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A plasticity model for discontinua

Yves M. Leroy! and William Sassi?

! Laboratoire de Mécanique des Solides, Ecole Polytechnique,
U.M.R. C.N.R.S. no. 7649 91128 Palaiseau Cedex, France
2 Institut Francais du Pétrole, BP 311, 92506 Rueil-Malmaison, France

Abstract. This article is concerned with the development and applica-
tion of a simple continuum theory for rocks that may contain both ran-
domly as well as preferentially oriented plane discontinuity surfaces. The
theory stipulates that displacement discontinuities are independently ac-
tivated on these surfaces as soon as an appropriate yield criterion is
fulfilled; these displacement jumps account for the irreversible, ‘plastic’
part of the bulk deformation. In stress space, the critical conditions for
the activation of discontinuous slip or opening displacements define an
overall yield envelope that could be initially anisotropic, reflecting for
example a weakness of certain orientations due to pre-existing joint sets.
For the yield conditions studied in this paper, essentially a Coulomb-
type friction law and a simple fracture opening condition, the inferred
stress-strain response under typical triaxial loading conditions reveals the
sensitivity of the two discontinuous deformation modes to the confining
pressure. The incipient growth of a geological fold in such a material is
modelled as a problem of plate bending. The slip- and opening-modes
of deformation are found to be activated typically in the fold intrados
and extrados, respectively. Under certain conditions, both modes will be
activated simultaneously at the same locality and contribute to the total
deformation. Field observations on a well exposed sandstone anticline
are reported here, which support this conclusion. The present plasticity
model for discontinua can clearly be explored in more detail for real-
istic distributions of faults and joints taken from field observations. It
could also be improved in various ways in its description of the under-
lying deformation mechanisms. Apart from its interest as a mechanical
constitutive model, it can also serve as a point of departure for stud-
ies of stress-sensitive, anisotropic permeability distributions in fractured
formations.

1 Introduction

Natural fracture systems can provide a record of the history of stress, pore fluid
pressure, or tectonic deformation, and an understanding of their genesis can ex-
plain and help to predict large-scale permeability trends in certain hydrocarbon
reservoirs. Mechanical models that relate properties of natural fracture systems,
such as fracture orientations or densities, to the tectonic stress and deforma-
tion history are therefore of fundamental interest in this context. It is hoped



that the simple elasto-plasticity law presented in the following may illustrate
the potential of continuum theory to deal with this problem.

Various classifications of natural fractures in terms of their origin have been
proposed in the literature (see, e.g., Nelson, 1985; Price & Cosgrove, 1990). A
simple scheme distinguishes between tectonic fractures and regional or system-
atic joints. The former owe their name to the fact that they tend to accommodate
tectonic deformation while being generated. Their growth results in complex 3-
D geometries which often reveal an interaction of neighboring discontinuities.
Lithological layering with sharp rheological contrasts and slip along bedding
planes is also a key to the understanding of these tectonic fracture patterns.
The origin of systematic joints, the second class of fractures, is still debated.
These fractures are very regular in orientation and may cover vast areas. They
are formed without significant tectonic deformation although their orientation
is often considered as a marker of the paleo-stress state (Rawnsley et al., 1992;
Dunne & Hancock, 1993; Petit et al., this Volume). They may also participate
in tectonic deformation postdating their genesis. An ideal predictive mechani-
cal model should include the salient features of these discontinuities of different
type and provide estimates of fracture densities and orientation based upon a
knowledge of the overall deformation history.

In this paper, the link between pervasive fractures and permanent deforma-
tion is explored theoretically by means of a simple elasto-plasticity model in
which the permanent deformation results from discontinuous (opening or slip)
displacements along continuously distributed planes of weakness. The model rep-
resents an application to pervasively faulted rocks of ideas that may be traced
back at least to the early work of Batdorf & Budiansky (1949) on the proper-
ties of polycrystalline materials that deform by crystal-plastic slip within single
crystals. Certain of its features are also reminiscent of Reches’ (1983) three-
dimensional model of faulted rock. It is assumed that there exists an elementary
volume of the rock mass under consideration, for which a macro-scale constitutive
model can be meaningfully developed. This volume element contains an infinite
number of potential discontinuity surfaces with random orientation prior to de-
formation. Phenomenological laws are introduced that specify the resistance of a
discontinuity to slip and opening: A Coulomb friction law with cohesive harden-
ing, to model resistance to slip, and an independent resistance law for irreversible
opening displacements, which acts as a cut-off for Coulomb frictional behaviour
at low confining pressures and will allow opening to occur instead of or concur-
rently with slip. The phenomenological laws that characterize the response of a
discontinuity could in fact represent distinct physical micromechanisms, includ-
ing fracture nucleation and growth behaviour. Rather than giving an explicit
treatment, these various effects are lumped together in the present simplified
phenomenological description with the uniform elastic macro-scale response of
the surroundings to localized slip or opening displacements. The micromechani-
cal parameters of the model could exhibit a dependence on the orientation of the
discontinuities, such that the overall resistance of the rock mass to deformation
would be weaker, in a sense to be defined later, in certain directions, reflecting



the presence of pre-existing systematic joint sets. However, in all cases the den-
sity of these discontinuities in a representative volume element is such that the
macro-scale deformation will be continuous in space.

The idea to construct the macro-scale deformation by the superposition of
micro-scale contributions from discontinuous opening or slip displacements along
fractures is not new and has been pursued previously in various branches of me-
chanics including mechanical and civil engineering, geotechnics and geology. For
this reason, the short review which follows is certainly far from complete. Oer-
tel (1965) suggested that the deformation observed on his soft clay models is
accommodated mainly by slip along four families having orthorhombic symme-
try of parallel, closely spaced surfaces. The model of damage in concrete and
rocks under tensile load proposed by Bazant & Oh (1985) differs from Batdorf
and Budiansky’s theory, apart from the choice of micromechanism, mainly by the
proposition of a uniform strain over the representative volume element. The tun-
nel and slope stability analysis of Zienkiewicz & Pande (1977) relies on the idea
that the failure of rock masses is due to slip and opening of inherited fracture sets
that act as planes of weakness. The tectonic origin of fracture sets and their ori-
entation with respect to the principal stress directions was addressed by Wallace
(1951) & Bott (1959). A plane of fracture initiates from a heterogeneity which is
then described by a micromechanism such as a penny-shape crack along which
frictional sliding is accommodated (Kachanov, 1982a). Local tensile stresses can
result in the propagation of branched cracks which is often the micromechanism
invoked to model rock dilatancy (Kachanov, 1982b). The macroscopic stress-
strain relations based on such mechanisms are derived using, for example, a
self-consistent scheme (Horii & Nemat-Nasser, 1983). Sliding along randomly
oriented microcracks is often the only relevant mechanisms considered for rocks
under overall compressive loading. The angular range of activated cracks depends
then only partly on the history or loading path (Lehner & Kachanov, 1995), as
was already suggested by Sanders (1954), who employed the plasticity formalism
of multiple loading functions of Koiter (1953). Phenomenological plasticity mod-
els with the features suggesting the presence of sliding microcracks have been
proposed in the past (Rudnicki & Rice, 1975), emphasizing the importance of
the micromechanism of deformation on the conditions for overall rock failure in
a shear-band mode. A similar influence on the critical tectonic stresses required
for the initiation of folds is discussed in detail by Leroy & Triantafyllidis (this
Volume).

