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Abstract

In this paper we study the properties of any sequence (uy,),>1 weakly converging to a
nonnegative function u in VVO1 P(Q), p > 1, and satisfying a variational inequality of type
—div (an(-, Vuy)) > fn, where (ayn)n>1 is a suitable sequence of monotone operators and
(fn)n>1 is any strongly convergent sequence in the dual space W= (Q). We prove that
the sequence (u, — (1 —¢)u)~ strongly converges to 0 in Wol’p(Q) for any € € (0,1). We
show by a counter-example that the result does not hold true if ¢ = 0. A remarkable
corollary of these strong e-convergences is that the sequence (uy),>1 satisfies, up to a
subsequence, a kind of semi-strong convergence: (uy),>1 can be bounded from below by
a sequence which converges to the same limit u but strongly in WO1 P(Q2). We also give an
example of a nonnegative weakly convergent sequence which does not satisfy this semi-
strong convergence property and hence cannot satisfy any variational inequality of the
previous type. Finally, in the linear case of a sequence of highly-oscillating matrices, we
improve the strong e-convergences by replacing the arbitrary small constant € > 0 by a
sequence (gy,)p>1 converging to 0.

1 Introduction

In [2] we proved the following result:

For any pair of sequences (B, Cy)n>1 of equi-coercive and bounded matrix-valued
functions defined in a bounded open set Q of RY, for any pair of sequences (vy, W )n>1
weakly converging to (v,w) in HZ ()%, and for any pair of strongly convergent sequences
(i, gn)n>1 in H=1(Q)2, such that for any n > 1,

—div (B,Vv,) > g, and — div(B,Vuv,) > h, in D'(Q), (1.1)

we have the semi-continuity property

Ve C®(Q), ¢ >0,  liminf / ¥ By Ny - Vi, > / ¥ B*Vv - V, (1.2)
Q Q

n—-+o0o

where B* is the H-limit (well-defined up to a subsequence) of the sequence (Bj,),>1 in
the sense of the H-convergence of Murat-Tartar [7].



One of the key-ingredient of the proof (1.2) is given by the following auxiliary result:
Under the same assumptions for the sequences (Cy,),>1 and (wy)n>1, if T;, for e > 0, is a
smooth e-approximation of the function (¢ — t7) on R such that

[Te(t) —t7[ <«
T.(0)=0 and VteR,
-1 <T/(t) <0,

then we have the strong convergence
To(wp, —w) — 0 in HF(Q). (1.3)

Moreover, when B, = B is independent of n the strong convergence (1.3) holds with
T:(t) = t~. But in general, the sequence (w, — w)~ does not strongly converge to 0
because of the oscillations of B,, like in the homogenization theory (see Remark 3.6 of [2]).
The proofs of (1.3) and (1.2) are rather technical and need a fine result of potential theory.

The purpose of this study is to give another and simpler strong convergence of type (1.3)
under the extra assumption of nonnegativity of the limit and in a nonlinear framework.
This new approach has a surprising consequence on the behaviour on the sequences satis-
fying a variational inequality such (1.1). The main result of the paper (see Theorem 2.1)
is the following:

For any sequence (ap)n>1 of uniformly p-monotone, p > 1, and uniformly bounded
Carathéodory functions from € x R? into R? (see section 2 for details), for any sequence
(un)n>1 weakly converging to v > 0 in VVO1 P(1), and for any strongly convergent sequence
(fa)ns>1 in W=LP(Q), pf = p%l > 1, such that for any n > 1,

—div (an(-, Vuy)) > fn  in D'(Q), (1.4)
we have the semi-strong convergences
Ve e (0,1), (up, — (1 —e)u)” — 0 strongly in Wol’p(Q). (1.5)

Contrary to (1.3) we do not consider in (1.5) an e-approximation of (¢ +— t~). We keep
this function but we have to introduce the shift eu inside to obtain the strong convergence.
The price to pay is to assume the nonnegativity of the weak limit u.

