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STABILITY OF
A QUASI-STATIC EVOLUTION

OF A VISCO-ELASTIC, VISCO-PLASTIC
OR ELASTIC-PLASTIC SOLID
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Q.S. Nguyen
Laboratoire de Mecanique des Solides, CNRS-Umr 7649

Ecole Polytechnique, Palaiseau, France

The problem of stability of a quasi-static evolution of a solid is discussed
in the framework of standard plasticity and visco-plasticity. General
results concerning the criterion of second variation of energy are pre-
sented. Two different approaches are considered to discuss this problem
for visco-elastic, visco-plastic or elastic-plastic solids. The first approach
is based upon the linearization method and gives the asymptotic stabil-
ity of the evolution of a visco-elastic solid when the associated dissipa-
tion potential is quadratic and positive-definite. The second approach
introduces a direct analysis of the evolution in a nonsmooth but convex
framework of plasticity and visco-plasticity.

Keywords: stability, evolution, quasi-static, visco-elasticity, visco-plasticity, plas-
ticity, energy, criterion, second variation,

1. INTRODUCTION

In solid mechanics, the problem of stability of an equilibrium has been
intensively discussed for both time-dependent and time-independent be-
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haviour. For example, Liapunov’s theorem plays a key role in stability
analysis of an equilibrium in the context of visco-elasticity and Hill’s
criteria of stability and non-bifurcation have been widely applied in in-
cremental plasticity, e.g. Hill, 1958.

In this paper, the stronger problem of stability of an evolution is
considered. The stability of an evolution expresses the continuity of
the solution of an evolution with respect to the perturbation of initial
conditions. This important problem has been principally developed for
the study of orbital stability of periodic evolutions. For a mechanical
system, this evolution may be dynamic as the case of an elastic solid
in a dynamic transformation. But it may also be quasi-static as the
case of a visco-elastic or visco-plastic or elastic-plastic solid submitted
to a slow loading path. The discussion is here limited to the stability
of a quasi-static evolution of solids. Few discussions of the literature
have been devoted to this problem because of mathematical difficulties
relating to non-autonomous differential equations. Such a discussion is
however necessary to address the stability problem of an visco-elastic
structure in quasi-static evolution under applied loads i.e. the stability
of time-dependent systems. It is well known that the buckling analysis
of a visco-elastic structure is a very difficult problem and that no general
and operational criterion has been derived, in contrast with the case of
elastic or elastic-plastic solids. But this discussion also concerns with the
problem of stability of an elastic-plastic response under perturbation of
loads or of intitial or current positions which remains an open problem
in plastic buckling.

This paper presents a contribution to the problem of stability of
an evolution in the simple framework of standard plasticity and visco-
plasticity. General results concerning the criterion of second variation
of energy are here presented. Two different approaches are followed
to discuss this criterion for visco-elastic or visco-plastic solids (time-
dependent behaviour) or for elastic-plastic solids (time-independent be-
haviour) obeying to the generalized standard model. The first approach
is based upon the linearization method and gives the possibility to dis-
cuss this result for visco-elastic solids when the associated dissipation
potential is quadratic and positive-definite. The second approach in-
troduces a direct analysis of the evolution in a nonsmooth but convex
framework. The continuity of the solution with respect to initial con-
ditions is discussed and the criterion of second variation of energy is
established for certain class of visco-plastic or elastic-plastic general-
ized standard models under a certain assumption on the loading path.
Our discussion is here restricted to discrete or discretized equations in
order to avoid the well known difficulties of functional analysis in three-

2



dimensional solids, e.g. Ciarlet, 1988 or Panagiotopoulos, 1985. A more
detailed presentation of the results can also be found in Abed Meraim,
1999a, Abed Meraim, 1999b, Nguyen, 2000.

2. STABILITY OF AN EVOLUTION AND
LINEARIZATION METHOD

A general non-autonomous differential equation in R" is first consid-
ered:

y="F(yt), y(0)=yg (L.1)

for t € [0,00[. It is well known that if F(y,t) is sufficiently smooth,
Cauchy-Lipschitz’s theorem can be applied and leads to the existence
of a solution y,(t) associated to an initial value yS. For example, the
fact that F(y,t) is a C'-function in y and t ensures the existence of
one unique solution on any bounded interval [0, 7T]. It is assumed here
that the existence of an unique solution y,(t) on time interval [0, +oo[
is ensured. For a physical system characterized by parameters y, this
solution describes the evolution y, of the considered system associated
to initial value y2. By definition, y, is a stable evolution if a small per-
turbation of the initial value leads to a small variation of this evolution
i.e. forallt >0

92— y2 || small = [|yo(t) — yp(t) || small ¥ ¢>0.  (1.2)

Thus this definition is simply a straightforward extension of the notion
of stability of an equilibrium. In the same spirit, asymptotic stability of
the evolution is obtained if

Jim [ o(6) — 5, (2) [[= 0.

