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Abstract

In this paper we study the properties of any sequence (un)n≥1 weakly converging to a
nonnegative function u in W 1,p

0 (Ω), p > 1, and satisfying a variational inequality of type
−div (an(·,∇un)) ≥ fn, where (an)n≥1 is a suitable sequence of monotone operators and
(fn)n≥1 is any strongly convergent sequence in the dual space W−1,p′(Ω). We prove that
the sequence (un − (1− ε)u)− strongly converges to 0 in W 1,p

0 (Ω) for any ε ∈ (0, 1). We
show by a counter-example that the result does not hold true if ε = 0. A remarkable
corollary of these strong ε-convergences is that the sequence (un)n≥1 satisfies, up to a
subsequence, a kind of semi-strong convergence: (un)n≥1 can be bounded from below by
a sequence which converges to the same limit u but strongly in W 1,p

0 (Ω). We also give an
example of a nonnegative weakly convergent sequence which does not satisfy this semi-
strong convergence property and hence cannot satisfy any variational inequality of the
previous type. Finally, in the linear case of a sequence of highly-oscillating matrices, we
improve the strong ε-convergences by replacing the arbitrary small constant ε > 0 by a
sequence (εn)n≥1 converging to 0.

1 Introduction

In [2] we proved the following result:
For any pair of sequences (Bn, Cn)n≥1 of equi-coercive and bounded matrix-valued

functions defined in a bounded open set Ω of Rd, for any pair of sequences (vn, wn)n≥1

weakly converging to (v, w) in H1
0 (Ω)2, and for any pair of strongly convergent sequences

(hn, gn)n≥1 in H−1(Ω)2, such that for any n ≥ 1,

−div (Bn∇vn) ≥ gn and − div (Bn∇vn) ≥ hn in D′(Ω), (1.1)

we have the semi-continuity property

∀ψ ∈ C∞(Ω̄), ψ ≥ 0, lim inf
n→+∞

∫
Ω
ψBn∇vn · ∇wn ≥

∫
Ω
ψB∗∇v · ∇w, (1.2)

where B∗ is the H-limit (well-defined up to a subsequence) of the sequence (Bn)n≥1 in
the sense of the H-convergence of Murat-Tartar [7].
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One of the key-ingredient of the proof (1.2) is given by the following auxiliary result:
Under the same assumptions for the sequences (Cn)n≥1 and (wn)n≥1, if Tε, for ε > 0, is a
smooth ε-approximation of the function (t 7→ t−) on R such that

Tε(0) = 0 and ∀ t ∈ R,

 |Tε(t)− t−| ≤ ε

−1 ≤ T ′ε(t) ≤ 0,

then we have the strong convergence

Tε(wn − w) −→ 0 in H1
0 (Ω). (1.3)

Moreover, when Bn = B is independent of n the strong convergence (1.3) holds with
Tε(t) = t−. But in general, the sequence (wn − w)− does not strongly converge to 0
because of the oscillations of Bn like in the homogenization theory (see Remark 3.6 of [2]).
The proofs of (1.3) and (1.2) are rather technical and need a fine result of potential theory.

The purpose of this study is to give another and simpler strong convergence of type (1.3)
under the extra assumption of nonnegativity of the limit and in a nonlinear framework.
This new approach has a surprising consequence on the behaviour on the sequences satis-
fying a variational inequality such (1.1). The main result of the paper (see Theorem 2.1)
is the following:

For any sequence (an)n≥1 of uniformly p-monotone, p > 1, and uniformly bounded
Carathéodory functions from Ω× Rd into Rd (see section 2 for details), for any sequence
(un)n≥1 weakly converging to u ≥ 0 in W 1,p

0 (Ω), and for any strongly convergent sequence
(fn)n≥1 in W−1,p′(Ω), p′ := p

p−1 > 1, such that for any n ≥ 1,

−div (an(·,∇un)) ≥ fn in D′(Ω), (1.4)

we have the semi-strong convergences

∀ ε ∈ (0, 1), (un − (1− ε)u)− −→ 0 strongly in W 1,p
0 (Ω). (1.5)

Contrary to (1.3) we do not consider in (1.5) an ε-approximation of (t 7→ t−). We keep
this function but we have to introduce the shift εu inside to obtain the strong convergence.
The price to pay is to assume the nonnegativity of the weak limit u.