A remarkable corollary of (1.5) (see Corollary 2.4) is that there exist a subsequence
(ug(ny)n>1 and a sequence (vy)>1 strongly converging to u in I/VO1 P(Q), such that

Vn >k, Ug(n) > Vg a.e. in Q. (1.6)

Thanks to inequality (1.6) the qualifying “semi-strong” for convergence (1.5) takes its
whole meaning.

The strong convergences (1.5) are in some sense optimal since we cannot take ¢ = 0
if a,, depends actually on n. We give a counter-example (see Proposition 3.1) showing that
the oscillations of a,, prevent from the strong convergence of (u, —u)~. The assumptions
cannot be relaxed anymore. On the one hand, it is easy to check that the nonnegativity of u
is a consequence of (1.5). On the other hand, the variational inequality (1.4) is a crucial
assumption to obtain (1.5) and (1.6). Indeed, there exists a nonnegative sequence uy,
weakly converging in WO1 P(Q2) which does not satisfy (1.6) and hence neither (1.5) (see
Proposition 3.2). Such a sequence has the remarkable property to satisfy none variational
inequality of type (1.4). This counter-example is quite general since it holds true provided
that p < d.

If it is not possible to take ¢ = 0 in the strong convergence (1.5), a natural question is
to know if we can replace the arbitrary small but fixed constant ¢ > 0 in (1.5) by a positive



sequence (€, )n>1 converging to 0. We prove that the answer is positive (see Theorem 4.1)
in the case of any sequence of highly-oscillating matrices, i.e. a,(x,§) = A(%) &, where A is
a periodic matrix-valued function. In this linear framework we assume that the variational
inequality (1.4) holds true and that u belongs to W2%(Q2). Then, there exists a positive
sequence &,, with 7, < €, < 1, such that

(un — (1 —en)u)” — 0 strongly in WyP(Q). (1.7)

The paper is organized as follows: The section 2 is devoted to the results (1.5) and (1.6)
and to their proof. In section 3 we give two counter-examples showing the optimality of
these results. In section 4 we prove the strong convergence (1.7) in the case of a sequence
of highly-oscillating matrices.

2 Semi-strong convergence results

Let Q be a bounded open set of R%, d > 1, let p €]1, 400 and p’ := z%' Let a be a fixed
function from Q x R¢ into R? which satisfies the following properties:

e ¢ is a Carathéodory function, i.e.
a.e. €9, a(z,-)is continuous on R,

VEeRY,  af-,€) is measurable on €

e ¢ is coercive, i.e. there exists a positive constant o and a nonnegative function
in L' () such that

ae ze€Q, VEeRY a(z,&) - &> alglP —vy(z);

e ¢ is strictly monotone, 7.e.
ae € VEEANERY (a(,6) - ala,n)) - (€ —n) > 0;

e ¢ is bounded, i.e. there exists a positive constant § and a nonnegative function §
in LP(Q2) such that

ae xe€Q VEER?, a(x, &) < B¢+ ()"
Let (an)n>1 be a sequence of functions from € x R? into R? which satisfies the following
properties:
(i) for any n > 1, a,, is a Carathéodory function,

(ii) ay, is uniformly monotone with respect to a, i.e., for any n > 1,
a.e. r e Q) vfu n € Rda (an(lﬂ7§) - an(xa 77)) : (5 - 77) Z (a(:l:?f) - a(x777)) : (5 - 77)7

(#ii) ay is uniformly bounded, i.e. there exists a positive constant § such that, for
any n > 1,
ae x€Q, VEERT,  an(z,§)] < BIEFT

Under the previous assumptions we have the following result:



Theorem 2.1 Let (up)n>1 be a sequence in W&’p(Q) such that
Up, = u  weakly in Wol’p(Q). (2.1)
Assume that there exists a strongly convergent sequence (fp)n>1 in W=L'(Q) such that
—div (an (-, Vuy)) > fn  in D'(Q). (2.2)
Then, we have the implication
Yo e W, (Q),
u>0ae inQ) = 0<v<wuae inQ and v<ue in{u>0}, (2.3)
(U — )~ — 0 strongly in Wy P().
(a.e. for almost everywhere and e. for everywhere).

