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Multiaxial Fatigue 
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Multiscale Approach 
K. DANG VAN 
Laboratoire de Mechanique des Solid, Ecole Polytechnique, 91128 Palaiseau, France 

6.9.1 VALIDITY 

Prediction of high-cycle fatigue resistance is of great importance for structural 
design. In spite of this clear industrial need, until now modeling of metal 
behavior in a high-cycle fatigue regime was often based on empirical approaches: 
the Wohler curve and the Goodman-Haigh or Gerber diagrams are still the very 
popular tools for engineers. However, these concepts are not appropriate when 
studying the multiaxial stress cycles that are frequently encountered on modem 
mechanical components. These multiaxial stresses arise from factors such as 
external loadings, the geometry of the structure, which can induce multiaxiality 
even if the loading is uniaxial, and finally residual stresses. 

6.9.2 BACKGROUND 

In order to derive a multiaxial endurance fatigue criterion, an original method 
of computing based on a multiscale approach was proposed by Dang Van. 
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This method is quite different from existing fatigue approaches. It arises from 
the observation that generally the first fatigue damage processes begin in 
grains which have undergone plastic deformation, with the appearance of slip 
bands in some grains which broaden progressively with the applied cycles; 
this stage is then followed by localized damage corresponding to formation of 
intragranular microcracks; these microcracks can be arrested by grain 
boundaries, but they may also propagate. After a certain number of cycles, 
a main crack initiates, grows in size, and shields the other defects and 
consequently leads to the final rupture of mechanical structure. In a high
cycle fatigue regime, even if it is necessary to have plastic deformation at the 
micro- or the mesoscale (corresponding to the grain size), most of the time no 
visible irreversible deformation at the macroscopic level can be detected. It is 
thus characterized by a large heterogeneity of plastic deformation from grain 
to grain: only certain misoriented crystals undergo plastic slips, and in this 
way a very heterogeneous distribution of microcracks can be observed. In this 
fatigue regime, the initiation of the first visible cracks takes a large part of the 
fatigue life of the structure. It demonstrates the importance of studying 
conditions governing the crack initiation process. 

In most of the existing fatigue models, these conditions are described with 
the help of macroscopic parameters which are evaluated according to different 
assumptions of homogeneity and isotropy. For example, engineers evaluate 
the stress I: not at a point of a structure but over a finite volume V that defines 
the macroscopic scale which is used (see Fig. 6.9.1). Typically V is of the 
order of the dimension of the strain gauges. However, because the phenomena 
which cause fatigue initiation are microscopic, the local parameters (for 
example, local stress a) differ from the macroscopic ones. Thus the use of 
classical macroscopic engineering parameters does not seem pertinent, since, 

FIGURE 6.9.1 Different scales of material description: the macro- and mesoscopic scales. 
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at that local scale, the material cannot be considered anymore as 
homogeneous. In particular, the local redistributions induced by the 
inhomogeneous incompatible strains llp, and as a consequence local residual 
stress p, are not accounted for. 

6.9.3 FORMULATION 

The originality in Dang Van's proposal is precisely the use of local mesoscopic 
mechanical parameters 0' to derive fatigue resistance criteria. These 
parameters are evaluated from the macroscopic parameters thanks to a 
hypothesis of elastic shakedown. More precisely, it is postulated that, near the 
fatigue limit threshold, the mechanical structure shakes down elastically at all 
scales of material description. Under this assumption, the precise knowledge of the 
local constitutive equations, which is not possible to evaluate, is not necessary. 
The physical interpretation of this hypothesis is that after a certain number of 
loading cycles the response is purely elastic (or at least the plastic dissipation 
rate becomes negligible). Then, using shakedown theorems (Melan's theorem 
and its generalization by different authors; (see, for instance, Reference [ l]), it 
is possible to derive a method for estimating the apparent stabilized stress 
(tensorial) cycle at the macroscopic and mesoscopic level which intervenes in 
the proposed fatigue criteria, provided that the material is considered a 
structure made of grains of different crystallographic orientations. 

Theoretical developments of this theory are presented in Reference [2]. For 
practical applications, it is only necessary to remember how to derive local 
parameters from macroscopic stress cycles near the fatigue limit, which is 
presented in following text. 

The general relation between macroscopic and local stress tensor is 

O'(m, t) = A.l:(M, t) + p(m, t) 

This relation is well known in the theory of polycrystalline aggregates. In this 
equation A is an elastic localization tensor which depends on the 
microstructure; l:(M, t) is the macroscopic stress tensor at time t in the 
representative volume element V(M) surrounding M, and O"(m, t) and p(m, t) 
are, respectively, the local stress tensor and the residual stress tensor at any 
point m of V(M) . For the sake of simplicity, let us assume that A= identity 
(elastic homogeneity); then p characterizes the local stress fluctuation 
in V(M) . 

If elastic shakedown happens, then p must become independent of time 
after a certain number of cycles, so that the local plastic yield criterionf(m) is 
no longer violated. Assuming that an approximate elastic shakedown occurs if 
the loading cycles are near the fatigue limit, then there must exist a local fixed 
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FIGURE 6.9.2 Determination of the local residual stress P* at the shakedown state. 