Linearized equations can again be considered. The fact that the distance
Yp(t) — Yo (t) must remain small leads to the introduction of the linearized
differential equation associated with the evolution y, from the first order
of the development of F(y(t),t). Linearized equations are

v*=W(t)-y* with U(t) =F,y (y(t),t). (1.3)

Without additional assumptions, a few general results are known on non-
autonomous differential equations. For instance, the following classical
results have been obtained, cf. Hahn, 1967 or Roseau, 1966:

Proposition 1 If for all t > 0, there exists a symmetric and positive-
definite matriz G(t) such that the matriz G + VTG 4+ GV is negative-
definite, the evolution y, is asymptotically stable.
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In particular, this proposition leads to

Proposition 2 The evolution y, is asymptotically stable:

- if, for all t > 0, the symmetric part ¥° of matriz ¥ admits only
strictly negative eigenvalues.

- or if matriz U can be decomposed as U = R™1S, where symmetric
matrices R, S are such that R(t)+25(t) is a negative-definite matriz for
allt > 0.

Indeed, the previous proposition can be applied with G = I in the first
case and G = R in the second case. These propositions furnish sufficient
conditions to ensure the asymptotic stability of the considered evolu-
tion. This is an extension of the linearization method and of Liapunov’s
theorem. It is clear that:

- Time interval [0, co[ must be considered since the solution is in gen-
eral continuous with respect to initial value on any bounded interval
[0, T'] for regular differential equations (1.1).

- A stable evolution on interval [0, o0[ is also stable on any interval
[T, oof for T > 0. Evolution stability means thus stability with respect
to perturbation of the position at any time.

- In the particular case of an equilibrium y,(t) = y. V t, the first
proposition does not recover Liapunov’s theorem with the choice G = I.
This proposition is thus not optimal. But without additional assump-
tions, no stronger statement can be derived. In particular, elementary
counter-examples can be given to prove that the stability of the consid-
ered evolution may not be ensured when the real parts of the eigenvalues
of matrix W(t) are all negative.

- Linearized equation is a linear differential equation in y* but time-
dependent when y, is a real evolution. No explicit expression of the
linearized solution is available, in contrast with the particular case of an
equilibrium.

- In the same spirit, implicit differential equations ®(y, g,t) = 0 can
be considered. For example, visco-elastic standard systems are governed
by Biot’s equation

D,;+E,,=0 (1.4)

in which D = D(¢, ¢) and E = W (q,t) denotes respectively the dissipa-
tion and the energy potentials, ¢ the parameters of the system. Biot’s
equation is an implicit differential equation.

- Nonsmooth differential equation can also be considered. If the dissi-
pation potential is a differentiable function for visco-elastic solids, it isn’t
for visco-plastic or for elastic-plastic solids, dissipation potential is only
a pseudo-potential in the sense that it is convex but not differentiable
at the origin. For such a system, Biot’s equation must be understood in
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the sense of sub-gradient. This differential equation cannot be linearized
and a special discussion must be given in the study of the stability of an
evolution.

3. STABILITY OF A VISCO-ELASTIC
EVOLUTION

The case of a visco-elastic solid in finite transformation is now con-
sidered. It is assumed that the material admits a generalized standard
constitutive laws cf. Halphen and Nguyen, 1975, Nguyen, 1994 defined
by state variables (Vu, ) in Lagrange description, o denotes internal
parameters. From the expression of the free energy W(Vu, @) and of
the dissipation potential D(V, &), constitutive equations are defined
by state equations

b=bR4+ bR R=Wy., A=-W, (1.5)
and by force-flux relations
VB =Dws, A= Dy, (1.6)

where tensor b denotes the Piola-Lagrange’s stress, bf is the reversible
stress and bF the irreversible stress.

It is assumed that the solid is submitted to conservative loads, for
example to implied forces r4()\) and implied displacements u¢()), X is
a time-dependent control parameter. Function A(t) is given in [0, +oo].
The static equilibrium of the solid is expressed by virtual work equation

/V b:VéudV = /r r¢(\) - du dS (1.7)

which ensures force equilibrium while moment equilibrium is implicitly
ensured by the symmetry of the Cauchy stress ¢ which implies the con-
dition 8FT = FbT to be fulfilled by the constitutive equations.