Remark 2.2 It is easy to check that the function v := (1 —¢) u satisfies the requirements
of (2.3) for any € € (0,1). In this case, we obtain the equivalence

u>0ae inQ < Vee (0,1), (up—(1—¢)u)” — 0 strongly in Wol’p(Q). (2.4)

The implication (=) is an immediate consequence of (2.3) with v := (1 — ) u. Inversely,
assume that the right hand side of (2.4) holds true. Then, the sequence (u, — (1 —¢)u)~
weakly converges to eu™ and strongly to 0 in VVO1 P(Q). Therefore, the uniqueness of the
weak limit in Wol’p(Q) implies that u~ = 0 a.e. in 2, or equivalently, u > 0 a.e. in 2.

In the sequel, we will only focus on the strong convergences (2.4).

Remark 2.3 The variational inequality (2.2) implies the strong convergence of the neg-
ative part of the sequence (u, — u), up to an arbitrary small shift eu. In [2] we proved
that the strong convergence holds with € = 0, without assuming the nonnegativity of u
but assuming that a,, does not depend on n. In general, the sequence (u,, —u)~ does not
strongly converge to zero in W(} P(Q), even if u > 0 a.e. in Q. This is due to the oscil-
lations effects of the sequence a,, (see Proposition 3.1 below). Moreover, inequality (2.2)
cannot be relaxed (see Proposition 3.2 below).

The previous semi-strong convergence result allows us to obtain a strong approximation
from below of the sequence wuy:

Corollary 2.4 Let (up)n>1 be a sequence in Wol’p(Q) which satisfies assumptions (2.1)
with w > 0 a.e., and (2.2). Then, there erist a subsequence (ug(y))n>1 and a sequence

(vg)k>1 strongly converging to w in Wol’p(Q), such that
Vn >k, ugm) > vk (2.5)
Proof of Theorem 2.1. Assume that u > 0 a.e. in 2. Let v be a function in Wol’p(ﬂ)

such that 0 < v < w a.e. in Q and v < u everywhere in {u > 0}. Set E,, := {u,, —v < 0}.
By using successively the uniform monotonicity (i) of a,, the variational inequality (2.2)



and the strong convergence of f, to f in W‘Lp/(Q), we have
0<— /Q (a(z, Vu,) — a(z,Vv)) -V (uy, —v)~ dz
= /Q (a(z,Vu,) —a(z,Vv)) -V (u, —v)1g, dx
< /Q (an(z,Vuy) — an(z, Vv)) - V (up —v) 1g, dx
=— /Q (an(z,Vuy) — an(xz,Vv)) - V (u, —v)~ dx
< /Qan(x, Vo) -V (up, — )" dx— (fpn, (uy — v)7>W,1,p/(Q)7WOLp(Q)
- /Qan(m, Vo)V (1~ 0) dr— (. (= 0) )y g ariogey + o)

= /Qan(x, Vv) -V (up, —v)” dxr+o(l) (since (u—wv)” =0 a.e. in Q)
=— /Q an(z, Vo) -V (uy, —v) 1g, dz + o(1).

Moreover, using the boundedness (iii) of a,, the boundedness of u,, in VVO1 P(Q) and the
Holder inequality yields

1
ol

gc</9\wp 1z, da:)p . (2.7)

Since v > 0 a.e. in {2, we have Vv 1lp, = Vulg nrs0) a-e. in ). Let E be the subset of {2
composed of the x satisfying the pointwise convergence u,(z) — u(z) and the inequality
v(z) < u(x). Up to an extraction of a subsequence, still denoted by n, the set Q\ E
has a zero Lebesgue measure. Let x € E. Assume by contradiction that there exists a
subsequence n’ such that x € E,» N {v > 0}, for any n’ > 1. Then, passing to the limit
in the inequality u,/(z) < v(z) yields u(x) < v(x), and consequently, u(z) = v(x). Since
v(xz) > 0, we also have u(z) > 0 and thus v(z) < u(z) by the assumption on v, which
establishes a contradiction. So, any = € F belongs to a finite number of sets E,, N {v > 0},
n > 1. Therefore, the sequence 1p fy>0) converges to 0 a.e. in §2. The Lebesgue
dominated convergence theorem thus implies that the right hand side of (2.7) tends to 0.
This combined with estimate (2.6) implies that

’/an(x,Vv)'V(un—v) 1g, dz
Q

/ (a(z, Vuy) —a(z,Vv)) -V (up —v)” dz. — 0. (2.8)
Q n—+oo

Finally, following the first step of the proof of Theorem 2.19 in [2], we deduce from
convergence (2.8) and the properties of a, the strong convergence of (2.3).