A remarkable corollary of (1.5) (see Corollary 2.4) is that there exist a subsequence
(uθ(n))n≥1 and a sequence (vk)k≥1 strongly converging to u in W 1,p

0 (Ω), such that

∀n ≥ k, uθ(n) ≥ vk a.e. in Ω. (1.6)

Thanks to inequality (1.6) the qualifying “semi-strong” for convergence (1.5) takes its
whole meaning.

The strong convergences (1.5) are in some sense optimal since we cannot take ε = 0
if an depends actually on n. We give a counter-example (see Proposition 3.1) showing that
the oscillations of an prevent from the strong convergence of (un−u)−. The assumptions
cannot be relaxed anymore. On the one hand, it is easy to check that the nonnegativity of u
is a consequence of (1.5). On the other hand, the variational inequality (1.4) is a crucial
assumption to obtain (1.5) and (1.6). Indeed, there exists a nonnegative sequence un

weakly converging in W 1,p
0 (Ω) which does not satisfy (1.6) and hence neither (1.5) (see

Proposition 3.2). Such a sequence has the remarkable property to satisfy none variational
inequality of type (1.4). This counter-example is quite general since it holds true provided
that p ≤ d.

If it is not possible to take ε = 0 in the strong convergence (1.5), a natural question is
to know if we can replace the arbitrary small but fixed constant ε > 0 in (1.5) by a positive
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sequence (εn)n≥1 converging to 0. We prove that the answer is positive (see Theorem 4.1)
in the case of any sequence of highly-oscillating matrices, i.e. an(x, ξ) = A( x

τn
) ξ, whereA is

a periodic matrix-valued function. In this linear framework we assume that the variational
inequality (1.4) holds true and that u belongs to W 2,d(Ω). Then, there exists a positive
sequence εn, with τn � εn � 1, such that

(un − (1− εn)u)− −→ 0 strongly in W 1,p
0 (Ω). (1.7)

The paper is organized as follows: The section 2 is devoted to the results (1.5) and (1.6)
and to their proof. In section 3 we give two counter-examples showing the optimality of
these results. In section 4 we prove the strong convergence (1.7) in the case of a sequence
of highly-oscillating matrices.

2 Semi-strong convergence results

Let Ω be a bounded open set of Rd, d ≥ 1, let p ∈ ]1,+∞[ and p′ := p
p−1 . Let a be a fixed

function from Ω× Rd into Rd which satisfies the following properties:

• a is a Carathéodory function, i.e. a.e. x ∈ Ω, a(x, ·) is continuous on Rd,

∀ ξ ∈ Rd, a(·, ξ) is measurable on Ω;

• a is coercive, i.e. there exists a positive constant α and a nonnegative function γ
in L1(Ω) such that

a.e. x ∈ Ω, ∀ ξ ∈ Rd, a(x, ξ) · ξ ≥ α |ξ|p − γ(x);

• a is strictly monotone, i.e.

a.e. x ∈ Ω, ∀ ξ 6= η ∈ Rd, (a(x, ξ)− a(x, η)) · (ξ − η) > 0;

• a is bounded, i.e. there exists a positive constant β and a nonnegative function δ
in Lp(Ω) such that

a.e. x ∈ Ω, ∀ ξ ∈ Rd, |a(x, ξ)| ≤ β (|ξ|+ δ(x))p−1 .

Let (an)n≥1 be a sequence of functions from Ω× Rd into Rd which satisfies the following
properties:

(i) for any n ≥ 1, an is a Carathéodory function,

(ii) an is uniformly monotone with respect to a, i.e., for any n ≥ 1,

a.e. x ∈ Ω, ∀ ξ, η ∈ Rd, (an(x, ξ)− an(x, η)) · (ξ − η) ≥ (a(x, ξ)− a(x, η)) · (ξ − η);

(iii) an is uniformly bounded, i.e. there exists a positive constant β such that, for
any n ≥ 1,

a.e. x ∈ Ω, ∀ ξ ∈ Rd, |an(x, ξ)| ≤ β |ξ|p−1.

