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Abstract : Stability and bifurcation analyses are discussed here for time-independent
standard dissipative systems of materials and structures. This discussion is illustrated by
some simple applications in plasticity and fracture mechanics.
Keywords : generalized standard model, standard dissipative system, static or dynamic
stability, bifurcation, stability criterion.

1. INTRODUCTION

It is well known that the concept of energy and dissipation potentials, cf. for example [Ger-
main, 1973], [Halphen et al., 1975], [Lemaitre et al., 1985], [Maugin, 1992], leads to a general
framework in the study of dissipative effects in materials and structures. This framework is
considered again in order to derive an operational and general formulation of stability and
bifurcation criteria in the stability analysis of equilibrium of a time-independent standard
dissipative system.

It is recalled that in finite and isothermal deformation, a generalized standard material
admits as state variables and as energy density per unit volume The
dissipation is a product of force and flux: where and A denote
the associated forces Complementary laws must be introduced
to relate force and flux. These laws are written in terms of a dissipation potential as

It has been assumed that dissipation potential is convex
with respect to flux and may depend on the present state through the present value of
The dual function of D, obtained by Legendre-Fenchel’s transform as

permits an equivalent expression of complementary laws
When the strain path is given, the associated internal parameter can be obtained

from its initial value by solving the system of equations

which can also be written as a differential equation, called Biot’s equation cf. [Biot, 1965]
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The assumption of dissipation potential can be expressed with any pair of associated force 
and flux. Indeed, the dissipation is

where S denotes any state-dependent linear operator, is the transported flux resulting
from this operator and G is the associated force. If there exists a dissipation potential

depending on the present state such that then the function
is a dissipation potential in the sense that The convexity of

is also equivalent to the convexity of since convexity is conserved in a linear
transformation. The dissipation potential is a priori state-dependent, the dependence on
the present state has been here omitted for the sake of clarity.

In particular, the notion of generalized standard materials is stable with respect to
a change of variables. Indeed, a change of variables leads to new force

while It is clear that and all the ingredients
of the model (energy potential, force, dissipation potential, convexity) remain valid.

For example, the model of plasticity with relaxed configuration, discussed by Lee and
by Mandel, cf. [Mandel, 1971], is a generalized standard model defined by state variables

with The energy density is in isothermal transformation. In

this case, the rate is associated with force while the rate
is associated with the stress The existence of a convex function (dual dissipation
potential) such that is strictly equivalent to the existence of a (state-
dependent) convex function such that The introduction of suitable
expressions of force and flux is only a matter of choice, principally motivated by physical
considerations.

The generalized standard model can be extended to a mechanical system of solids if
Biot’s equation is the governing equation of the system in a quasi-static transformation

If where u denotes displacement components and the internal parameters,
dynamic transformation of the system can be introduced with governing equation

where the generalized inertia force J depends linearly on ü.
By definition, such a system is denoted as a dissipative standard system. Dissi-

pative standard systems are governed in quasi-static transformation by Biot’s differential

equation (3), and in dynamic transformation by the second order differential equation (4).
If u is a reversible variable, then In this case, the governing equations in

quasi-static transformation can also be written as

or, in an equivalent way as the system of equations
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Equation gives an implicit representation  when the quadratic
form is positive-definite. In this case, let be the reduced energy
potential

The quasi-static evolution of the system is also described by the reduced equations of
evolution

The abstract equations (3) or (4) can be broadly understood by following the nature of
variables u and For discrete systems, these variables are vectors. But for continuous
systems, they may be vector functions defined on a curve, a surface or a domain. In
each case, it is sufficient to define the meaning of the differentiation operations and the
associated duality of force and flux.

If energy and dissipation potentials E, D are regular functions, a system of first-order
differential equations is obtained for quasi-static transformation. For example, the study
of the quasi-static evolution of a visco-elastic structure obeying a generalized standard
model of visco-elasticity and subjected to implied forces and displacements can be given
in this framework. Elastic visco-plastic or elastic-plastic materials however are associated
with non-smooth dissipation potentials. In this case, the concept of sub-differential of a
convex function can be introduced, cf. [Moreau, 1971], to generalize the operation of dif-
ferentiation and to write the governing equations of materials and structures in the same
framework.