Proof of Corollary 2.4. By the strong convergences (2.4) of Remark 2.2, for each integer
k > 1, the sequence V (u, — (1 — k~!)u) strongly converges to 0 in LP(€2)?. Therefore,

there exists a subsequence 0 (n) of n such that

Vn > 1, H V (ugyy — (1 =k u) ‘

IN

1
Lr(Q) — 21

We may also assume that 0;11(n) is a subsequence of 6i(n), for any k& > 1. Then, by
considering the diagonal extraction §(n) := 6,,(n), we obtain, for any n > k, the equality



0, (n) = Or(ny) for some ny > n, whence the estimate

V (ugmy — (1 =k~ YHu)”
H ( 6(n) ) ‘LP(Q) 1 (2.9)
<

1
@) — 2m o’

= HV(“%(nk) —(1—k*1)u)_ ‘ <
In particular, thanks to the Poincaré inequality the series > (Ue(n) —(1—-k7Y u)_
converges in I/VO1 P(Q), for any k > 1. We can thus define, for each k > 1, the function

Vg 1= (1 — k_l)u — Z (’LLg(n) — (1 — k‘_l)u)_ S Wol’p(Q).

n>k

On the one hand, in virtue of (2.9) we have

1 1
| Vi = V| o) < T N 2 2 ke 0,

which implies that the sequence vy strongly converges to u in WO1 P(Q2). On the other
hand, we have, for any n > k,

+

Ug(n) = (1 — k_l)u + (UQ(n) — (1 — k_l)u) — (u,g(n) — (1 — k_l)u)_

> (1 =k u— (uggy = (1 =k u)” >y,

which yields (2.5) and concludes the proof.

3 Counter-examples

The first counter-example shows that in general one cannot take ¢ = 0 in the semi-strong
convergence (2.4) of Theorem 2.1:

Proposition 3.1 There exist a sequence (an)n>1 and a nonnegative sequence (Up)n>1

which satisfy the assumptions (2.1) and (2.2), such that (u, —u)~ does not strongly con-
), ]-7p

verge to 0 in W™ (Q).

The second counter-example provides a nonnegative and weakly convergent sequence
in WO1 P(Q), for which the result of Corollary 2.4 and thus the one of Theorem 2.1 does
not hold true:

Proposition 3.2 Assume that p < d. Then, there exists a nonnegative weakly convergent
sequence in Wol’p(Q), such that inequality (2.5) is satisfied by none of its subsequences.

Remark 3.3 For p > d the situation is completely different. Indeed, let €2 be a smooth
bounded open subset of R? and let (un)n>1 be a sequence which weakly converges to u
in W1P(Q). Then, by the Morrey embedding theorem there exists a subsequence (Ug(n))n>1
which converges uniformly to u in 2, and thus satisfies

O 1= 50 gy = vl iy 2 O

Therefore, the sequences (ug(n))n>1 and (v := u — g )r>1 satisfy inequality (2.5) without
any assumption of type (2.2).



Proof of Proposition 3.1. The dimension is d := 1 and € := (0,1). For each integer
n > 1, let p, be the function defined in (0, 1) by

. [k‘ k 1[
ifre|— —+—

1
2 nn 2n
" = for ke {0,...,n — 1},
pn(2) 3 Eoo1 k+1 or ke { n-1
- frxe |-+ —,
2 n 2n n

and let u,, be the solution of
—(patw) =1 in(0,1)

un(0) = u,(1) = 0.