Under the previous assumptions we have the following result:
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Theorem 2.1 Let (un)n≥1 be a sequence in W 1,p
0 (Ω) such that

un ⇀ u weakly in W 1,p
0 (Ω). (2.1)

Assume that there exists a strongly convergent sequence (fn)n≥1 in W−1,p′(Ω) such that

−div (an(·,∇un)) ≥ fn in D′(Ω). (2.2)

Then, we have the implication

u ≥ 0 a.e. in Ω =⇒


∀ v ∈W 1,p

0 (Ω),

0 ≤ v ≤ u a.e. in Ω and v < u e. in {u > 0},

(un − v)− −→ 0 strongly in W 1,p
0 (Ω).

(2.3)

(a.e. for almost everywhere and e. for everywhere).

Remark 2.2 It is easy to check that the function v := (1−ε)u satisfies the requirements
of (2.3) for any ε ∈ (0, 1). In this case, we obtain the equivalence

u ≥ 0 a.e. in Ω ⇐⇒ ∀ ε ∈ (0, 1), (un − (1− ε)u)− → 0 strongly in W 1,p
0 (Ω). (2.4)

The implication (⇒) is an immediate consequence of (2.3) with v := (1− ε)u. Inversely,
assume that the right hand side of (2.4) holds true. Then, the sequence (un − (1− ε)u)−

weakly converges to εu− and strongly to 0 in W 1,p
0 (Ω). Therefore, the uniqueness of the

weak limit in W 1,p
0 (Ω) implies that u− = 0 a.e. in Ω, or equivalently, u ≥ 0 a.e. in Ω.

In the sequel, we will only focus on the strong convergences (2.4).

Remark 2.3 The variational inequality (2.2) implies the strong convergence of the neg-
ative part of the sequence (un − u), up to an arbitrary small shift εu. In [2] we proved
that the strong convergence holds with ε = 0, without assuming the nonnegativity of u
but assuming that an does not depend on n. In general, the sequence (un − u)− does not
strongly converge to zero in W 1,p

0 (Ω), even if u ≥ 0 a.e. in Ω. This is due to the oscil-
lations effects of the sequence an (see Proposition 3.1 below). Moreover, inequality (2.2)
cannot be relaxed (see Proposition 3.2 below).

The previous semi-strong convergence result allows us to obtain a strong approximation
from below of the sequence un:

Corollary 2.4 Let (un)n≥1 be a sequence in W 1,p
0 (Ω) which satisfies assumptions (2.1)

with u ≥ 0 a.e., and (2.2). Then, there exist a subsequence (uθ(n))n≥1 and a sequence
(vk)k≥1 strongly converging to u in W 1,p

0 (Ω), such that

∀n ≥ k, uθ(n) ≥ vk. (2.5)

Proof of Theorem 2.1. Assume that u ≥ 0 a.e. in Ω. Let v be a function in W 1,p
0 (Ω)

such that 0 ≤ v ≤ u a.e. in Ω and v < u everywhere in {u > 0}. Set En := {un − v < 0}.
By using successively the uniform monotonicity (ii) of an, the variational inequality (2.2)
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and the strong convergence of fn to f in W−1,p′(Ω), we have

0 ≤ −
∫

Ω
(a(x,∇un)− a(x,∇v)) · ∇ (un − v)− dx

=
∫

Ω
(a(x,∇un)− a(x,∇v)) · ∇ (un − v)1En dx

≤
∫

Ω
(an(x,∇un)− an(x,∇v)) · ∇ (un − v)1En dx

= −
∫

Ω
(an(x,∇un)− an(x,∇v)) · ∇ (un − v)− dx

≤
∫

Ω
an(x,∇v) · ∇ (un − v)− dx− 〈fn, (un − v)−〉

W−1,p′ (Ω),W 1,p
0 (Ω)

=
∫

Ω
an(x,∇v) · ∇ (un − v)− dx− 〈f, (u− v)−〉

W−1,p′ (Ω),W 1,p
0 (Ω)

+ o(1)

=
∫

Ω
an(x,∇v) · ∇ (un − v)− dx+ o(1) (since (u− v)− = 0 a.e. in Ω)

= −
∫

Ω
an(x,∇v) · ∇ (un − v)1En dx+ o(1).