The contents of this paper are as follows. The next section contains a small-
strain formulation of the plasticity model, applicable to the modeling of tectonic
deformation in three dimensions. This model could easily be extended so as to
allow for large deformations. The third section is devoted to a detailed analysis
of a triaxial test in both extension and compression. In the latter case, a plane
of weakness is also accounted for in a manner which is similar to the proposition
of Jaeger (1960). While only slip can be generated in the compressive triaxial
test, both opening and slip modes are activated during extension under triaxial-
stress conditions. This distinction is important for a proper understanding of the



initial plastic flow in a developing fold, which is studied in the fourth section as a
problem of plate bending; extension generated in the extrados of the bent plate is
found to result in the opening of discontinuities. In the concluding discussion, the
scope of these theoretical results as an aid in the prediction and interpretation
and natural fracture systems is critically evaluated for a well-exposed, densely
fractured anticline of Devonian sandstone in South Morocco (Gaulier et al.,
1996).

2 The plasticity model

The constitutive relations developed in this section pertain to the mechanical
response of an elementary volume of a rock mass. The tractions acting on that
volume are taken to be those generated by a uniform ‘macrostress’ field. The
inelastic or ‘plastic’ deformation behaviour of the element at sufficiently high
stress levels is assumed to exhibit a strong dependence on the mean stress, or
pressure. It is this pressure sensitivity, which is best known from dry friction
behaviour of sliding surfaces, that has suggested to us the idea of a plasticity
model in which the actual physical micromechanisms of deformation (i.e., grain
boundary sliding, growth of transgranular cracks followed by grain crushing,
crack growth and interaction on the scale of many grains, etc.) appear lumped
together on a continuum scale, where they give rise to a behaviour that can be
represented mathematically by the concept of multiple yield-surfaces, as in the
work of Koiter (1953). In such a model material, each yield surface represents
the constraint imposed on the state of stress by the strength behaviour of real
or imagined plane surfaces of discontinuity in the displacement!. Despite the
somewhat ficticious nature of these pervasive discontinuities, it will be helpful
to imagine a volume of rock that contains a pervasive system of potential discon-
tinuity surfaces of all orientations, potential, because in order to contribute its
share to the bulk strain of the elementary volume, any such discontinuity must
first be activated. Moreover, when taken as real, these pervasive discontinuities
will suggest the right kind of mathematical continuum model for a rock mass
that contains discrete sets of regional fractures or systematic joints.

The range of orientations of the potential planes of discontinuity, as defined
by their unit normal vectors n, extends over the hemisphere H (of unit radius)
shown in Figure 1. Accordingly, every unit normal vector n defines a plane in
an oriented material sample, which can accommodate jumps in tangential or

! The distinction made in this paper between ‘microscale’ and ‘macroscale’ quantities
is not so much one between quantities defined at different length scales, but one
that differentiates between quantities associated with individual discontinuities and
averages of such quantities taken over an appropriate ensemble of discontinuities.
‘Micro-’ and ‘macroscale’ quantities thus designate different levels of detail in de-
scription, rather than different physical length scales and quantities of both kinds
remain essentially macroscopic physical variables in this paper. However, a genuine
question of (length) scale that arises in the present context is identified, if not anal-
ysed, at the end of this section.



normal displacement. It is assumed that the magnitudes of these jumps are not
affected by the presence of neighbouring discontinuities. It is further stipulated
that any increase in magnitude of these irreversible discontinuous displacements
will necessitate an increase in the macrostress, so that the material element
exhibits an overall work hardening behaviour. This assumption ensures a stable
response on the macroscale. Its absence would limit the load to a maximum,
attained at the first activation of a discontinuity, and this would immediately
enforce localized faulting on the macroscale. (For further discussion of these
issues, see also the article by Leroy & Triantafyllidis in this Volume).

J

’

Fig. 1. The hemisphere H defining the range of orientations n of potential planes of
discontinuity

The macro-scale strain rate € is composed of an elastic and a plastic part, the
former being related to the stress rate by Hooke’s law. The plastic part of the
strain rate is denoted by é€P. Bold quantities identify vectors and second-order
tensors. A superposed dot denotes differentiation with respect to time. The rate
of macro-scale plastic straining € results from the additive contributions €”(n)
of all active discontinuities of orientation m on the hemisphere H:

ép=/Hép(n)dH. (1)

In order to obtain the permanent or ‘plastic’ strain rate associated with the
discontinuity of normal m, it is necessary to identify the force acting on that
plane. It is assumed that the local stress vector, ¢(n), acting on the plane may
be obtained directly from the macro-scale stress tensor o by the relation 2

2 A single dot is used to denote the scalar or ‘dot product’ of two vectors, the product
of a tensor and a vector as in (2) with components t; = o;jn;, or the product of



ttn)=0+n. (2)

The stress vector may be viewed as composed of a normal and a tangential
component according to t(n) = ty(n)+tr(n), as shown in Figure 2. The normal
stress o (n) on the plane of orientation n, i.e., the magnitude the component
tny(n) is given by 34

on(n)=n-t(n)=n-c-n=(nNen):c. (3)
Writing ty(n) = on(n)n = (n-t(n))n = (n @ n)-t(n), for the normal com-
ponent, also yields®

tr(n) = t(n) —ty(n) = (I ~n@n)-on, (4)

for the tangential component of the stress vector. This component defines a unit
tangent vector m in the plane of orientation n by

m(n) = , (5)

in which the resolved shear stress 7(n) is defined as the magnitude of tr(n).
This shear stress is conveniently expressed in terms of the macrostress and the
unit vectors m and n by

1
T(n):m-a-nzﬁ[m®n+"®m]:°" (6)

where the symmetry of the stress tensor has been exploited to introduce the
symmetric Schmid tensor as a factor forming a scalar product with the stress.
Note also that the rate 7 is related to the time derivative of the stress tensor &
in the same way.

two second-order tensors C=A - B with components C;; = A;xBi; in a Cartesian
coordinate system. Here repeated indices imply summation over the range of the
index, i.e., from 1 to 3.

Note that compressive stresses are taken negative throughout this paper.