The sequence u,, clearly satisifies the assumptions (2.1) and (2.2) of Theorem 2.1 in the
linear case. The weak limit of u, in H}((0,1)) is u(z) := L z (1 — ).

An easy but rather long computation yields for any z € [2, 2 + ;L] p € {0,...,n—1},

wn (@) — u(z) = — L +1(x—§) (x+i—1>+1/0x,0n(t)dt.

“8n? 4 8n
Therefore,if:v<%anda:€[%+ﬁ,%+%],thenx+£—l<2m—l<O,whence
()~ u(x) < o2 (22— 1) + (- 1)
up(z) —u(r) < — (22 — —x=—(bzx—1).
" ~ 16n 16n 16n

In particular, we have
n—1
1 k 1 k 1
{un—u<0}3 <O,5> N <U |:n+4n,n+2n:|>,
k=0
which implies
lim inf
n—-+00

On the other hand, we have

) /@) = [~ 1) (3 —2) + o] 22 (2-2) o ().

which combined with estimate (3.1) yields

(U — u < 0} N (o, ;) ’z o (3.1)

1

. 4 2 1 1
légigof /0 (u'n —u') Ly, —u<oy dz > B 2 > 0.

Therefore, (u, —u)~ does not strongly converge to 0 in HJ((0,1)).

Proof of Proposition 3.2. Let Y := (—1, 1)9. We denote by B, the ball centered at the
origin of radius r > 0. Let R €]0, 5[ and let (R,)n>1 be a sequence in |0, R[ converging
to 0. Let Vj,, for n > 1, be the unique solution in W;%’p (Y) (the set of the Y-periodic

functions in VVlf)’f (R9)) of

div (|vf/n|P—2vVn) =0 in Bg\ Bg,
=1 inY \ Bg (3.2)
V.=0 in Bp, .



Let (en)n>1 be a positive sequence converging to 0. We consider the ¢,-rescaled function
defined by

Op(z) ==V, <x> , forx e Q. (3.3)
En

The function v, (z) was introduced in [3] (for p = 2) to obtain a capacitary effect in

homogenization. The sequence (0,,),>1 satisfies the following result:

Lemma 3.4 Assume that p < d and set

en? ifp<d
R, = (3.4)

p

exp(—s?) if p=d.

Then, we have
Op — 1 weakly in WP (Q). (3.5)

Set wy, := {0, = 0} N Q. Then, there exists a positive constant C' such that the following
estimate holds

< C|Vvllreg)- (3.6)

1
Vo e W,P(Q), '|BR |/ v—/ﬂv

Let us prove that the result of Proposition 3.2 is satisfied under the assumptions of
Lemma 3.4. Let ¢ be a nonnegative and non-zero function in C2°(2) and let consider
Uy, == Oy, for n > 1. The sequence u,, is nonnegative and by (3.5) weakly converges to ¢
in WO1 P(Q). Assume by contradiction that there exists a subsequence, still denoted by u,,

and a sequence v which strongly converges to ¢ in T/VO1 P(Q1), such that inequality (2.5)
holds. Thanks to estimate (3.6) we have, for any n > k,

1 1
Uk = | Uk | ST - +C ||V, =V )
’ |Br,| /wn g /Q g ’ |Br,| /M‘P /980’ Vvr = Vol e

Moreover, the regularity of ¢ and the asymptotic |wy,| ~ [Q| |Bg, | imply that

e e
lim —— = ,
=100 Bl Ju ¥ Jo ¥

which combined with the strong convergence of v to ¢ in VVO1 P(Q) yields

il
_ v — | vg
' |BRn| Wn, Q

where 0, (1) (respectively or(1)) denotes a sequence converging to 0 as n — +oo (respec-
tively K — 400). Then, by using inequality (2.5) and the fact that u, = 0 in w,, we
deduce from (3.7) that

< op(1) + ox(1), (3.7)

1
/ka < B /w tn + 0 (1) + 0x(1) = 0n(1) + 0x(1). (3.9)

Therefore, passing successively to the limits n — +o00 and k — +oo in (3.8) implies that

/sOSO,
Q

which yields the contradiction.



