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Elasticity: Thermodynamic Treatment

The elastic behavior of materials is usually described
by direct stress–strain relationships which use the fact
that there is a one-to-one connection between the
strain and stress tensors ε and σ; some mechanical
elastic potentials can then be defined so as to express
the stress tensor as the derivative of the strain potential
with respect to the strain tensor, or conversely the
latter as the derivative of the complementary (stress)
potential with respect to the former.

Nevertheless, these potentials are restricted to
specific thermodynamic conditions. This purely mech-
anical treatment may be generalized and improved by
integrating its temperature dependence and by con-
necting the elastic potentials with the classical thermo-
dynamic functions within a consistent thermodynamic
framework. This leads to a more general definition of
thermoelasticity (Sect. 1), which can be used for a
better understanding of the properties of the elastic
moduli (Sect. 2), for a natural definition of rubber
elasticity (Sect. 3), and for the prediction of the
effective thermal expansion coefficients of hetero-
geneous materials (Sect. 4).

1. Thermodynamic Definition of Thermoelasticity

1.1 General Case

The thermodynamic framework relies on the two
fundamental (conservation) classical principles, for
which local expressions can be derived from the global
ones (Germain et al. 1983). Infinitesimal strains as well
as quasi-static evolutions only are considered. For any
given body, V, subjected to purely thermodynamic
processes, the first principle expresses the fact that,
whatever the mechanical behavior, the variation of the
total (i.e., internal plus kinetic) energy is equilibrated
by the variation of the mechanical work of the applied
forces and by the variation of the heat received by the
body.

When thermal conduction only occurs through the
boundary ¦V, with q! the heat flux vector and n! the
outward unit normal, and with r denoting the specific
heat production rate, the global heat rate, Q, is given
by Q¯ !

V
rdV®!¦

V
q![n! dS¯ !

V
(r®div(q!))dV. Tak-

ing into account the equilibrium equations, which are
used to connect the stress field with the exterior
loading, the local expression of the first principle
finally reads

ρed ¯σ : εdr®div(q
!
) (1)

where ρ is the mass per unit volume and e the internal
energy per unit mass. Here, variables with a dot above
them denote time derivatives and, for second-order
tensors a and b, the notation a : b represents a : b¯
Σ

ij
a
ij
b
ij
¯ a

ij
b
ij
.

A similar treatment can be applied to the second
principle that relates to the existence of an absolute
temperature, T, and of a thermodynamic function, the
entropy, obeying a constitutive inequality ensuring
the positivity of the dissipated energy. This leads to the
following local inequality:

ρsddiv
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F

q
!

T

G

H

®
r

T
& 0 (2)

where s is the entropy per unit mass. Elimination of the
thermal source, r, between Eqns. (1) and (2) and use of
the free energy per unit mass, f¯ e®Ts, lead to the
so-called Clausius–Duhem inequality

Φ¯σ : εd®ρ ( f dsTd )®
q
!

T
[~

!

T& 0 (3)

which expresses the non-negativity of the dissipation,
Φ, per unit volume. Note that the total dissipation, Φ,
includes both an ‘intrinsic’ part, which is directly
connected to the mechanical behavior, and a thermal
part (®(q!}T)[~

!
T ), associated with conduction.

1.2 Thermoelasticity

Thermoelastic behavior is defined by stating that the
thermodynamic functions e and s as well as the stress
tensor, σ, are one-to-one functions of the independent
state variables ε and T. In this case, the intrinsic
dissipation does not depend on ~

!
T in Eqn. (3). This

means that both the intrinsic and the thermal dis-
sipation must be non-negative separately. From the
definition

f d¯
¦f

¦ε
ij

εd
ij


¦f

¦T
Td

it follows for any evolution (ε0 , TJ ) from the equilibrium
state (ε, T ):
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The independent variables ε0 and TJ may have arbitrary
values, including zero; this results in the following
relationships:

σ¯ ρ
¦f

¦ε
(ε, T ), i.e., σ

ij
¯ ρ

¦f

¦ε
ij

; s¯®
¦f

¦T
(ε, T ) (5)

which are the constitutive equations of thermo-
elasticity (Salenc: on 1995).

The free energy, f(ε, T ), from which the mechanical
behavior can be derived completely for any thermo-
dynamic conditions, can be considered as a thermo-
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dynamic potential, which ismore general and powerful
than the mechanical strain or stress potentials. The
second expression of Eqn. (5) can be used, in associ-
ation with the heat equation and boundary conditions,
to derive the coupled thermomechanical evolution of a
thermoelastic body.
An alternative treatment, relying on the state
description through the variables σ (instead of ε) and
T, can be developed by using the stability of any
deformed equilibrium state. It makes use of the
potential f * defined by f *¯ (1}ρ)σ : ε®f. The asso-
ciated constitutive equations are then

ε
ij
¯ ρ

¦f *

¦σ
ij

(σ, T ), s¯
¦f *

¦T
(σ, T ) (6)

2. Elastic Moduli and Compliances

2.1 Symmetry

When the potentials f (ε, T ) or f *(σ, T ) are quadratic,
the usual case of linear thermoelasticity is recovered:
the constitutive equations (Eqns. (5) and (6)) yield a
linear relationship between ε and σ through the
classical elastic moduli C and compliances S, re-
spectively. When this is not the case, the same
equations can be used to connect linearly infinitesimal
variations of stress and strain through ‘‘tangent’’
moduli L and compliances M. Their thermodynamic
definition ensures the symmetry of these fourth-order
tensors.