The dyadic or tensor product a®b of two vectors a and b constitutes a second-
order tensor with components (a®b);; = a;bj;; it is defined through its action on an
arbitrary vector ¢ by (a®b)c=(c-b)a. The colon on the right-hand-side stands for
the scalar product of any two tensors A and B, i.e., the scalar A:B= A;;B;; in
terms of the Cartesian components of the two tensors. When A or B is symmetric,
the product also equals the ‘trace’ tr(A - B)= A;;Bj; of the product A - B.

I is the second-order identity tensor, with components d;; = 1, if i = j, and §;; =0
otherwise.



Having identified the forces acting on the discontinuity of normal n, we now
propose a phenomenological plasticity law to describe the two mechanisms of
interest: the generation of discontinuous slip and opening displacements on a
plane surface of discontinuity. For slip to occur on a given discontinuity surface,
we require that the equality in the Mohr-Coulomb yield criterion

¢%(0,n,7(n)) = 7(n) + pow(n) — co(v(n)) <0, (7)

be satisfied. Here i is a constant coefficient of friction and c¢g is the cohesion,
which is taken to be a function of the internal variable y(n). Note that these
strength parameters could both be functions of the orientation of the plane of
weakness. The internal variable is conceived here as dimensionless equivalent
plastic shear strain and is defined by

+(n) = /0 2¢81(n): €5/ (m), (8)

where €/(n) is the deviator© of the plastic strain €%(n) that is generated by
slip on discontinuity planes of orientation m. The equivalent plastic strain rate
in shear, §(n), for a discontinuity of orientation” n may be determined from the
so-called ‘consistency condition’ which calls for the continuing satisfaction of the
yield criterion (7) as a condition for continuing plastic straining. The condition
therefore demands that ¢%(o,n,y(n)) = 0. After substitution in (7) of the
expressions (3) and (6) for ox(n) and 7(n) in terms of the macrostress, and
differentiation, this produces the following result for the plastic rate of shearing;:

_ 1o . . 895 1

¥(n) = 7 5g with B = 5[(m+un)®n+n® (m+pn)]. (9)
Here h® stands for the derivative of the function co(7y). Note that 9¢° /0o defines
the normal to the yield surface ¢ in stress space.

We must now identify the plastic deformation rate €& (n) which contributes to

the microstrain €% (n) whenever the loading conditions ¢° = 0 and %%: :0>0
are fulfilled. It is constructed by assuming that slip on a plane with surface
normal 1 takes place in the direction m of the tangential component of the stress
vector and that the deviator of the resulting micro-strain rate is proportional to
the Schmid tensor:

® The deviator of a tensor A is defined by A’ =A—3(A: )L

" Although we speak here of a discontinuity of orientation n and an associated plastic
strain, it would have been more appropriate to start from the picture of a certain
number density of parallel discontinuities transsecting the elementary volume and,
in general, assume an orientation dependence for this density. In the present contin-
uum treatment, the density parameter may however be thought of as having been
absorbed in the nondimensional internal strain variable y(n) through the hardening
response specified in (9).



ég'="y(n)%[m®n+n®m]. (10)
At least three interpretations can be given to this expression, interpreted as
the micro-scale contribution to the macro-scale strain rate introduced by (1).
Thus, it is first observed that the right-hand side of (1) has a structure that
is familiar from theories of crystal plastic deformation (see, e.g., the review by
Asaro, 1983) in which the integral is typically replaced by a sum over a finite
number of slip systems. The tangential vector m may however be interpreted
differently in these theories as being determined by a crystallographic direction
rather than the resolved macrostress.

In a second interpretation of (1) and (10), the integration over all orientations
is again replaced by a finite sum, this time over preferentially oriented sets of
faults in a fractured formation, as in the work of Gauthier & Angelier (1985).
The present model differs from theirs mainly in that a constitutive relation is
invoked for the displacement along every discontinuity.

Expression (10) also has an interpretation for slip occurring under dynamic
conditions. The Schmid factor on the right-hand side of (10) then equals the
seismic moment tensor density, mgp, normalized by 2G, where G is the shear
modulus of an isotropic elastic medium (Molnar, 1983). The difference between
the present static and the dynamic interpretation of (10) is thus that in the
former 4 depends on the rheology of the sliding discontinuities rather than on
the elastic properties of the surrounding rock mass.

Fig. 2. Decomposition of stress vector into normal and tangential component and iden-
tification of potential slip direction m for a plane with unit normal n.

Dilatancy during slip results from the presence of stiff heterogeneities and
asperities on the sliding surfaces. Following Rudnicki & Rice (1975), the vol-
umetric strain rate is therefore defined in terms of the equivalent strain rate
in shear and a dilatancy coefficient § that may depend on . In the following,
this coefficient is assumed to be constant and independent of the orientation of
a discontinuity. The microstrain resulting from the dilation of a discontinuity



of orientation m is thus taken to be proportional to ¥(n)n ® n, with 8 as the
factor of proportionality. The total strain rate associated with slip on a dilating
discontinuity thus becomes

ég(n):ﬁl(n)[%(m®n+n®m)+ﬂn®n]. (11)
and this contains the essence of our plasticity model for slip along a discontinuity
of orientation 1. Note that for the sake of simplicity the dependence of 4(n) on
the macro-scale stress state has not been made explicit in the above expressions.

Let us now consider, as a second micro-scale deformation mechanism, the
opening of discontinuities independent of any slip displacement. Such a mecha-
nism could already be activated at small compressive normal stresses (on(n) <
0) and its operation can be allowed for by the introduction of a second yield
criterion of the form

¢°(o,n,d(n)) = on(n) — ko(d(n)) =0, (12)

which involves only the normal stress oy and a material function kq(d) of the
accumulated opening strain, d, an internal variable that may depend on the ori-
entation of the discontinuity. This criterion acts as a cut-off of the Mohr-Coulomb
criterion in stress space, as is illustrated Figure 3. Note that ko(d(n)) is taken to
be initially negative, which excludes the state of zero stress from the initial elas-
tic domain. This choice is consistent with numerous observations of the damage
induced in core samples retrieved from great depth. It makes allowance for the
operation of one or more micromechanisms, not to be discussed here, that effect
a transformation of compressive macrostresses into locally tensile states of stress.
ko is taken to be an increasing function of d, reflecting an increasing resistance
of the discontinuity to opening. The structure of the plastic strain produced by
this second deformation mechanism resembles that associated with slip-induced
dilation in (11), if 43 is replaced by d. The rate of plastic deformation associated
with this opening mechanism for a discontinuity of orientation 7 is thus written

& (n)=dn)nen. (13)

Here d is determined from the consistency condition ¢© = 0 imposed on the
yield criterion (12), giving

; 19¢° . 8¢°

d(n)zﬁo—-a—a—:cr, with ¥:n®n, (14)
in which the scalar h© denotes the derivative of the function ko (d). Note that the
opening mechanism is activated, if the conditions ¢© = 0 and (9¢°/do): 6 > 0
are simultaneously satisfied.
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Fig. 3. The yield locus in stress space for a potential discontinuity: A Mohr-Coulomb
envelope truncated by the opening criterion on = ko(d).