Proof of Lemma 3.4. B
Proof of (3.5): The function V,, defined by (3.2) is radial in the set Bg \ Bg,. More
precisely, we have, for any r € (R, R),

p—=d RM
-1 — -1
1+ rpp;d—;i if p<d
N p—1 Py
Vn(r) = n Ret
Inr —InR
1 _ if p=
+<lnR—lan) ifp=d

whence there exists a positive constant cq, independent of n such that

_ 1—
. cdp<R2[f—Rﬁ> T cap REP if p<d
IVVa (M) v ’ ’

cap(INR—InR,) P ~ cip|InR,|1TP if p=d.

This estimate combined with the choice (3.4) of Ry, implies that the sequence o, defined
by (3.3) is bounded in W'P(Q). Moreover, since V,, = 1 in the set Y \ By the weak limit
of ¥y, is 1, which yields (3.5).

Proof of (3.6): Denote by S, the sphere centered at the origin and of radius r > 0. Let
V € CY(Y) and let V be the function defined in spherical coordinates by V (r,€) := V (),
where y = r ¢ with r > 0 and ¢ € S;. By starting from the equality

R oy

VRO = V(R = | Shre)dr
Ry

and by using the Holder inequality, we obtain the inequality

1
P »
VR.E) = V(B Q) ‘ < on (/ %V(R &) rit dr) ,
Ry
p—1( et 2\
|: <Rp_1 B "Z/; 1>:| ifp<d
where o, := p—d (3.9

[IHR—lan]i ifpzd.

Then, integrating the previous inequality with respect to £ € S; and using the Holder
inequality with respect to the integral in &, imply

I
Sk, Sr

where ][ denotes the average-value and c is a positive constant. On the other hand, using

< can|[VV|o(y), (3.10)

a scaling of order R,, in the Poincaré-Wirtinger type inequality

Low e w]<elWiim, win i) = v,
Br Sr

implies that

p=d p=d
S cRy” |[VV](r,y) < cBa® [[VV Loy (3.11)

fov-t.v
Bgr, SRy,




The following Poincaré-Wirtinger type inequality also holds true

][ V—][ V' < clIVV]Leeyy- (3.12)
Y Sr

Then, combining estimate (3.10) with (3.11) and (3.12) yields

fovohy
Bgr,, Y

where ¢ is a positive constant independent of the function V. Let v be a function
in Wol’p(Q), extended by 0 in R?\ . Then, putting the function V (y) := v(k + €,%), for
k€ Z%, in estimate (3.13) and summing over k € Z%, give

B L)
—_— v — (%

Moreover, by the definition (3.9) of a,, and the choice (3.4) of R,, the sequences &, a;, and
p—d
p

enR,” are bounded. Therefore, (3.14) yields the desired estimate (3.6).

p=d
<c <Oén + Rnp + 1> ||VV||Lp(Y), (313)

p—d

<c <Enan +e Ry + 5n> Vol Lo () (3.14)

4 The case of highly-oscillating linear operators

We restrict ourselves to a sequence of linear operators defined by highly-oscillating matrix-
valued functions in a bounded open set  of R%, d > 1.

Let Y := (0,1)¢, let A be a Y-periodic matrix-valued function on R? and let o, 8 be
two positive constants such that

ae yeRL VEER!, A(y)é-£>alé® and A(y) ¢ &> 7" ¢

Let (7,)n>1 be a positive sequence converging to 0 and let (A4, ),>1 be the sequence of
oscillating matrices defined by

X

Ap(z) = A ( ) ae z€Q. (4.1)

Tn

Let (e1,...,eq) be the canonic basis of R%. By [1] we know that A,, H-converges, in the
sense of Murat-Tartar [7], to the constant matrix A* defined by

A*ei = / A(y) (ei - VX’L(y)) dy, for i € {17 s 7d}7 (42)
Y
where y; is the unique function in H# (Y'), with zero average-value in Y, solution of

div(Ae; — AVx;) =0 in D'(RY). (4.3)

Moreover, for any sequence u,, converging to u weakly in Hg(Q) such that div (A, Vuy,)
is compact in H~1(£2), we define the so-called corrector

d
_ x\ Ou
Uy = U — T, ;:1 Xi <Tn> oz, (4.4)

Indeed, if u is smooth enough the sequence i, strongly converges to u in Hl ().

