that, for all N E N, UN E W1'00 (0, T; Rn ) . Also, by use of the second part of
theorem 5 1 ,  we obtain, after a tedious but easy calculation: 

( l .B .3) 

where C1 is the real constant defined in the statement of proposition 52. Now, we are given two
arbitrary integers M � N. A standard but tedious calculation yields:

1 2 02 t Vt  E [0, T] , 2 iuM (t) - UN (t) i  :S 2N Jo iuM (s) - uN (s) l ds

where C2 is a real constant which does not depend on M and N. Actually, we may take:

Applying lemma 5, we obtain that the sequence UN converges in the Banach space 0° ( [0, T] ; Rn )
towards a limit u. Coming back to uniform estimate ( l .B.3), we can conclude that u E 
W1·"" (0, T; Rn )  and also that a subsequence of (uN ) converges towards u in £"" weak-* .
This yields estimate ( l .B . l ), but there remains to prove that u is a solution of the considered evo­
lution problem. Using the lower-semi-continuity of cpo ,  the Fatou lemma and the convergence
properties of the sequence (uN ) , we easily establish that, for all v E £ 1 (0, T; Rn ) ,  

- 1T (G · u + f) ·  (v - u) :S 1T { cpo (v) - cpo (u) + t J.t; (t) (cp; (v) - cp; (u) )} .
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Next, there remains to use propositions 49 and 50 to deduce that, for almost every t E [0 , T] ,
m 

-G(t) · u(t) - f(t) E ocpo (u(t) ) + :�::>; (t)ocp; (u(t))i=l 
and, so, that u solves the considered evolution problem. 

To prove the last estimate of proposition 52, we take the sum of the inequalities: 

m - (G · u + f) · (u - u) $ cpo (u) - cpo (u) + LJLi (cp; (u) - cp; (u) ) ,
i = l  

and m 
- (G . f, + i) . (u - u) $ cpo (u) - cpo (u) + L JLi (cp; (u) - cp; (u) ) .

i=l 
We obtain: 

m (il - u) . G . (u - u) < (! - i) . (u - u) + L (JLi - jl; ) (cpi (u) - ct'i (u) )
i = l  

+ u · (a - a) . (u - u) ,
which yields: 

! [� <u - u) · G · (u - u)] $ [(L + l) (li - /1 + t iJ1; - JLd) 
+ CdG - Gl + I IG I IL00 lu - u l] lu - u i .

To reach the desired conclusion, i t  i s  enough to integrate over [ 0 ,  t] and to apply successively
lemma 5 and lemma 4. D 
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