The second mechanism, which potentially excludes the zero stress point from
the admissible domain, may raise a question about the stability of the postulated
model material in the sense of Drucker (1951). To dispel such concerns, it suffices
to consider a single discontinuity of orientation n and a stress state o* in the
elastic domain or on the loading surface. Identify, for example, o* with point
P in Figure 3. The material is stable in the sense of Drucker, if the work done
by an external loading process in a cycle starting at o* and resulting in plastic
deformation is strictly non-negative. Drucker showed that this condition requires
that

(0 —0*):é, +6:60, >0,

in which o lies on the loading surface. The second term on the left-hand-side
of this inequality is strictly non-negative if d is non-zero, given the normality
of the plastic flow (13) and as long as there is positive work hardening (h© >
0). The same property and the convexity of the yield condition (12) entail the
positiveness of the first term in the above inequality. The assumed deformation
mechanism of the opening of discontinuities is thus stable in the sense of Drucker.
It should also be recalled here that the relevance of Drucker’s postulate as a
sufficient, but not necessary condition for the stability of the first mechanism of
frictional slip has been repeatedly discussed in the literature (see, for example,
the note by Mandel (1964) and related discussions in the same volume) and
will not be addressed here. A further point of concern could be the lack of
uniqueness of the normal direction to the loading surface at the intersection, in

10



stress space, of the yield surfaces corresponding to the two distinct criteria (7)
and (12) (cf. Fig. 3). However, no such problem arises with the present model in
view of the independence of the two postulated deformation mechanisms (Koiter,
1953). An indeterminacy could have resulted here, if such an interaction had been
allowed for, e.g. by the introduction of latent hardening as it is appropriate for
some crystalline materials (Pan & Rice, 1983).

In summary, the total plastic rate of deformation, due to the activation of a
planar discontinuity of orientation n by the two independent micromechanisms,
is obtained as the sum of the strain rates (11) and (13):

&(n) = 7(n)a’(n) [%(m @n+nom)+prnen] +dn)al(mnen. (15)

Here the scalar factors a®(n) and a©(n) take on the values 1 or 0, depending
on whether or not the corresponding micromechanism is activated.

Having characterized the plastic deformation accumulated on individual dis-
continuities by the two independent micro-scale deformation mechanisms, we
must now determine the resulting macro-scale plastic deformation €”. This last
operation involves the substitution of (15) for the integrand in (1), followed by
an appropriate integration over the hemisphere H. Before carrying out such a
calculation for the triaxial test and the bending of a plate, we wish however
to discuss the incorporation in our plasticity model of weak discontinuities of
preferred orientation. These discontinuities are taken to represent inherited sys-
tematic joints that were formed during earlier episodes of stressing and deforma-
tion and will contribute to either slip or opening. In that sense, they are weaker
than any potential discontinuity of the rock mass. Systematic joints are also
called regional joints because of their large extent. It is assumed, however, that
their contribution to the tectonic deformation occurs by slip or opening along
patches that are sufficiently well distributed to justify the assumption that the
macro-scale stress field prevails on every discontinuity. The present model is
built on the assumption that there exists a finite number N of joint sets of a
given precise orientation, which cut through the elementary volume. The rele-
vant components of stress acting on a discontinuity plane are assumed to satisfy
a plastic yield criterion, similar to the one proposed for the above continuously
distributed potential discontinuities, but with different material parameters. The
total macroscopic plastic strain rate is composed of the integral term in (1) and
a sum XNéP(n,) of terms that represent the contributions to the macrostrain
from N individual sets of discontinuities. It is thus given by

&= / &(n)dH
H
N 1 .
+ Z{f"yaaf [i(ma ® Ny + N ® My) + fana ® o + deafng ® na} , (16)
a=I

where the €£(n,) have been assumed to satisfy an expression of the form (15).
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A similar superposition of strains resulting from slip on weak discontinu-
ities and microstrains generated pervasively throughout a rock mass has been
considered earlier by Jaeger (1960). An obvious problem arising in this context
is that of a scale-dependence of certain results, such as for example the calcu-
lated stiffness of the material volume element under consideration. In general,
one must expect quantities of this kind to depend on the size of the elementary
volume by the mere fact that different volumes will sample different ensembles
of systematic joints®. In the best of all situations, this size dependence will fade
as the volume exceeds a certain minimum size that is still small in comparison
with a characteristic overall length of the rock mass of interest. One can then
speak meaningfully of a representative elementary volume (REV), a qualifica-
tion we have so far avoided on purpose. Indeed, a challenging task for studies of
the present kind remains precisely the determination of typical length scales of
REV’s in the field.

3 The triaxial test

This section is devoted to an analysis of the permanent deformation of an elasto-
plastic material of the type just defined, when a representative sample of this
material is subjected to standard triaxial loading conditions. Linear hardening
laws are adopted for the cohesion and the opening hardening functions in order
to obtain analytical expressions. The triaxial compressive test, in which only
sliding discontinuities can be activated, is considered first. Triaxial extension,
which permits sliding and opening displacements to occur, is discussed in the
second part of this section.

Assume now that the material sample is initially subjected to the isotropic
compressive stress —PI, where P is a positive scalar pressure. The specimen is
subsequently loaded by a monotonically increasing or decreasing axial compo-
nent of stress, g, in direction 2 (cf. Fig. 4), so that the total stress state becomes

oc=—-Pl+ge;Qesy, (17)

where ¢ varyies monotonically with time and es is the base vector associated
with the x5 coordinate axis.

The components of the unit normal n of a potential discontinuity plane in
the Cartesian coordinate system of Figure 1, when expressed in terms of the two
Euler angles 8 and ¢, are

71 sin 6 cos
ng | = cos @ . (18)
ns sin @sin

8 In expression (16) this would imply a dependence of the number N of preferentially
oriented fracture sets on the size of the elementary volume, i.e., on the normalizing
length involved in the definition of the nondimensional displacement jumps v, and
da.

12



The normal stress on(n), the resolved shear stress 7(n), and the vector m(n)
are given by

on(n)=—P +qcos? 6,
7(n) = |g|cosf sinf, (19)

m(n) = Sign(q)(— cosf cospe; + sinfes — cosfsing 63) .

These expressions are found by using (5) and (6) in (4) and (5), while observing
that 7 = |tp - tT|1/ 2. Note that the normal stress and the resolved shear stress are
independent of the Euler angle . A direct consequence of this axial symmetry
is that the activation of potential discontinuities always occurs for all values of
this angle. However, this symmetry will be carried over to the deformation of the
sample only in the absence of any discrete sets of joints of preferred orientation.