In this framework, Theorem 2.1 can be improved by the following way:

10



Theorem 4.1 LetQ be a regular (with Lipschitz boundary) bounded open set of R%, d > 1.
Let (un)n>1 be a sequence weakly converging to u in HJ (), such that

uw>0ae inQ and uec WHT(Q), (4.5)

where dV 2 denotes the mazximum between d and 2. Assume that there exists a sequence
(fn)n>1 strongly converging in H=1(S2), such that

—div (A, Vuy,) > f, in D'(Q). (4.6)
Then, there exists a positive sequence (ep)n>1 converging to 0 such that
(un — (1 —p)u)” — 0 strongly in Hi(Q). (4.7)

Proof of Theorem 4.1.
First, we need to modify the corrector (4.4) by introducing truncatures and a cut-off

function:
d T ou
Uy = U — T, n(2) T Ol — T , 4.
Up = u—T ;:1 V() kn(X)<T ) e (6@) (4.8)

n

where Ty, for k € N, is the function defined by T} (¢) := max (—k, min(k,t)), for t € R,
(kn)n>1 is a sequence of positive integers which tends to 400, and (¢, )n>1 is a sequence
of functions in C} () satisfying, for any n > 1,

0<y, <1 in
p(z) =1 if dist (x,0Q) > n,, where 1, — 0,
|Vip| < en,t in Q.
Such a sequence v, exists since (2 is regular. So, the function u, belongs to HE(Q).
The proof is then divided in two steps:

First step: (u, — i)~ strongly converges to 0 in H}(€).
We get rid of the cut-off function v, by introducing the new function

i = — Tng Tr, (xi) <f> Ty, (gg) . (4.9)

n

We have

d
- _ T ou
Vi, —Vu, =T, Z Vo (x) Tk, (xi) <T> Tk, <8x>
i=1 !

n

+ zd: (¢Yn(z) — 1) VI, (Xi) (j) T, <g§i> (4.10)

i=1 n

b3 () ~ 1 i (10 () vl ()]

i=1 n

Since y; € W;;p(Y), for some p > 2, by the Meyers theorem [5], and since Vu € L%(Q)d
by (4.5) and the Sobolev embedding theorem, the first term of the right hand side of (4.10)
is an O(1,m,!) in L?(2)-norm by the Holder inequality. Similarly, the second term is
an O(ny) in L?(Q)-norm, for any v < %, by the Holder inequality. Finally, since
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V2u € L2(Q)?*4 by (4.5), the last term of (4.10) is an O(7, ky,) in L?(Q)-norm. Then,
choosing k,, and 7, such that

hm Tn(k +n, ) 0,

/n/*)

yields
Vi, — Vi, — 0 strongly in L*(Q)<. (4.11)

We are thus led to study the sequence V1, which satisfies

Vil —Vu+Zsz< >axz ZV Tknxl))< )SZ

=1 11

+ZVTk xz)< )[Sg Ty, (3;‘)] (4.12)

=1
Snn(2)eln (3]

2
Since Vy; € LZ&(Y)d, for some p > 2, and since Vu € LPTPQ(Q) by (4.5), the first term of
the right hand side of (4.12) is bounded in L?(€2)-norm by a constant times

1V Lt | o)

which converges to 0 by the Lebesgue dominated convergence theorem. Similarly, the
second term is bounded in L?(Q2)-norm by a constant times

! |

which also converges to 0. Finally, since V2u € L2V2()?%? by (4.5), the last term of (4.12)
is an O (7,ky,) in L?(9)%norm. Therefore, by choosing k,, such that

ou
or, |2

2p ?