For example, for an isothermal evolution, L and M
are simply given by the partial derivatives, at constant
temperature, ¦σ}¦ε and ¦ε}¦σ. Specification of the
indices and use of Eqns (5) and (6) lead to

L
ijkl

¯
¦σ

ij

¦ε
kl

¯ ρ
¦#f

¦ε
ij
¦ε

kl

, M
ijkl

¯
¦ε

ij

¦σ
kl

¯ ρ
¦#f *

¦σ
ij
¦σ

kl

(7)

Classical properties of second-order derivatives ensure
that the isothermal elastic tangent moduli and com-
pliances exhibit the diagonal symmetry

L
ijkl

¯L
klij

, M
ijkl

¯M
klij

(8)

This result is, of course, also valid for C and S in the
case of linear elasticity.

2.2 Isothermal and Adiabatic Compliances

The elastic moduli and compliances depend on the
thermodynamic regime. This can be illustrated by
comparing isothermal (T constant) Miso and adiabatic
(s constant) Mad compliances (Franc: ois et al. 1998).
They are defined by

dε¯Miso : dσ, dT¯ 0; dε¯Mad : dσ, ds¯ 0 (9)

The isothermal compliances are given by Eqn. (7); the
adiabatic ones result from Eqn. (6) and from the
condition ds¯ 0. When the temperature dependence
of ρ is neglected, the order of magnitude of the
difference between Miso and Mad can be estimated by
assimilating ε to the thermal strain, εth ¯α∆T, so that
¦ε}¦TEα, and¦s}¦T toC

p
}T,withαbeing the thermal

expansion tensor and C
p
the specific heat at constant

stress.
This results in

M iso

ijkl
®M ad

ijkl
E

T

ρC
p

α
ij
α

kl
(10)

(note that Mad also exhibits diagonal symmetry). For
isotropic materials (α

ij
¯αδ

ij
, where δ

ij
is the

Kronecker symbol), and usual conditions, this proves
that the relative difference between isotropic and
adiabatic compliances hardly exceeds a few percent.
However, this difference, which can only be under-
stood from the thermodynamic treatment of elasticity,
could have significant consequences in some extreme
cases (dynamics, very high pressure or temperature
variations, etc.).

3. Crystal vs. Rubber Elasticity

From Eqn. (5) and the relationship between f, e, and s,
the constitutive equations of thermoelasticity can be
put in the form

σ¯ ρ
¦f

¦ε
(ε,T )¯ ρ

¦e

¦ε
®ρT

¦s

¦ε
(11)

This expression clearly shows that thermoelasticity
results from two sources: the strain dependence of the
internal energy and that of the entropy. According to
the materials under consideration, the first source or
the second can be predominant:

(i) some materials, especially crystals and poly-
crystals, cannot deform very much in the elastic range
and there are very small changes of the entropy under
deformation, whereas the strain sensitivity of the
internal energy is quite high, owing to the nature of the
interatomic interactions (so that σE ρ¦e}¦ε);

(ii) other materials, such as elastomers (Mark and
Lal 1982), can suffer very large reversible distortions
of the macromolecular chains in the rubber elasticity
regime, which strongly alters the entropy, almost
without modification of the internal energy (so that
σE®ρT ¦s}¦ε).

For the first case, linear elasticity is generally an
appropriate model; the elastic moduli are quite high
and do not depend very much on temperature. On the
contrary, rubber elasticity is characterized by much
lower moduli (by a factor of 10$–10% on average) and
a stronger temperature dependence. Unusual be-
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Figure 1
Temperature dependence of the force per unit area of the
initial cross-section needed to maintain a given elongation
for an elastomer sample.

havior, which can be understood easily from a uniaxial
version of Eqn. (11) (i.e., FE®ρT ¦s}¦λ), is observed,
such as shortening under load on heating or heat
production by elongation. The entropic origin of
rubber elasticity is easily proved by the temperature
dependence of the force per unit area of the initial
cross-section, F}S

!
, needed to provoke a given elong-

ation λ (new length over initial length).
Typical experimental data obey a two-slope scheme

(Fig. 1). Below the glass transition temperature, T
g
, the

force abruptly decreases with increasing temperature,
as observed for crystalline materials; rubber elasticity
is dominant for T&T

g
, as proved by the increasing

(almost linear) variation of the stress with temperature
(the slope, given by ®ρ¦s}¦λ, is positive since the
entropy decreases with an increasing elongation) and
by the very low value of the back-extrapolated stress at
0K from the rubber-type response (®ρ¦e}¦λE 0),
which shows that the strain dependence of the internal
energy is negligible.