2. TIME-INDEPENDENT STANDARD DISSIPATIVE SYSTEMS

2.1 Evolution equation

A non-viscous or time-independent behaviour arises when the dissipation potential is
positively homogeneous of degree 1 with respect to the flux:

Such a function is not differentiable at point but is sub-differentiable. The set C of
sub-gradients at this point

is a convex domain of admissible forces. The dual dissipation potential is in this case the
indicator function of the convex domain of admissible forces. Force-flux relation
can be written under the form of the normality law

which states that rate must be an external normal to the admissible domain at the
present state of force A. It is well known that this evolution law can also be equivalent to
the maximum dissipation principle which is classical in plasticity under the name of the
principle of maximum plastic work
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Governing equations (1) can be written as

or in an equivalent form

2.2 Rate problem
Let and be two histories of flux and force associated by the normality law.

Then, flux and force rate are related by the following proposition

Proposition 1 Let and denote a flux and force associated by the normality law
with a convex C of non void interior, depending on a given function for
If and .are piecewise continuous, then the following expressions hold for

right-hand-side (r.h.s.) derivatives

By definition, a rate is admissible if

The proof of this proposition follows simply from the maximum dissipation principle (12)
and can be found in [Nguyen, 2000]. As a consequence of the proposition, it should be
noted that, if the assumption of state-independence is satisfied, i.e. if the dissipation
potential does not depend on the present state, then the r.h.s. rates satisfy This
orthogonality property is classical in perfect plasticity and gives

Relations (15), (16), written for together with equations
0, lead to the following description of the rate problem which consists in obtaining the rate
response of the system as a function of rate data when the present state is assumed to
be known:

Proposition 2 The rate response is a solution of the variational inequality

If D depends on the present state, this variational inequality is symmetric if

In this case, the obtained variational inequality is also quadratic. The uniqueness of the

rate response is ensured if the following positivity is ensured for all admissible rates

The following proposition holds
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 Proposition 3 Under the assumptions of symmetry (18) and of positivity (19), the rate 
solution minimizes among all admissible rates the rate functional

Indeed, for all admissible rate

after (17) and (19). This functional is an extension of Hill’s functional to standard dissi-
pative systems. It is difficult however to eliminate the internal parameters as a function
of displacement components in order to obtain a rate functional of the displacement rates.
The existence of a solution is ensured for all under the condition

3. STABILITY AND BIFURCATION ANALYSIS

3.1 Stability criterion
Condition (21) can be interpreted as a criterion of stability of the current equilibrium

in a certain sense, cf. [Petryk, 1985], in relation to the notion of static or directional or
dynamic stability. Indeed, in a perturbation of the system out of equilibrium, the energy
injected by the external world in a time interval is

where denotes the kinetic energy of the system. Thus if is sufficiently small, the
expansion

can be associated with the expansion It follows from condition
(19) that it is necessary to inject energy initially into the system in order to remove it from
the considered equilibrium, i.e. static stability as well as directional stability, are obtained.
It is expected that the symmetry condition (18) is necessary to interpret this criterion as
a sufficient condition of dynamic stability of the considered equilibrium.

In some particular cases, the dissipated energy may be a function of the present state
if there exists a function such that
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These systems, denoted in [Ehrlacher,1985] as simple dissipative systems, are frequently
found in fracture and damage mechanics. Such a system is almost a conservative system
in the sense that a total potential energy exists:

but the rate must be admissible. For simple dissipative systems, condition (21) can be

written as

The following proposition holds, cf. [Nguyen, 2000]

Proposition 4 Condition (21) is a static or directional criterion of stability. This crite-

rion ensures also the dynamic stability of the considered equilibrium if the assumption of

state-independent potential is satisfied or if the system is a simple dissipative system.

3.2 Non-bifurcation criterion

The non-uniqueness of the rate response indicates a critical point and eventually a
bifurcation point. This idea leads to Hill’s criterion of non-bifurcation. This criterion is
available in the study of angular bifurcation as well as of tangent bifurcation.