For example, combined visco-elastic model consists to take as « the
viscous strain €¢” and as energy

W:%(e—e”):Le:(c—f”)—!—%e”:h:e"

in which € = 1/2(Vu+ VuT 4+ VuTVu) is Green deformation, L® is the
tensor of elastic modulus and h is the hardening parameter.

From a given initial state u(0) = u2, «(0) = a9, can be associated an
evolution of the solid defined by u,(t), o, (t). With the compact notation
q = (u, «), the energy potential and the dissipation potential of the solid

5



can be introduced

E(g,\) = L W(Vu,0) aV - [ 1Y) -u ds, (1.8)

D(§) = / D(Vi, &) dV (1.9)
1%
to write the evolution under the form of Biot’s equation
(D, +E,,) - 5g = 0. (1.10)

Linearized equation associated to a particular evolution g, can be then
written as

E?,[6¢, ") + D%[0q,4"] =0 ¥ 5q , ¥t >0. (1.11)

It is assumed first that dissipation potential is quadratic, state indepen-
dent and strictly convex. The associated bilinear form D 44[d¢, ¢*] is then
time-independent and positive-definite

Dyil6q,8q] > ¢ || 6q .

In these conditions, proposition (2) can be applied with R = D 4,5 =

E,7,- The positive-definiteness of the second derivative of energy

E;,[69,0q] > & || éq |I? (1.12)
ensures then the asymptotic stability of evolution g¢,:

Proposition 3 If dissipation potential is quadratic, state-independent
and strictly convez, the positive-definiteness of the second variation of
energy of the solid with respect to variables ¢ = (u, ) at current points
of an evolution ensures the asymptotic stability of this evolution.

If the deformation is not in itself a dissipative mechanism, dissipation
potential depends only on the rate of internal parameters &. If quadratic
form D,sq [@*, @*] is positive-definite, the result still holds under the
same condition. Indeed, the same argument shows already that the
distance to the considered evolution || €;(t) — €;(t) || remains small for
all t and tends to 0 for ¢t — oo. If the second variation of energy is
positive-definite, equilibrium equation E(u, €}),, -0u = 0 gives u = u(ep)
in an unique manner in the vicinity of €7 after implicit function theorem
since E,0  is then regular. Displacement u can be then expressed in
function of the loading and of the viscous strain. Thus the perturbed
displacement u,(t) remains close to the solution u,(t) and the difference
tends to 0 when ¢t — oo.



visco-elastic
springs 1, 2

Figure 1.1 Discrete visco-elastic Shanley’s model

In the general case, dissipation potential is not quadratic, the prop-
erty of asymptotic stability in the spirit of Propositions 1 and 2 is not
obtained.

As example, the Shanley’s column of Figure 1 is here considered
again by assuming that the springs are elastic-visco-elastic following the
Maxwell’s rheological model of kinematic hardening. If the applied ver-
tical load is a given function of time A = A(t), evolution equations are

L
o1+ 02+ A(t) =0, 02—01:/\7-tan0.

p s 01 v . 02 v
v+:.sm0zf+el, v—fsm0=f+ez

v v vV __ v
né] = o1 — he], néy = o9 — hes.

Let v = (v,0) be displacement parameters, & = (€Y, €}) the internal
parameters and ¢ = (u,a). Energy and dissipation potentials are

E(q,)) = %E(v-}— £sin 6 — €¥)% + %E(v —¢sinf — €¥)? + %h(ei’)z

1 . | 1 ..,
+5P(€)* + Mv+ Leost), D(&) = 2n(&)* + 5n(&)*.

Evolution equations can also be written under the form of Biot’s equa-
tion (1.4). The symmetric evolution associated with symmetric initial
condition €} (0) = €3(0) = 0 is considered

0o(t) =0, v=1,(t), € =€ =¢€(t)
Linearization leads to
% MEL
Né" = —speEr) (6 — €7) — hel”
- AEL — €¥%) — hev
M€y m( €5") €5"
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Thus the following expression holds

1[h-2 2 AEL
U(t) = —— ith -
©) n[z h—z] Y F T 5ReE - )
Eigenvalues are pu; = —% and pg = —h:}i or with the notations A\g =
2 2 2
%E’ Ar = %EE& = %E
_h _ hAEAT—A
M1 = ' M2 = P V—

After Proposition 2, it is then concluded that the symmetric solution is
stable if A(t) < A7 for all ¢.

4. STABILITY OF A VISCO-PLASTIC
EVOLUTION

Since the method of linearization cannot be applied in this case, a
direct method is here considered. It is available for both time-dependent
and time-independent behaviour, in particular for plastic or visco-plastic
generalized standard models.