(independent of time) residual stress tensor p* ( m) and a fixed set of local 
hardening parameters cx(m) such that: 

G(m, t) = I:(M, t) + p*(m) 

j(G(m, t), cx(m) )  =f(I:(M, t) + p*(m) , cx(m) ) ::; 0

If the Mises criterion is chosen, then G( m, t) belongs to the hypershere in five 
dimensional space, representing the limiting value of the Mises norm for 
which elastic shakedown is possible. Mandel et al. [ 1] showed that p* ( m) can 
be approximately taken to be the center of the smallest hypersphere 
surrounding the loading path in the deviatoric macroscopic stress space 
represented in Figure 6.9.2. In this figure, S (resp. s) represents the deviatoric 
stress corresponding to I: (resp. G). Because of the shakedown hypothesis at 
all scales of material description, S at stabilization is also elastic. Finally, by 
that construction, the local stress state is known at any time t of the apparent 
stabilized state. 

One must still choose a fatigue criterion. Since the local stress is 
approximately known at any time t, it is natural to try to take account of 
the characteristic of the loading path (as in plasticity). Thus a reasonable 
fatigue criterion could be stated as follows. 

Crack initiation will occur in a critically oriented locus (usually 
corresponding to a grain) within V(M) that has undergone plastic 
deformation, if, for at least one time instant t of the stabilized cycle, one has 

F[( G(m, t)] ;::: 0 for m E V(M) 
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In such a criterion, the current stress is considered, in contrary to most (or 
all) existing fatigue criteria. Damage arises over a precise portion of the 
loading path (or equivalently, over a precise time interval of the loading 
period). Since cracks usually occur in transgranular slip bands, the local shear 
acting on these planes is an important parameter. Moreover, the normal stress 
acting on these planes accelerates damage formation. However, this quantity is 
rather difficult to compute generally because it depends of the considered 
plane. For this reason, hydrostatic stress is preferred because it is much easier 
to use, being an invariant scalar. Furthermore, it can be interpreted as the 
mean value of the normal stresses acting on all the planes that pass through 
the considered point of the structure. Based on these remarks, F( cr) is chosen 
to be a function of the local shear r and the local hydrostatic stress p. 

6.9.4 IDENTIFICATION OF THE PARAMETERS 

The simplest criterion that can be conceived is a linear relation between 
these quantities, 

F(cr) = r + ap-b 

where a and b are material parameters that can be determined by two simple 
types of fatigue experiments: uniaxial tests of tension-compression and 
torsion on classical fatigue test machines. Iff is the fatigue limit strength 
in alternate tension-compression, and t is the fatigue limit in alternate 
twisting, then 

t-f /2 
a= ---rf3' b=t 

The safety domain (no fatigue crack initiation) is delimited by the two straight 
lines represented in Figure 6.9.3. The ordinate is the algebraic shear stress 
acting in an oriented direction, and the abscissa is the hydrostatic stress p. On 
the same figure the loading paths for fatigue limit in tension compression and 
in twisting are represented. Two more loading paths are shown. Path r 1 is 
nondamaging because it lies entirely within the straight lines that delimit the 
safe domain, whereas a small portion of path r 2 induces damage. 

6.9.5 HOW TO USE THE MODEL 

To check automatically the fatigue resistance of a structure is a rather difficult 
task, because at each point one has to consider the plane on which the loading 
path (r[t], p[t]) is a "maximum" relative to the criterion. This computation can 
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FIGURE 6.9.3 Fatigue limit domain and loading paths. 

be simplified as follows. The maximum shear stress according to Tresca's 
measure is calculated over the cycle period: 

r(t) = Tresca[o-(t)] 

It is useful to notice that 

Tresca[o-(t)] = Tresca[s(t)] = Maxulo-r(t)- O"J(t)l/2 

The stresses o-1(t) and o-1(t) are principal local stresses at timet. The quantity d 
that quantifies the danger of fatigue failure defined by 

d = 
Max r(t) 

t b- ap(t) 

is calculated over the loading period. The maximum is to be taken over the 
cycle. If d > 1, the fatigue failure will occur. 

Working this way, all couples (r,p) are situated in the positive part of r. All 
facets which could be involved by the crack initiation are automatically reviewed. 
Couples (r, p) verifying the condition d > 1 are associated with specific facets. 
Therefore, the criterion also provides the direction of crack initiation. 

Another possibility is to use the octahedral shear J2[o-(t)] instead of r(t). 
However, this method does not give the critical facets. 

Another interesting proposal derived from the multiscale approach was 
given by l.V.Papadopoulos: the fatigue limit for a given periodic loading J.Q(t) 
corresponds to the limit of the intensity A such that elastic shakedown is 
possible. Beyond this limit, plastic shakedown or ratchet phenomena will 
induce damage and fracture because of subsequent softening. The limit size k* 
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of the hypersphere surrounding the loading path (as explained previously) is 
one possible and natural way to characterize this state. If k* is greater than 
some limit value which depends on the local maximum hydrostatic stress in 
the cycle, fatigue will occur. This corresponding fatigue criterion is 

k* + LXPmax - [3 > 0 

As previously, the parameters ex and f3 can be identified by two different tests. 
By this method it is no longer necessary to describe the whole loading path 
once k* is determined. In many cases, the predictions are very similar to the 
current state methodology as presented previously. 
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