(2.6)

Moreover, using the boundedness (iii) of an, the boundedness of un in W 1,p
0 (Ω) and the

Hölder inequality yields∣∣∣∣ ∫
Ω
an(x,∇v) · ∇ (un − v)1En dx

∣∣∣∣ ≤ c

(∫
Ω
|∇v|p 1En dx

) 1
p′

. (2.7)

Since v ≥ 0 a.e. in Ω, we have ∇v 1En = ∇v 1En∩{v>0} a.e. in Ω. Let E be the subset of Ω
composed of the x satisfying the pointwise convergence un(x) → u(x) and the inequality
v(x) ≤ u(x). Up to an extraction of a subsequence, still denoted by n, the set Ω \ E
has a zero Lebesgue measure. Let x ∈ E. Assume by contradiction that there exists a
subsequence n′ such that x ∈ En′ ∩ {v > 0}, for any n′ ≥ 1. Then, passing to the limit
in the inequality un′(x) < v(x) yields u(x) ≤ v(x), and consequently, u(x) = v(x). Since
v(x) > 0, we also have u(x) > 0 and thus v(x) < u(x) by the assumption on v, which
establishes a contradiction. So, any x ∈ E belongs to a finite number of sets En∩{v > 0},
n ≥ 1. Therefore, the sequence 1En∩{v>0} converges to 0 a.e. in Ω. The Lebesgue
dominated convergence theorem thus implies that the right hand side of (2.7) tends to 0.
This combined with estimate (2.6) implies that∫

Ω
(a(x,∇un)− a(x,∇v)) · ∇ (un − v)− dx −→

n→+∞
0. (2.8)

Finally, following the first step of the proof of Theorem 2.19 in [2], we deduce from
convergence (2.8) and the properties of a, the strong convergence of (2.3).

Proof of Corollary 2.4. By the strong convergences (2.4) of Remark 2.2, for each integer
k ≥ 1, the sequence ∇

(
un − (1− k−1)u

)
strongly converges to 0 in Lp(Ω)d. Therefore,

there exists a subsequence θk(n) of n such that

∀n ≥ 1,
∥∥∥∇ (uθk(n) − (1− k−1)u

)− ∥∥∥
Lp(Ω)

≤ 1
2n
.

We may also assume that θk+1(n) is a subsequence of θk(n), for any k ≥ 1. Then, by
considering the diagonal extraction θ(n) := θn(n), we obtain, for any n ≥ k, the equality
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θn(n) = θk(nk) for some nk ≥ n, whence the estimate∥∥∥∇ (uθ(n) − (1− k−1)u
)− ∥∥∥

Lp(Ω)

=
∥∥∥∇ (uθk(nk) − (1− k−1)u

)− ∥∥∥
Lp(Ω)

≤ 1
2nk

≤ 1
2n
.

(2.9)

In particular, thanks to the Poincaré inequality the series
∑

n≥k

(
uθ(n) − (1− k−1)u

)−
converges in W 1,p

0 (Ω), for any k ≥ 1. We can thus define, for each k ≥ 1, the function

vk := (1− k−1)u−
∑
n≥k

(
uθ(n) − (1− k−1)u

)− ∈W 1,p
0 (Ω).

On the one hand, in virtue of (2.9) we have

‖∇vk −∇u ‖Lp(Ω) ≤
1
k
‖∇u ‖Lp(Ω) +

∑
n≥k

1
2n

−→
k→+∞

0,

which implies that the sequence vk strongly converges to u in W 1,p
0 (Ω). On the other

hand, we have, for any n ≥ k,

uθ(n) = (1− k−1)u+
(
uθ(n) − (1− k−1)u

)+ − (uθ(n) − (1− k−1)u
)−

≥ (1− k−1)u−
(
uθ(n) − (1− k−1)u

)− ≥ vk,

which yields (2.5) and concludes the proof.