Visco-plastic laws can also be considered as a particular case of non-
linear visco-elasticity with an elastic domain. The introduction of the
dual dissipation potential, classically denoted in this framework as visco-
plastic potential

D*(A) =max A-a&a- D(&), (1.13)
by Legendre-Fenchel transform leads to the evolution law of internal
parameters

&= D*,4 (A). (1.14)

For example, Perzyna’s model consists to take as a the visco-plastic

strain, A is then the Kirchhoff stress and D*(A) = % <VA:A-k >2

Norton-Hoff’s model consists to take as visco-plastic potential D*(A) =
% < f(A) >™, m > 1, where f is a convex function, f(A) < 0 defines
the elastic domain C.

In the same spirit as in plasticity, the dissipation per unit volume
P(&) = A - & must be non-negative. Thus the elastic domain must
contain the origin of force 0. Moreover, if the origin of force is strictly
contained inside in the sense that a sphere of radius r and centered at
the origin is also included in C, then

P@>rllal. (1.15)
8



The quasi-static equation of evolution for a generalized standard visco-
plastic solid is

a=D"4, A=-E,, E,5u=0, «a0)=a. (1.16)

where ¢ € R" or ¢ € H, an abstract Hilbet space.

Let ¢, = (uo,@,) be a bounded solution || ¢o(t) ||[< M, Vit >0
of this equation. The following assumptions on energy are admitted
V llg—g(t) |< Mand Vi

E:q (qs)‘) * 5‘} S kl ” aq ”7 | Ea)\ (91)\) I S k21 (117)

Eiq(¢:A) [p,r] < Ku [[plll 7], Ega(gA)p < Ko 2|l (1.18)

E,q (9,2 [69,6q) > ku || 6q]?, (1.19)
| {E, 94(¢, A) — Eyqq (p, 1) }0q,8¢] IS L (Il g —p Il + A= p]) |l 5((1 I” |
1.20

I {E, qM(¢; A) —E,qx (p, 1)} 8¢ IS L ([l g=p Il + [ A—p ) || 6¢ || (1.21)

where coefficients M, kq, k9, k11, K11, K12, L are positive constants.

Let g(t) be a different solution associated with a different initial con-
dition ¢(0) = p, # ¢5. As in the proof of Liapunov’s theorem, the
method consists to assume first a working hypothesis which states that
llg(t) — ¢, (t)|| < M for all t in order to take the advantage of the in-
troduced assumptions. A better estimate of this distance is then given
to show that this distance is in fact small if the initial distance is suffi-
ciently small. This result justifies the working hypothesis and leads to
the stability of the evolution g¢,.

It is also assumed that the loading path, defined by function A(¢) on
the interval [0, oo, satisfies

+oo | .
/ |IA(#)| dt < +o00 i.e. A€ L'(0,00). (1.22)
0

The solutions g, (t) et ¢(t) satisfy some property. Equilibrium equation
E,, -du = 0 leads to the energy balance E,, -4 = 0 which can be also be
written as

E+A-d':E,A A

From the assumption on the elastic domain C, the following inequality
follows

¢ -
r / | &(t) [|< Eo — E¢ + K/ |A| ds.
0 0
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Thus, if E; remains bounded for all ¢, then

+co
] & dt < +oo. (1.23)
0

Effectively, since ¢,(t) is bounded for all ¢, E,; is also bounded. The
working hypothesis || ¢(t) — ¢,(t) ||< M for all ¢ implies that ¢(t) remains
bounded, i.e. E; remains bounded for all ¢t.

The same conclusion concerning % is also available. Indeed, equilib-
rium equation E,, -du = 0 gives after time differentiation

B,y [, 6u] + 0u - By -&+ A Epyy -6u =0
and leads to the desired result after the introduced assumptions since
ki |l @ )|< Kz || & | +Ku | A

The rates ¢, ¢ thus belong to L'(0, +o0, H).

On the other hand, evolution equation, written for solutions ¢, and g,
gives after multiplication by Q(t) — Q,(t) and after combination of the
obtained results

(qu _Eo9q) ’ (q - qo) <0 Vit
taking account of the fact that (D*,g (Q) — D*,g (Q,)) - (Q — Q,) > 0.