Lr=2(Y)

lim Tnk =0
n—-+00

(the square will be necessary below), estimate (4.11) and equality (4.12) imply the con-
vergence

Vi, — Vu + Z Vxi < > gg — 0 strongly in L*(Q)% (4.13)
i=1 v

Note that the convergence (4.13) combined with the Holder type inequality

ou
Z VXi (Tn> ox;

=1

d

<e > VXl y IVl
5 — 2(Y)
L2(Q) =1

and the inequality |, — u| < d 7, k2, imply that
U, —u weakly in H} (). (4.14)

On the other hand, following for example [4] (pages 26-27), by (4.3) and (4.2) there exists,
for each 7 € {1,...,d}, an antisymmetric matrix-valued function ®; in H;#(Y)dXd such
that

(A €; — Asz) - A*ei = div (I)i in @I(Rd).
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Then, by the definitions (4.1) of A,,, (4.8) of @, and by the strong convergence (4.13) we
have
ou x
AV, — A* =Ty E di o, | —
Vu Vu =, iv [8331 (m)]

o ; o, (2) v <g;‘> +o(1),

where o(1) denotes a strongly convergent sequence to 0 in L?(Q)2. Since ®; is antisym-
metric, the first term of the rlght hand side of (4.16) is divergence-free. Moreover, since

V2u € LY2(Q)4*4 and @, € Ld - (Y)4*4 by the Sobolev embedding theorem, the second
term is an O (,ky,) in L?(Q)-norm, whence

(4.15)

div (A,Vi,) — div(A*Vu) strongly in H1(Q). (4.16)

Now, let us conclude the first step. Using successively the assumption (4.6), the weak
convergence (4.14) and the strong one (4.16), yields

/QAnV(un —Up)” - V(up — uy)” dz

. /Q A (tn — 1) - ¥ (t — 1)~

< | AV Vs = ) e = = ) Doy (47)
= /QAnVun -V (up — uy)” dx+ o(1)

_ /QA*VU V(= )" da + o(1) = o(1).

This combined with the equi-coerciveness of A,, implies that V(u, — @,)~ strongly con-
verges in L%(Q)?, which concludes the first step.

Second step: Proof of (4.7).

Set _
Up — Unp

Un = |[un — Unll g1y and vy = (4.18)

Ton+ Un
The sequence v, converges to 0 by the first step and v, is bounded in H}(). Let us
consider a positive sequence &, such that

m e, = lm %= lLim 'm0 (4.19)

n—-+oo n—+o00 &p n—+o00  &p

Such a sequence g, exists since v, and 7, k% converge to 0.
Now, let us study the set {u, — (1 —¢5) u < 0}. Since (¢ — ¢7) is 1-Lipschitz, we have
by the definition (4.8) of @,

(U, — )™ < (g — )™ + | — u| < (Uy — Un)~ + d 7o k2,
whence
—(l-ep)u<0 = —(up—u)" +e,u<0
= —(up —Un)” —dTn k2 +e,u<0.
This combined with the definition (4.18) of v, yields

Tn + Un, dTn k2
Up —
En En

{un —(1—¢ep)u<0} C E,:= {—( +u<0} (4.20)

13
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Finally, let us prove that (u, — (1 — &,) u)~ strongly converges to 0 in H}(£2). On the
hand, proceeding as in (4.17) yields

|V (un = (1= ) w) ™ 2200
< - Anv(un_(l_‘gn)u)‘v(un_<1_€”)u)_
Q

<(en—1) o ApVu -V (un = (1 =€) w) Ly, —(1-¢,) u<o} + 0(1)

<c|[Vulgy, (q-c)u<oyllz@),

whence by taking into account the inclusion (4.20),

On

@19 (un = (1= &) )™ ey < ¢ Vulp, 2o (421)

the other hand, since u > 0 a.e in (2, we have Vulg, = Vulg Ar,~0p a.e. in

Moreover, in the definition (4.20) of E,, the sequence v, converges a.e. in Q (up to a

sub
by

dominated convergence theorem the sequence Vu 1g, strongly converges to 0 in L2(Q)%.

sequence) to some function in H}(Q). Then, thanks to the limits (4.19) satisfied

€n, the sequence 1p f,>0y converges to 0 a.e. in (2. Therefore, by the Lebesgue
d

This combined with estimate (4.21) yields the strong convergence (4.7).
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