3 Counter-examples

The first counter-example shows that in general one cannot take ε = 0 in the semi-strong
convergence (2.4) of Theorem 2.1:

Proposition 3.1 There exist a sequence (an)n≥1 and a nonnegative sequence (un)n≥1

which satisfy the assumptions (2.1) and (2.2), such that (un − u)− does not strongly con-
verge to 0 in W 1,p

0 (Ω).

The second counter-example provides a nonnegative and weakly convergent sequence
in W 1,p

0 (Ω), for which the result of Corollary 2.4 and thus the one of Theorem 2.1 does
not hold true:

Proposition 3.2 Assume that p ≤ d. Then, there exists a nonnegative weakly convergent
sequence in W 1,p

0 (Ω), such that inequality (2.5) is satisfied by none of its subsequences.

Remark 3.3 For p > d the situation is completely different. Indeed, let Ω be a smooth
bounded open subset of Rd and let (un)n≥1 be a sequence which weakly converges to u
inW 1,p(Ω). Then, by the Morrey embedding theorem there exists a subsequence (uθ(n))n≥1

which converges uniformly to u in Ω, and thus satisfies

δk := sup
n≥k

∥∥uθ(n) − u
∥∥

L∞(Ω)
−→

k→+∞
0.

Therefore, the sequences (uθ(n))n≥1 and (vk := u− δk)k≥1 satisfy inequality (2.5) without
any assumption of type (2.2).
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Proof of Proposition 3.1. The dimension is d := 1 and Ω := (0, 1). For each integer
n ≥ 1, let ρn be the function defined in (0, 1) by

ρn(x) :=


1
2

if x ∈
[
k

n
,
k

n
+

1
2n

[
3
2

if x ∈
[
k

n
+

1
2n
,
k + 1
n

[ for k ∈ {0, . . . , n− 1},

and let un be the solution of −
(
ρ−1

n u′n
)′ = 1 in (0, 1)

un(0) = un(1) = 0.

The sequence un clearly satisifies the assumptions (2.1) and (2.2) of Theorem 2.1 in the
linear case. The weak limit of un in H1

0 ((0, 1)) is u(x) := 1
2 x (1− x).

An easy but rather long computation yields for any x ∈
[ p

n ,
p
n + 1

2n

]
, p ∈ {0, . . . , n−1},

un(x)− u(x) = − p

8n2
+

1
4

(
x− p

n

)(
x+

p

n
− 1
)

+
1
8n

∫ x

0
ρn(t) dt.

Therefore, if x < 1
2 and x ∈

[ p
n + 1

4n ,
p
n + 1

2n

]
, then x+ p

n − 1 < 2x− 1 < 0, whence

un(x)− u(x) ≤ 1
16n

(2x− 1) +
3

16n
x =

1
16n

(5x− 1).

In particular, we have

{un − u < 0} ⊃
(

0,
1
5

)
∩

(
n−1⋃
k=0

[
k

n
+

1
4n
,
k

n
+

1
2n

])
,

which implies

lim inf
n→+∞

∣∣∣∣ {un − u < 0} ∩
(

0,
1
5

) ∣∣∣∣ ≥ 1
20
. (3.1)

On the other hand, we have

(
u′n(x)− u′(x)

)2 =
[
(ρn(x)− 1)

(
1
2
− x

)
+

1
8n
ρn(x)

]2

≥ 1
4

(
1
2
− x

)2

+O

(
1
n

)
,

which combined with estimate (3.1) yields

lim inf
n→+∞

∫ 1
4

0

(
u′n − u′

)2 1{un−u<0} dx ≥
1
43
× 1

20
> 0.

Therefore, (un − u)− does not strongly converge to 0 in H1
0 ((0, 1)).

Proof of Proposition 3.2. Let Y := (−1
2 ,

1
2)d. We denote by Br the ball centered at the

origin of radius r > 0. Let R ∈ ]0, 1
2 [ and let (Rn)n≥1 be a sequence in ]0, R[ converging

to 0. Let V̂n, for n ≥ 1, be the unique solution in W 1,p
# (Y ) (the set of the Y -periodic

functions in W 1,p
loc (Rd)) of

div
(
|∇V̂n|p−2∇V̂n

)
= 0 in BR \ B̄Rn

V̂ε = 1 in Y \ B̄R

V̂ε = 0 in BRn .