Since

(Bg —E%) - AG = E%qq[Aq, Ad]+ 11, || < L Aq|l Aql

o . d 1 o
E 199 [Aqv Aq] = E(§E 19q [Aqa AQ]) — Ty,
[P IS DI AGI? (ol +1 A1)
it follows finally that

hsm(®) b, mo) =1 @laI+1a1+150) (129

if || g(s) —go(s)|| <M V 0<s<t Thus,the estimate
i
h(t) < h(0) exp M(t), M(t) = / m(s) ds < B (1.25)
holds, constant B exists from the fact that ¢ € L1(0,+oo,H), Go €
L'(0, 400, H) and A € L}(0,40o0). Thus

Ky

| Ag) 1P < 2
11

| Ag(0) || exp M(t). (1.26)
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5. STABILITY OF AN ELASTIC-PLASTIC
EVOLUTION

For an elastic-plastic solid in quasi-static evolution, the stability anal-
ysis of an evolution ¢, associated to a loading path A(¢) can be done in
the same spirit. The governing equations of quasi-static evolutions are

a=N¢(4), A=-E,, E,:5u=0, «a0)=a. (1.27)
The same proof can be applied without modification since
A-a>r| e

as in visco-plasticity. A direct proof can also be given. From the as-
sumption of state-independent elastic domain, it has been established
that flux and force rates are necessarily orthogonal

a-A=0.
Moreover, it follows from the equilibrium condition
d
—(E,y -0u) = 0.
7 u)
These equations lead to

Esqq [q, q] = _Eq/\ : q)‘

and to the estimate

bl IS Kz | 4] (1.28)

The proof can be continued as it has been done previously and leads to
the following inequality

h<m® A, ) == GL2+D 13O =€ 130

This inequality leads as before to the desired conclusion.

6. CRITERION OF SECOND VARIATION
OF FREE ENERGY

In the previous stability analysis, it has been shown that the essential
assumption concerns with the positive-definiteness of the second varia-
tion of energy

§°E; = E,gq (q(t), M(t))[69,8q] > kuy [|6q |* , ¥ ¢ € [0.400). (1.29)
11



with
5’E, = / (Véu : W,y : Vou+2Vou : W, vua -0a+6a- W, a4 -da) dV.
1%

A simpler criterion can also be introduced if the energy density W
is strictly convex with respect to « for fixed Vu. Since da - W,oq -0
is positive-definite, the internal parameter can be eliminated and the
criterion of second variation of energy of the solid can be ensured by the
positive-definiteness of the quadratic form

ﬁ&:/'vm;ﬁﬂmuﬂ'>o, (1.30)
14

— -1
L= WaVuVu _W,Vua W?aa WaaVu .

By definition, £ is the limit modulus. In an experiment of traction at
constant strain rates, the limit modulus represents exactly the tangent
modulus of the associated elastic-plastic curve obtained at vanishing
strain rate. In an experiment of viscous flow at constant load, the limit
modulus can also be interpreted as the long term tangent modulus for a
visco-elastic material. The following proposition holds

Proposition 4 The criterion of limit modulus ensures the stability of
an evolution.

In particular, for a visco-elastic material obeying to Kelvin model,
the associated second variation is exactly the second variation of the
potential energy of the system. Thus, elastic stability of the solid at
current positions will ensures the stability of the evolution in this case.

For a material obeying to kinematic hardening model, in the case of
isotropic elasticity, the limit modulus is given by

Gh o
G+h

h=Ktr(e) T+

The criterion of limit modulus is

Gh
20 _ - 2 T T
55,5—/‘/ {K (tr(de)) +G+h6e :6e' +Véu k Véu" } dV > 0

if Vu,(t) is neglected.

It may be interesting to compare the limit modulus to the tangent
modulus associated with the kinematic hardening model. In particu-
lar, in the example of Shanley’s model, the critical load A7 has been
recovered. More generally, the following proposition holds

12



Proposition 5 The limit modulus is exactly the tangent modulus if the
normal cone to the elastic domain generates the whole internal parameter
space.

Indeed, in the definition of the tangent modulus, the fact that the rate of
internal parameter must be an external normal to the elastic domain by
normal law is essential. If any arbitrary direction can be generated by
normal vectors, then the limit load is exactly the tangent load. For an
elastic-plastic beam, the tangent modulus is exactly the limit modulus,
the following proposition holds:

Proposition 6 A quasi-static evolution of a system of elastic-plastic
beams is stable if the criterion of the elastic comparison solid is satisfied
at current points of this evolution.

If the space generated by the normal cone is not the whole internal
space, the tangent modulus is stiffer than the limit modulus. The crite-
rion of limit modulus is for that reason very conservative compared to
the Hill’s criterion of stability and cannot be operational. The problem
of stability of an evolution is for this reason remains largely open. In
particular, for stability analysis of visco-plastic solids, the obtention of
efficient methods and estimates have been the scope of several recent
discussions, cf. for example Tvergaard, 1979, Fressengeas and Molinari,
1987, Massin et al., 1999.
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