2
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Fig.4. A triaxial test. The cylidrical specimen (a), initially under uniform pressure,
is subjected to an increasing or decreasing axial load. Permanent deformation of the
sample results either from opening of horizontal discontinuities (b), or from slip on
fault planes whose range of dips is delimited by the tangent planes of the two cones
shown in (c).

The first part of this section is concerned with the compressive triaxial test
for which the scalar ¢ in (5) is negative and monotonically decreasing. However,
the equations to be presented are kept general, allowing g to be of any sign in
anticipation of the subsequent analysis of the extension test. Inspection of the
evolution of on and 7 according to (7) and of the structure of the yield criterion
(12) leads to the conclusion that it is impossible to activate the opening mode if
q is negative. This conclusion is also evident from the illustration in Figure 3 of
the stress path followed during compression. We shall thus focus on the sliding
mode in this first part of this section. Inserting the expressions (7) for o and 7
in the yield criterion for sliding mode (7) provides the following condition valid
throughout the test:
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sin(2(6 + Sign(q)$) < [2¢o(v(n)) cos ¢ + (2P — q) sin ¢]/|q], (20)

The inequality is satisfied in the elastic range of deformation and we now inspect
the conditions for which the equality holds for the first time, defining first yield.
Since c¢o increases with v, we must examine solutions to equation (8) for the
initial value co(0). The two solutions found are

(21)

Or2="0.F % [g — arcsin <2CO(O) cos¢ + (2P — q) Sln(ﬁﬂ

lal

where

6. = = — Sign(q) (22)
is the classical Coulomb angle, that is the angle of bisection of the first activated
pair of discontinuity surfaces by the largest compressive principal stress. Since
0 < ¢ < /2, this falls into the ranges 7/4, (0) < 6. < 7/2, (n/4) for Sign(q) =
—1,(+1). The angle §; = 03 = 6. thus represents the solution of (8) obtained
for a critical load such that the argument of the arcsin function in (11) drops to
the value 1 for the first time, that is for the load

2[co(0) cos ¢ + P sin ¢

1 + Sign(q) sin ¢ (23)

ge = Sign(q)

Beyond this critical value of g, two solutions, #; and 85 will exist for equation
(8). These furnish the limits of the orientation range of activated discontinuities
[01,02] = 02 — 61. The existence and growth of this active orientation range
has been indicated already in Figure 4c. It is made more precise by Figure 5,
where the limits 67, 6> are displayed in a Mohr diagram, making use of the stress
‘pole’ at the point (—P,0) (see, e.g., Mandl, 1988). The fact that the orientation
range [0, 6] grows symmetrically about the Coulomb orientation 6, is essentially
a consequence of the assumed hardening of the slip systems. This permits a
continuing increase in the load, which in turn results in the activation of less
favourably oriented slip systems and a corresponding growth of the angular range
of activated discontinuities. At any given instant, the most critical orientation,
0., will have hardened more than any other orientation. The state of stress on
that plane is represented by the tangent point of a Coulomb envelope, which
has been shifted in accord with the amount of cohesive hardening corresponding
to the current value of (6., q), and the stress circle passing through the points
(—=P,0) and (—P + ¢,0). (In constructing Fig. 5, we have made use of (18) and
the linear hardening law (17).) Since the stresses on any newly activated planes
of orienation #; and 65 remain constrained by a Coulomb condition for first slip,
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Fig. 5. Graphical solution for the orientation range (11) of activated discontinuities
for the parameter values ¢; = 10 MPa, ¢, = 50 MPa, and g = tan¢ = 0.6. (a) Triaxial
compression test at P = 20 MPa with g. ~ —74.5 MPa. (b) Triaxial extension test at
P = 60 MPa with ¢, =~ 51.5 MPa.

with ¢g = ¢g(0), they must be represented by the points of intersection of the
initial Mohr envelope with the current stress circle.

Let us now quantify the shear deformation associated with slip on active
discontinuities and from this determine the relation between the applied load and
the permanent macroscopic deformation of the sample. If slip-induced dilatancy
is disregarded (8 = 0) in addition to opening mode (13) and a correspondingly
simplified form of expression (15) is substituted in (16), together with (5),(6),
and (7c), there results the following expression for the macro-scale plastic strain
rate:

w/2 p2w
i / f o (0)%(0)R(6, ¢) sin 6 dodyp , (24)
2 0 0

where R(6, ¢) stands for the Schmid tensor 3(m ® n+n ® m), the component
matrix of which becomes

[Ri;] = (25)

1 —sin20cos?p (1 —2cos?f)cosp —1sin26sin2¢p
ESign(q) (1 —2cos? ) cosy sin 20 (1 —2cos?)sing
—% sin20sin2p (1 —2cos?f)sinp —sin20sin’ o

The fact that the strain rate 4 does not depend on the angle ¢ simplifies the
integration of (14). Moreover, on account of (9a) and (5), v(f) depends on time
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only through the time-like factor ¢; (14) is therefore readily integrated along the
loading path to provide the total macroscopic plastic strain:

pq_ Sign(q) 100 s .2
[ef;] = 5 020 /0 a” (0)v(0) sin® 6 cos 6d8 . (26)
-1

To render explicit the relation between this plastic macrostrain and the ap-
plied load, the functional dependence of the cohesion ¢y on the internal variable
~(n) must be specified for all orientations n of potential discontinuity surfaces.
For simplicity, we consider the linear relation

co(y) = c1 +e2y- (27)

Here c¢; and ¢, are constants that are independent of the orientation m. A re-
lation of this type can be motivated for crack-like discontinuities which, in the
absence of crack growth, exhibit a linear elastic compliance, i.e., a form of ‘linear
hardening’ (see, e.g., Lehner & Kachanov, 1995). A shortcoming of (17) remains
however the absence of an expected saturation level for work-hardening, that is
a value of v beyond which no further appreciable increase in cohesive strength
will occur.

Using (17) in (8) and rearranging, the accumulated plastic shear strain may
be expressed as a function of the loading parameters P and q as follows:

9) = lal {% sin(26 + Sign(q)®)

Co COS

_a cos¢p+ (P — %q)sinqﬁ}

lgi (28)

This expression applies only if the right-hand side is positive, otherwise the
internal variable (0) is set to zero. Inserting it in (16) and carrying out the
integration over the active angle range 1, 6s, for which o®(6) = 1, one recovers
the macroscopic permanent strain

-10 0
ler;] = ﬁ 020 ]x ‘Sign(q) sin ¢ (4 sin® 0 — % sin® )
00-1
Psi 6
—cos¢ (% cos3 § — %cos5 9) _acoe (;;|—Z| sin ¢ sin® 9 92 (29)
1

The terms within vertical bars are now evaluated for the limits of the active
orientation range, 6; and 6, the former being subtracted from the latter. By
use of (11) the plastic strain may then be expressed entirely in terms of the load
parameters P and gq.