4. Heterogeneous Materials (Linear
Thermoelasticity)

This section is concerned with the prediction of the
effective thermoelastic properties of heterogeneous
materials, such as polycrystals or composite materials,
from those of the constituents (grains or phases). Since
the exact internal geometry of any representative
volume element, Ω, of such materials is generally not
known, these properties can only be estimated or
bounded. For the sake of simplicity, restriction is
made to linear behavior, isothermal conditions (with
τ¯T®T

!
, a uniform change of temperature from the

reference temperature, T
!
, in the initial natural state),

and homogeneous strain conditions, E. The derivation
of bounds for the overall elastic moduli and thermal

expansion coefficients especially benefits from a ther-
modynamic treatment of elasticity.

(i) Since potentials are additive quantities, the
overall total free energy, F, directly derives from the
local one by integration

ρa F (E, τ)¯© ρf (ε, τ)ª¯
1

Ω&Ω

ρf (ε, τ)dΩ (12)

where ρ- is the overall mass per unit volume and
©…ª denotes a spatial average. Both at the local
and the global levels, the free energy is quadratic and
the constitutive equations are similar in form. From
the local relationships

Σ¯ ρ
¦f

¦ε
¯C : ε®τφ, s¯®ρ

¦f

¦τ
¯φ : εCντ,

φ¯C :α (13)

where Cν is the specific heat at constant strain, the
following overall relationships can be derived (Stolz
1986):

3¯©σª¯ ρa
¦F

¦E
¯Ceff :E®τΦeff,

ρa s¯© ρsª¯®ρa
¦F

¦τ
¯Φeff :ECeff

ν τ,

Φeff ¯Ceff :αeff (14)

where the superscript ‘‘eff’’ refers to ‘‘effective’’ macro-
scopic quantities.

(ii) Owing to the linear character of the whole
problem, the strain field, ε(x!), depends linearly on the
loading parameters (E, τ), i.e.,

ε(x
!
)¯A(x

!
) :Eτη(x

!
) (15)

and a decomposition of the problem into two el-
ementary ones, with E¯ 0 and τ¯ 0 respectively, can
be carried out. This results in the following relation-
ships:

Ceff ¯©C :Aª, Φeff ¯©φ :Aª,

Ceff
ν ¯©C

v
ª©φ : ηª (16)

These expressions show especially that the effective
thermal expansion tensor, αeff, given by Ceff :αeff ¯
© (C :α) :Aª, as well as the effective heat capacity at
constant strain, Ceff

ν , do not reduce to the spatial
averages of the corresponding quantities. This results
basically from the fact that the thermal strain field is
generally not compatible, which is responsible for the
presence of a thermal residual (self-equilibrated) stress
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field and its associated stored elastic energy. The
foregoing treatment can be developed in order to
derive bounds for αeff and to perform a refined analysis
of the thermal stresses, which cannot be obtained from
a purely mechanical treatment of thermoelasticity.

5. Conclusions

The foregoing derivations have provided some illus-
trations of the benefits that can be gained from a
thermodynamic treatment of elasticity. The main
advantage lies in the fact that the temperature de-
pendence of the elastic behavior is naturally taken into
account so that the associated constitutive equations
are valid for any thermodynamic conditions instead of
being specified for particular ones (e.g., isothermal,
adiabatic, etc.). Moreover, definite relationships can
be derived between the elastic characteristics exhibited
for different such conditions. This treatment yields a
simple and meaningful interpretation of the entropic
nature of rubber elasticity; in addition, it offers a

comprehensive framework for the derivation of
thermoelastic properties of heterogeneous materials,
including the analysis of thermal stresses at the local
level.

See also: Mechanics of Materials

Bibliography

Franc: ois D, Pineau A, Zaoui A 1998 Mechanical Beha�iour of
Materials, Kluwer, Dordrecht, The Netherlands, Vol. 1

Germain P, Nguyen Q S, Suquet P 1983 Continuum thermo-
dynamics. ASME J. Appl. Mech. 50, 1010–20

Mark J E,Lal J 1982Elastomers andRubberElasticity. American
Chemical Society, Washington, DC

Salenc: on J 1995 MeU canique du Continu. Ellipses, Paris, Vol. 2
Stolz C 1986 General relationships between micro and macro-

scales for nonlinear behaviour of heterogeneous media. In:
Gittus J, Zarka J (eds.) Modelling Small Deformations of
Polycrystals. Elsevier, London

A. Zaoui and C. Stolz

4