(3.2)
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Let (εn)n≥1 be a positive sequence converging to 0. We consider the εn-rescaled function
defined by

v̂n(x) := V̂n

(
x

εn

)
, for x ∈ Ω. (3.3)

The function v̂n(x) was introduced in [3] (for p = 2) to obtain a capacitary effect in
homogenization. The sequence (v̂n)n≥1 satisfies the following result:

Lemma 3.4 Assume that p ≤ d and set

Rn :=


ε

p
d−p
n if p < d

exp
(
−ε

p
1−p
n

)
if p = d.

(3.4)

Then, we have
v̂n ⇀ 1 weakly in W 1,p(Ω). (3.5)

Set ωn := {v̂n = 0} ∩ Ω. Then, there exists a positive constant C such that the following
estimate holds

∀ v ∈W 1,p
0 (Ω),

∣∣∣∣ 1
|BRn |

∫
ωn

v −
∫

Ω
v

∣∣∣∣ ≤ C ‖∇v‖Lp(Ω). (3.6)

Let us prove that the result of Proposition 3.2 is satisfied under the assumptions of
Lemma 3.4. Let ϕ be a nonnegative and non-zero function in C∞c (Ω) and let consider
un := ϕ v̂n for n ≥ 1. The sequence un is nonnegative and by (3.5) weakly converges to ϕ
in W 1,p

0 (Ω). Assume by contradiction that there exists a subsequence, still denoted by un,
and a sequence vk which strongly converges to ϕ in W 1,p

0 (Ω), such that inequality (2.5)
holds. Thanks to estimate (3.6) we have, for any n ≥ k,∣∣∣∣ 1

|BRn |

∫
ωn

vk −
∫

Ω
vk

∣∣∣∣ ≤ ∣∣∣∣ 1
|BRn |

∫
ωn

ϕ−
∫

Ω
ϕ

∣∣∣∣+ C ‖∇vk −∇ϕ‖Lp(Ω).

Moreover, the regularity of ϕ and the asymptotic |ωn| ∼ |Ω| |BRn | imply that

lim
n→+∞

1
|BRn |

∫
ωn

ϕ =
∫

Ω
ϕ,

which combined with the strong convergence of vk to ϕ in W 1,p
0 (Ω) yields∣∣∣∣ 1

|BRn |

∫
ωn

vk −
∫

Ω
vk

∣∣∣∣ ≤ on(1) + ok(1), (3.7)

where on(1) (respectively ok(1)) denotes a sequence converging to 0 as n→ +∞ (respec-
tively k → +∞). Then, by using inequality (2.5) and the fact that un = 0 in ωn, we
deduce from (3.7) that∫

Ω
vk ≤

1
|BRn |

∫
ωn

un + on(1) + ok(1) = on(1) + ok(1). (3.8)

Therefore, passing successively to the limits n→ +∞ and k → +∞ in (3.8) implies that∫
Ω
ϕ ≤ 0,

which yields the contradiction.
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Proof of Lemma 3.4.
Proof of (3.5): The function V̂n defined by (3.2) is radial in the set BR \ ¯BRn . More
precisely, we have, for any r ∈ (Rn, R),

V̂n(r) :=


1 +

 r
p−d
p−1 −R

p−d
p−1

R
p−d
p−1
n −R

p−d
p−1

 if p < d

1 +
(

ln r − lnR
lnR− lnRn

)
if p = d,

whence there exists a positive constant cd,p independent of n such that

‖∇V̂n(r)‖p
Lp(Y ) =

 cd,p

(
R

p−d
p−1
n −R

p−d
p−1

)1−p

∼ cd,pR
d−p
n if p < d

cd,p (lnR− lnRn)1−p ∼ cd,p | lnRn|1−p if p = d.

This estimate combined with the choice (3.4) of Rn implies that the sequence v̂n defined
by (3.3) is bounded in W 1,p(Ω). Moreover, since V̂n = 1 in the set Y \ B̄R the weak limit
of v̂n is 1, which yields (3.5).