Proposition 5 Condition (19) is a non-bifurcation criterion in the sense of Hill.

From the definition of admissible rates, the linear space V(A) generated by the external
normals to the convex of admissible forces C at the present value A can be introduced.
Since if the rates are admissible, the non-bifurcation condition
can also be written as

4. ILLUSTRATION IN PLASTICITY

The case of a generalized standard elastic-plastic material admitting as elastic domain
a non-smooth convex, defined by several inequalities:

is considered in order to illustrate the symmetry condition (18). Such a model is neces-
sary in the study of monocrystals for example, where plastic strains arise from different
gliding mechanisms obeying Schmid’s law. Functions are classically denoted as plastic
potentials. The normality law states that

The rate equations can be written after the computation of the plastic multipliers in
terms of For this, it can be noted that
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It follows that must satisfy

This variational inequality gives in terms of in a unique manner if the matrix C
is positive-definite. However the explicit expressions of these relations cannot be derived
when Matrix C is not necessarily symmetric; its symmetry is ensured only if the
interaction matrix defined by

is symmetric. This matrix satisfies the relation

Indeed, the expression of the dissipation potential

gives after differentiation in the direction

Thus

The symmetry of the interaction matrix is exactly the symmetry (18). If I denotes the
set of index of active mechanisms, i.e. the plastic modulus
associated with these active mechanisms can be computed. Indeed since

it follows that with

where and are sub-matrices of C, B and related to active index I. It is concluded
that the plastic modulus admits the major symmetry if and only if the interaction matrix

is symmetric.

5. CRACK PROPAGATION, STABILITY AND BIFURCATION

The analyses of crack nucleation, crack propagation and crack stability are the objective of
fracture mechanics. In brittle fracture, the stability of a Griffith crack has been considered
in many discussions. Its generalization to study the propagation of a system of interacting
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linear cracks or of a plane crack of arbitrary shape in an elastic solid is relatively straight-
forward as a particular example of standard dissipative systems.

5.1 System of interacting linear cracks
We consider the equilibrium problem of a solid in two-dimensional deformation, i.e.

plane strain or plane stress, admitting in its volume V a system of linear cracks of lengths
undergoing small transformation under the action of implied forces and implied

displacements defined by a load parameter To simplify, it is assumed that surface forces
are applied on the portion of the boundary and on the complemenntary part

displacements are implied. If the solid is elastic, the response of the system
is reversible when there is no crack propagation and irreversible when the crack lengths
change. Variables thus describe the irreversible behaviour of the system and represent
the internal variables The set of admissible displacements of the solid depends on the
present state of cracks, and can be written as

where denotes the crack surfaces. If is the elastic energy density, the total potential
energy of the system is

The displacement at equilibrium must satisfy the virtual work equation which can be
written in the form of a variational inequality in order to take into account the possibility
of unilateral contact, assumed to be frictionless, on crack surfaces:

If the energy is strictly convex, the equilibrium displacement must minimise the total
potential energy of the system, and permits the introduction of the energy at equilibrium

The associated generalized force is by definition the energy release rate asso-
ciated with crack length Griffith’s law states that

The critical surface energy is often considered as a constant of the material. In order
to interpret the resistance effects due to the presence of plastic strains, it has been also
assumed in certain appplications that the value can depend on the effective length of
propagation function describes the resistance curve. Such a
criterion introduces a domain of admissible forces:
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and a dissipation potential when The energy dissipated by
crack propagation depends only on the present state of

cracks. A system of simple dissipation is thus obtained with total energy

In order to obtain the description of the rate problem at a given state, let I be the set
of indices i such that the propagation limit is reached: Admissible rate
must satisfy for all The previous discussion leads to the following statements:

- Propagation rate is a solution of the quadratic and symmetric variational inequality

where denotes the symmetric matrix

This problem can also be written as a linear complementarity problem (cf. [Cottle et al.,
1992]) which consists of finding X such that

where X, F are respectively vectors of components and

- The present equilibrium state is stable with respect to crack propagation and to displace-
ment in the dynamic sense if matrix satisfies the co-positivity condition:

This condition can also be written as

- The present equilibrium state is not a bifurcation state if the matrix  is positive-definite..
The stability criterion is less restrictive than the non-bifurcation criterionsince positive-
definiteness is more restrictive than co-positivity.