To complete this discussion of triaxial deformation, let us now determine the
contribution from a set of systematic joints or ‘weak planes’, initially present
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in the sample, to the overall plastic deformation. For simplicity, only a single
joint set of orientation (67, ¢r) is considered. If activated, its contribution to the
macro-scale deformation will be the inelastic strain

[€'55] = (30)

—sin20;cos?pr (1 —2cos?0;)cosp; —sin260;sin2¢;/2
vr(0r) | (1 —2cos? ;) cosepr sin 201 (1 —2cos?0;)sinepy |,
—sin(20;) sin(2¢7)/2 (1 — 2cos?6;)sing;  —sin26;sin® p;

where v7(6) is obtained from expression (18) for () upon replacing the argu-
ment 6 by the fixed angle 6; and using appropriate parameter values. The total

permanent macro-scale deformation in the presence of the joint set is then given
by the sum of (29) and (30).

In order gain some perspective, it will be of interest to evaluate the above
general results for the following specific data set: A confining pressure P for the
compressive test of 10 MPa, an initial cohesion c¢; on all potential discontinuities
of 10 MPa, and a reduced initial cohesion one half the value of ¢; on a single
preexiting joint set of orientation (67, ;) = (7/4,0). All discontinuity surfaces
have the same coefficient of sliding friction g = 0.6, and the work-hardening
constant ¢y is given the uniform value of 50 MPa.

Consider first the stress-strain response in triaxial compression, as given by
(29) for a sample without weak joints of preferred orientation. First yield occurs
in this test at a critical axial load, whose normalized magnitude |og2|/c1 = |- P+
gc|/c1 is found to equal 6.46 from (13) (cf. also Fig. 5). This marks the intercept
with the zero-strain axis of the inelastic stress-strain response shown in Figure 6
(dashed line), in agreement with classical Mohr-Coulomb theory. The subsequent
computed stress-strain response exhibits nonlinear hardening behaviour and this
is clearly a consequence of the widening orientation range [0, 62] of active slip
systems with increasing axial load, since individual systems have been assumed
to respond linearly; the larger the range of activated discontinuities, the softer
the material response.

The evolution of the angular range of activated slip systems with increasing
plastic deformation is shown in Figure 7, in which the limiting angles 6; and
0, have been plotted versus the axial strain. The contribution of each activated
plane to the macroscopic strain may be appreciated from the graphs shown in
Figure 8 of the accumulated plastic shear on individual planes as a function of
their orientation 6. Note the increase in the range of activated systems and in
the magnitude of v as loading proceeds.

The same triaxial loading history is now imposed on a specimen containing
a set of weak planes with the above-assumed orientation and material proper-
ties. The computed macroscopic stress-strain response is given by the dotted
line in Figure 6. Slip commences on the weak planes, but at the same normal-
ized critical load of 6.46, found previously in the absence of weak planes, slip on
distributed discontinuities sets in with a gradually expanding orientation range
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Fig. 6. Computed inelastic (axial) stress-strain response for triaxial compression in the
absence (dashed line) and presence (solid line) of a single set of weak joints. Dotted
line represents linear stress-strain response due to slip on weak joints alone.

of activated planes. Note that the slope of the stress-total strain curve remains
constant as long as only the single set of weak joints is active (linear hardening),
but decreases as soon as the growing range of distributed discontinuities be-
comes active and softens the response. When plotted versus total plastic strain,
the orientation ranges of actively slipping discontinuities differ markedly in the
absence (solid lines) and presence (dotted lines) of the weak joint set, the range
being substantially diminished in the latter case (Fig. 7).

The second part of this section is concerned with a triaxial test in which
the sample is allowed to undergo extension in the axial direction, so that both
both sliding and opening displacements can be operative on potential surfaces
of discontinuity. The representative volume element is assumed to be free of
any weak joints. The macro-scale plastic deformation resulting from the opening
mode is now discussed briefly and only the main results will be given.

The yield condition (12) gives the critical normal stress at which the opening
mode of potential discontinuities is activated. On substituting the stress onx from
(7) in this criterion, the resulting condition for the initiation of the opening mode
is

— P+ qcos®6 — ko(0) = 0. (31)

It predicts that the first discontinuities will open at a critical value of ¢ equal to
P +kq, at an orientation angle § = 0, i.e., in planes perpendicular to the zs-axis
(cf. Fig. 4b). Since work-hardening has been assumed for the opening mode as
well, further loading results in the opening of discontinuities sub-parallel to the
T1,x3-plane in a manner similar to the activation of the sliding cracks. The angle
range of open discontinuities is given by the following solution to (31):
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Fig. 7. The angular range of activated discontinuities in a compressive triaxial test as
a function of the total plastic strain in the absence (solid line) and presence (dotted
line) of a set of weak joints. Left and right branches showing 6; and 62, respectively.
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Fig. 8. Distribution of slip along activated discontinuities at different stages of the
loading during the compressive triaxial test and in the absence of any plane of weakness.
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Fig. 9. Computed inelastic (axial) stress-strain response in triaxial extension for vari-
ous values of the confining pressure P, showing that activation of shear- and opening
modes, SM and OM, is sensitive to P and that both mechanisms can contribute simul-
taneously to the deformation.
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ko(0) + P

63 = arcos( p

), qg>0. (32)

The macroscopic permanent strain associated with the opening of distributed
discontinuities is found by integrating the appropriate term in expression (15)
over the active orientation range and over time, giving

. 9
65 sind 0 0
[€?:;] = / %9) sin 0 2cos?d 0 dg. (33)
0 0 0 sin®¢

As with the sliding mechanism, work-hardening is characterized by a linear re-
lation

ko(d) = k1 + kad, (34)

in which the two constants k; and k2 are the same for all discontinuity orienta-
tions. This choice yields the expression d(f) = qcos?(§) — P — k; for the opening
displacement. Substitution in (33) thus provides the following simple analytical
solution for the strains

1 1 . 2 1 . 0s
€ = ey = %’ - gq(sm29+ 5)00830+ §(P+ k1) cos 6(2 + sin® 0) o
1 2 2 3 [0
egzz2—k2’—gqcosse+§(P+k1)COS (90 . (35)

Since the two micro-scale deformation mechanisms operate independently, the
total plastic deformation is obtained by adding up the individual contributions
from slip (Eq. 29) and opening displacements (Eq. 35). Note again that the equa-
tions for slip have been written in a form that remains valid both for compression
and extension.