Proof of (3.6): Denote by Sr the sphere centered at the origin and of radius r > 0. Let
V ∈ C1(Ȳ ) and let Ṽ be the function defined in spherical coordinates by Ṽ (r, ξ) := V (y),
where y = r ξ with r > 0 and ξ ∈ S1. By starting from the equality

Ṽ (R, ξ)− Ṽ (Rn, ξ) =
∫ R

Rn

∂Ṽ

∂r
(r, ξ) dr

and by using the Hölder inequality, we obtain the inequality

∣∣∣ Ṽ (R, ξ)− Ṽ (Rn, ξ)
∣∣∣ ≤ αn

(∫ R

Rn

∣∣∣∣∣ ∂Ṽ∂r (R, ξ)

∣∣∣∣∣
p

rd−1 dr

) 1
p

,

where αn :=


[
p− 1
p− d

(
R

p−d
p−1 −R

p−d
p−1
n

)] 1
p′

if p < d

[lnR− lnRn]
1
p′ if p = d.

(3.9)

Then, integrating the previous inequality with respect to ξ ∈ S1 and using the Hölder
inequality with respect to the integral in ξ, imply∣∣∣∣∣−

∫
SRn

V −−
∫

SR

V

∣∣∣∣∣ ≤ c αn ‖∇V ‖Lp(Y ), (3.10)

where −
∫

denotes the average-value and c is a positive constant. On the other hand, using

a scaling of order Rn in the Poincaré-Wirtinger type inequality∣∣∣∣−∫
BR

W −−
∫

SR

W

∣∣∣∣ ≤ c ‖∇W‖Lp(Y ), with W (y) := V (Rny),

implies that ∣∣∣∣∣−
∫

BRn

V −−
∫

SRn

V

∣∣∣∣∣ ≤ cR
p−d

p
n ‖∇V ‖Lp(RnY ) ≤ cR

p−d
p

n ‖∇V ‖Lp(Y ). (3.11)
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The following Poincaré-Wirtinger type inequality also holds true∣∣∣∣−∫
Y
V −−

∫
SR

V

∣∣∣∣ ≤ c ‖∇V ‖Lp(Y ). (3.12)

Then, combining estimate (3.10) with (3.11) and (3.12) yields∣∣∣∣∣−
∫

BRn

V −−
∫

Y
V

∣∣∣∣∣ ≤ c

(
αn +R

p−d
p

n + 1
)
‖∇V ‖Lp(Y ), (3.13)

where c is a positive constant independent of the function V . Let v be a function
in W 1,p

0 (Ω), extended by 0 in Rd \ Ω. Then, putting the function V (y) := v(κ+ εny), for
κ ∈ Zd, in estimate (3.13) and summing over κ ∈ Zd, give∣∣∣∣ 1

|BRn |

∫
ωn

v −
∫

Ω
v

∣∣∣∣ ≤ c

(
εnαn + εnR

p−d
p

n + εn

)
‖∇v‖Lp(Ω). (3.14)

Moreover, by the definition (3.9) of αn and the choice (3.4) of Rn the sequences εnαn and

εnR
p−d

p
n are bounded. Therefore, (3.14) yields the desired estimate (3.6).

4 The case of highly-oscillating linear operators

We restrict ourselves to a sequence of linear operators defined by highly-oscillating matrix-
valued functions in a bounded open set Ω of Rd, d ≥ 1.

Let Y := (0, 1)d, let A be a Y -periodic matrix-valued function on Rd and let α, β be
two positive constants such that

a.e. y ∈ Rd, ∀ ξ ∈ Rd, A(y)ξ · ξ ≥ α |ξ|2 and A(y)−1ξ · ξ ≥ β−1 |ξ|2.

Let (τn)n≥1 be a positive sequence converging to 0 and let (An)n≥1 be the sequence of
oscillating matrices defined by

An(x) := A

(
x

τn

)
a.e. x ∈ Ω. (4.1)

Let (e1, . . . , ed) be the canonic basis of Rd. By [1] we know that An H-converges, in the
sense of Murat-Tartar [7], to the constant matrix A∗ defined by

A∗ei :=
∫

Y
A(y) (ei −∇χi(y)) dy, for i ∈ {1, . . . , d}, (4.2)

where χi is the unique function in H1
#(Y ), with zero average-value in Y , solution of

div (Aei −A∇χi) = 0 in D′(Rd). (4.3)

Moreover, for any sequence un converging to u weakly in H1
0 (Ω) such that div (An∇un)

is compact in H−1(Ω), we define the so-called corrector

ūn := u− τn

d∑
i=1

χi

(
x

τn

)
∂u

∂xi
. (4.4)

Indeed, if u is smooth enough the sequence ūn strongly converges to u in H1
loc(Ω).