The computation of matrix or of the second derivatives of energy has been dis-
cussed in [Nguyen et al., 1990], [Suo et al., 1992]. The difference between co-positivity and
positive-definiteness has been illustrated in many simple analytical examples, cf. [Nguyen,
2000].

5.2 Stability and configurational stability of plane cracks
This problem is of interest in various applications, for example in the debonding of

interface cracks, of surface coating by thin films, cf. [Berest, 1989], [Hutchinson et al.,
1992] [Jensen, 1995], in the delamination of multi-layer composites, cf. [Cochelin, 1994],
[Destuynder, 1987], [Pradeilles-Duval,1992], [Storakers,1988]. Moreover, the mechanical
modelling of brittle damage also leads to the study of the propagation of damage zones in
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an elastic solid, a problem of the same mathematical nature, cf. for example [Dems et al.,
1985], (Stolz, 1987].

For a plane crack, the crack surface is a plane domain of contour this domain
represents the irreversible variable The displacement at equilibrium leads again
to the energy of the system at equilibrium The generalized force associated with
the irreversible variable is defined from the partial derivative of energy at equilibrium with
respect to In order to compute this partial derivative, a rate of variation of the boundary
of domain can be described by the rate of normal extension. This normal rate, which
is a scalar function defined on the present contour is denoted as Since the crack
surface can only increase, it follows that

Let be the directional derivative of energy with respect to domain in the
direction This directional derivative is a linear form for plane cracks, and can be
expressed as

where G(s) is a function defined on the present contour By definition, the local value
G(s) is denoted as the local energy release rate, and the associated generalized force to the
crack extension or the crack driving force is function G.

The computation of the crack driving force G has been discussed for different particular
cases. For example, for a plane crack in a three-dimensional solid, G(s) is still given by the
limit value of the J–integral. The dissipation of the whole system due to crack extension
is

In particular, if is a constant, the dissipated energy by crack propagation is proportional
to the cracked surface. The system of solid with crack is then an irreversible system
of simple dissipation, of total energy and leads to the
variational inequality

where is the portion at yield of the contour. The rate problem is thus described by the
variational inequality

for all admissible i.e. satisfying on The general form of the rate problem
is then recovered. In particular, the stability criterion follows:

In particular, if is constant, the stability criterion is reduced to the co-positivity condi-
tion
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while the non-bifurcation criterion requires the positive-definiteness of the same quadratic
form.

The principal difficulty stems from the calculation of the rate following the crack
motion. Several analytical discussions have been given recently in the literature for the
circular crack problem, cf. [Gao et al., 1987], [Berest, 1987] or of the tunnel crack problem
cf. [Leblond et al., 1996], [Jensen et al., 1995]. For example, a circular crack may be stable
in displacement control, but stable bifurcation in a star-shaped mode can be observed.
The fact that the circular form may be lost is also known as a configurational instability
in the literature. For the tunnel crack, a bifurcated mode to a wavy form has been also
computed.

6. CONCLUDING REMARKS

For standard systems satisfying the symmetry condition, stability and bifurcation anal-
ysis leads to a general expression of stability and non-bifurcation criteria in terms of energy
and dissipation potentials. This is an extension of the classical second variation criterion
to dissipative systems.

The fact that stability and bifurcation analysis can be discussed in a satisfactory man-
ner in fracture mechanics and in plasticity is due principally to the symmetry of the rate
problem which permits a static analysis. For unsymmetric systems, for example in the con-
text of unilateral contact with friction, it is clear that a static analysis presents less interest

since stability must be considered in dynamics, in the same spirit as for non-conservative
systems, cf. for example [Nguyen, 2000] for a review on the subject.
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