The feature of interest in the extension test is the possibility of a simultaneous
activation of the two micromechanisms of slip and opening and its consequence
for the stress-strain response. This is illustrated by the examples shown in Fig-
ure 9. The parameters k; and k2 of the hardening relation (34) are set to -5 and
10 MPa, respectively. Three extension tests are considered for confining pres-
sures of 30, 40, and 60 MPa, corresponding to 3, 4, and 6 times the value of
c1. At the largest confining pressure P, yield occurs first by slip. From (12), the
orientation of the discontinuity that slips first is found to be 0, = 7/4 — ¢/2.
Further loading increases the range of activated discontinuities until the normal
stress becomes small enough to satisfy the yield criterion for the opening mode.
Opening first occurs in planes normal to the x-axis when the axial stress reaches
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the value ki, i.e., at g22/c; = —0.5 in the present example. Continued straining
is accompanied by the simultaneous activation of opening and sliding modes. If
the same test is conducted at the intermediate value for P of 4¢; (40 MPa), then
the order of activation of the micromechanisms is reversed: The opening mode
preceeds the sliding mode. According to (13), the latter is activated as soon as
the axial stress attains the value [2¢; cos ¢ — (1 —sin ¢) P]/(1 + sin ¢), i.e., when
o92/c1 = —0.1785 for the above parameter values. Finally, for the smallest con-
fining pressure P, equal to 3¢; (30MPa), only the opening mode of deformation
is activated. Note again the nonlinearity of stress-strain response, which results
from the progressive opening of discontinuities sub-parallel to the z;, x3-plane.

This sequential activation of the two micro-scale deformation mechanisms
and its sensitivity to the prevailing hydrostatic stress state is also an essential
feature of plate bending. As will be discussed next, only slip will be activated in
the plate intrados (region of compression), whereas slip and opening displace-
ments can occur in the extrados (region of extension).

4 Bending of a plate

The initial stage in the formation of a fold is analyzed in this section as a problem
of plate bending for a plate of thickness 2D and infinite extent (cf. Fig. 10a). The
plate is initially subjected to an isotropic compressive stress and bending about
the x3-axis results in a linear variation across the plate thickness of the normal
stress o9, as is illustrated in Figure 10b. The main difference between this
situation and the previously discussed triaxial test lies in the spatial variation
of the stress field. The two problems are in fact closely related and this should
allow a quick grasp of the main results of this section.

@) (b)

cy22( Xl) _P+q

o > - - - -—
DT

_P_q
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Fig.10. (a) An infinite plate of thickness 2D, initially under a uniform pressure P.
Bending about the x3-axis generates principal stresses in the zz and z3 directions
that vary linearly across the plate thickness with a gradient proportional to the load
parameter g, as illustrated in (b) for oas.
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With reference to Figure , it is assumed that the deformation in every plane
xz=const. is one of plane strain. The unit normals n of all activated discontinu-
ities must lie in the (z1,22) plane, as a consequence of which the second Euler
angle y only takes on the values 0 and 7. Moreover, the plane strain assumption
and the absence of permanent deformation in the z3-direction obviously implies
that the elastic strains in that direction must also vanish and this constrains the
component of stress o33. The state of stress in the plate is therefore given by:

z
O'Z—PI—q—Dl—[62®82+Ve3®e3]a (36)

where P is the initial isotropic pressure and v denotes Poisson’s ratio. The stress
is seen to vary linearly with x; across the plate and the parameter g is assumed
to increase monotonically from ¢ = 0 during loading. The stress distribution (36)
satisfies equilibrium pointwise throughout the plate as long as gravity effects are
disregarded. For ¢ > 0, the bending bending generates compression in the region
x1 > 0 (the intrados region) and extension in the region z; < 0 (the extrados
region). These stresses in the two regions thus differ in a similar way as in the
triaxial compression and extension tests.

The components of the unit normal to potential discontinuities direction are
again given by (6), with the second Euler angle ¢ set to either 0 or 7. From
(6) and (36), one proceeds as in the previous section to derive the following
expressions for the normal stress and the resolved shear stress (for ¢ > 0):

on(n) = —P — (qz1/D)cos*0, 7(n) = (q|lz1|/D)sinf cosb. (37)

Substitution in the yield conditions (7) and (12) then produces the orientation
ranges [01,02] and [0, 63] of discontinuities activated in the shear and opening
mode, respectively:

_ 1([nw . {2c0(0)cos¢ + (2P + qx1/D)sin ¢
Or2="0.F 3 {-2— — arcsin ( glz/D >}
(38)
_T g ¢
b = 7 — Sign(z1)5
and
63 = arccos (\/%) , (z1 <0). (39)

As is seen from (38), slip occurs first when ¢ reaches the critical value

_ 2D(co(0) + Psin )
e = |z1](1 — Sign(z;) sin @) ’ (40)
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and this clearly happens first in the extrados at £1 = —D, while the initiation of
slip at ;1 = +D in the intrados requires a larger value of ¢ (exactly by a factor
3 for a friction angle of 30 degrees).

It follows from (39) that the opening mode of potential discontinuities can
be activated only in the extrados. This will happen first at £; = —D for planes
running parallel to the x1,z3-plane as soon as ¢ = ko(0) + P. Further loading
results in the opening of sub-parallel discontinuities with orientation angles that
lie within the range [0, 63]. The value of the initial pressure P determines whether
opening or slip will occur or whether both mechanisms are activated, as in the
triaxial extension test. This effect is now illustrated by an example computation
for three different values of P.

In this example, the plate is taken to be free of any weak joint or fracture
systems of preferred orientation. All potential discontinuities have a friction co-
efficient p of 0.3, a zero initial cohesion c¢; and a hardening coefficient ¢y of 50
MPa. The value ko(0) in (30), i.e. the constant ki, is set to -10 MPa and the
hardening parameter associated with opening, ko, to 10 MPa. The plate half-
thickness D is 500 m. Results are presented for a loading parameter ¢ equal to
30 MPa and the three values of 30, 35 and 40 MPa for the confining pressure P.

In Figure 11la two plots are shown for the smallest confining pressure of
30 MPa, one for the extrados (—1 < z; < —0.5) and one for the intrados
(0.8 < z; < 1.). The boundaries between the elastic core of the plate and the
adjacent plastic zone are marked by a dashed line and only a portion of the
core is shown. In the extrados, only the opening mechanism is found activated.
Opening is initiated in a direction perpendicular to the x;, x3-plane at the limit
of the elastic and plastic regions (z; = —0.67D) and the range of activated
discontinuities increases away from the center of the plate. The limit 63 of the
activated range is largest at the top surface of the plate. In the intrados, the range
[01, 02] of slipping discontinuities exhibits a similar trend, beginning with a single
critical orientation 6. at elastic/plastic boundary and growing with increasing
.

The results obtained for the larger values of confining pressure of 35 and 40
MPa (Figs. 11b and 11c) remain qualitatively the same in the intrados, while
differing markedly in the extrados. In the intrados, the main effect of a higher
confining pressure is an enlargement of the elastic core of the plate. At 40 MPa
the intrados remain entirely within the elastic range (Fig. 11c¢). In the extrados,
on the other hand, increasing confining pressures are found to bring about a
gradual shift from opening (dotted lines) to the shear (solid lines) as the pre-
ferred mode of plastic deformation, allowing both to spread simultaneously over
different sections of the plate within a certain range of pressures (Fig. 11b). At
the largest value of P, only the slip mechanism is found activated (Fig. 11c).

5 Concluding discussion

To obtain a first impression of the potential and the limitations of the simple
model described in the foregoing, we now wish to to compare its predictions
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Fig. 11. Ranges of orientation of activated discontinuities in plate bending for different
initial pressures P of (a) 30 MPa, (b) 35 MPa, and (c) 40 MPa. Upper plots for the
plate extrados, lower plots for the intrados. Solid curves for the slip and dotted curves
for the opening mode. Horizontal dashed lines mark the outer boundaries of the elastic
core of the plate.
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for the bending of a plate with the fracture pattern observed in a sandstone
anticline outcropping in the Moroccan Anti-Atlas as shown in Figure 12a, which
has kindly been provided by Gaulier et al. (1996).

The sandstone formation seen on Figure 12 is of Devonian age and is part
of a fold formed during the Hercynian compression. The exposed sequence is
at most 20 meters thick and is composed of several massive sandstone layers
with thicknesses ranging from 2 to 5 meters. The study of Gaulier et al. (1996)
provides a classification of the joint families in relation to the structural evolution
of the folding. Fracture data, i.e., fracture orientation with respect to bedding,
fracture density and spacing as well as fracture length and penetration depth,
have been collected at more than 30 measurement sites. The classification of the
joint families yields three fracture sets, two of them being apparent on Figure 12a.
A first set, considered to predate the folding event, is made up of systematic joints
perpendicular to bedding with a marked orientation. They can be detected on
Figure 12a on the left-hand side of the photograph thanks to the sunlight’s
orientation: the exposed surfaces between two shadows belong to the systematic
regional set. A second family is composed of extrados fractures perpendicular to
the bedding and parallel to the fold hinge that is sub-perpendicular to the plane
of the cliff. A precise description of this family is now given starting from the
top of the anticline and moving down the exposed strata.

Looking at the top few meters of the anticline in cross-section, we note a
dense population of meter-scale extrado joints. Their orientation, as plotted in
stereographic projection in in Figure 12b (pole to fractures and fault plane trace)
have been measured from the top horizontal surface along a distance of 10 me-
ters for each diagram. The fracture dip and strike show a small scatter around
the vertical and fold hinge direction, respectively. The density of meter-scale
extrados joints is larger in some intermediate layers than in the top layer. This
observation is often explained by a difference in mechanical properties of the
various layers. Note that some of the joints are intersecting several sandstone
strata. These discontinuities could result from the coalescence of fracture sur-
faces initiated in adjacent beds. They are often curved, dipping towards the
center of the photograph. Furthermore, detailed field observations clearly indi-
cate that some discontinuities have been activated successively as normal and
reverse faults during folding. The reverse faulting event is disregarded from the
subsequent discussion, since it belongs to the late stage of the compression. A
typical normal fault, shown in Figure 13, is arrested as it crosses a layer with
a different lithology. The secondary fracture pattern with a horse-tail geometry
in the bottom layer permits to locate the fault boundary and to appreciate the
extent of the extensional area.

We now turn our attention to a comparison between the predictions made
by the constitutive model proposed in this paper and the field observations
that have just been summarized. To begin with, it is necessary to fix the size
of the elementary volume on the length scale of the field structure. We shall
assume the elementary volume to cover the 20 metres of exposed thickness of
the anticline. Motivated by the occurrence of joints that have been activated in
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Fig. 12. The fracture pattern studied is from a Devonian sandstone anticline outcrop-
ping in the area of Tata-Akka, South Morocco. (a) General view of the exposed strata
cross-cut by a Wadi in the direction NW-SE with a maximum height of 20 m. (b) Inter-
pretation of the fracture pattern observed in (a) between the two arrows. Stereographic
projections of fracture orientation in extrados (pole to fractures and fault plane trace)
are also provided at three locations on the top of the anticline, separated by a distance
of 10 metres. (Courtesy Gaulier et al., 1996).
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Fig. 13. Photograph of an extrado fracture that has been reactivated as a normal fault.
It terminates in a layer composed of thin beds as a secondary fracture array with a
‘horse-tail’ geometry.
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an opening mode, we interprete the elementary volume exposed in the field as
representing a location along the vertical axis of Figure 11 in the extrados. The
predicted orientations for discontinuities activated in the opening mode are then
in qualitative agreement with those recorded on the stereonets of Figure 12b.
The sliding mode is also found to occur simultaneously with the opening mode
in the field, suggesting a situation as found for the extrados in Figure 11b at an
intermediate pressure level. However, the Coulomb angle predicted by (12) for a
friction coefficient of 0.3 is 6. = m/4+ ¢/2 = 53°, which is very different from the
subvertical orientation of the sheared discontinuities in the field. It would appear
therefore, that in contrast with multiple faults of the classical Coulomb-type
(cf. Mandl, 1988, p. 120 and Fig. 1.3-23), ‘normal faulting’ in the present exposure
has resulted from the initiation and coalescence of extrado joints. Their relatively
narrow spacing, which appears to be controlled by bed thickness, has allowed the
activation of a ‘bookshelf mechanism’ (Mandl, 1987). This is still recognizable
in the left portion of Figure 12b, even though the faults have subsequently been
reactivated in reverse and rotated clockwise. Rotation must have been anti-
clockwise during ‘normal faulting’, however. The deformation seen in the field
also comprises a ductile component in some of the lithologies present, an aspect
that is clearly beyond the scope of our plasticity model in its present form.

In conclusion it may perhaps be said that both the strength and weakness
of the proposed continuum model come from its simplicity. A major difficulty
remains the justification of our use of simple yield criteria and hardening laws
as a way of lumping together the description of complex processes of activation
and growth of discontinuous or localized deformation on a finer scale. A second
principal difficulty has to do with geometrical simplifications and the choice of
scale. As illustrated by the example of the complex horse-tail geometry shown
in Figure 13, there are always important features that can only be studied in
isolation and on their own proper scale, features that fail to be representative
even as an element of a larger ensemble of like elements. On the other hand, given
suitable elements of this kind, such as the weak joint systems discussed in this
paper, there remains the important task of addressing the scale effects that have
been mentioned here only in passing, i.e., when does one have a representative
elementary volume and how to deal with situations in which no statistically
stationary distributions of the envisaged structural elements exist? In view of
this and the above fundamental question about the lumped mechanical behaviour
of discontinuities it seems clear that simple models of the present kind should
possess a significant potential for further development.
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