In this framework, Theorem 2.1 can be improved by the following way:
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Theorem 4.1 Let Ω be a regular (with Lipschitz boundary) bounded open set of Rd, d ≥ 1.
Let (un)n≥1 be a sequence weakly converging to u in H1

0 (Ω), such that

u ≥ 0 a.e. in Ω and u ∈W 2,d∨2(Ω), (4.5)

where d ∨ 2 denotes the maximum between d and 2. Assume that there exists a sequence
(fn)n≥1 strongly converging in H−1(Ω), such that

−div (An∇un) ≥ fn in D′(Ω). (4.6)

Then, there exists a positive sequence (εn)n≥1 converging to 0 such that

(un − (1− εn)u)− −→ 0 strongly in H1
0 (Ω). (4.7)

Proof of Theorem 4.1.
First, we need to modify the corrector (4.4) by introducing truncatures and a cut-off
function:

ūn := u− τn

d∑
i=1

ψn(x)Tkn(χi)
(
x

τn

)
Tkn

(
∂u

∂xi

)
, (4.8)

where Tk, for k ∈ N, is the function defined by Tk(t) := max (−k,min(k, t)), for t ∈ R,
(kn)n≥1 is a sequence of positive integers which tends to +∞, and (ψn)n≥1 is a sequence
of functions in C1

0 (Ω) satisfying, for any n ≥ 1,
0 ≤ ψn ≤ 1 in Ω

ψn(x) = 1 if dist (x, ∂Ω) > ηn, where ηn → 0,

|∇ψn| ≤ c η−1
n in Ω.

Such a sequence ψn exists since Ω is regular. So, the function ūn belongs to H1
0 (Ω).

The proof is then divided in two steps:

First step: (un − ūn)− strongly converges to 0 in H1
0 (Ω).

We get rid of the cut-off function ψn by introducing the new function

ũn := u− τn

d∑
i=1

Tkn(χi)
(
x

τn

)
Tkn

(
∂u

∂xi

)
. (4.9)

We have

∇ũn −∇ūn = τn

d∑
i=1

∇ψn(x)Tkn(χi)
(
x

τn

)
Tkn

(
∂u

∂xi

)
+

d∑
i=1

(ψn(x)− 1)∇Tkn(χi)
(
x

τn

)
Tkn

(
∂u

∂xi

)
+ τn

d∑
i=1

(ψn(x)− 1)Tkn(χi)
(
x

τn

)
∇
[
Tkn

(
∂u

∂xi

)]
.

(4.10)

Since χi ∈W 1,p
# (Y ), for some p > 2, by the Meyers theorem [5], and since ∇u ∈ L

2p
p−2 (Ω)d

by (4.5) and the Sobolev embedding theorem, the first term of the right hand side of (4.10)
is an O(τn η−1

n ) in L2(Ω)-norm by the Hölder inequality. Similarly, the second term is
an O(ηγ

n) in L2(Ω)-norm, for any γ < p−2
2p , by the Hölder inequality. Finally, since
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∇2u ∈ Ld∨2(Ω)d×d by (4.5), the last term of (4.10) is an O(τn kn) in L2(Ω)-norm. Then,
choosing kn and τn such that

lim
n→+∞

τn
(
kn + η−1

n

)
= 0,

yields
∇ũn −∇ūn −→ 0 strongly in L2(Ω)d. (4.11)

We are thus led to study the sequence ∇ũn which satisfies

∇ũn −∇u+
d∑

i=1

∇χi

(
x

τn

)
∂u

∂xi
=

d∑
i=1

∇ (χi − Tkn(χi))
(
x

τn

)
∂u

∂xi

+
d∑

i=1

∇Tkn(χi)
(
x

τn

)[
∂u

∂xi
− Tkn

(
∂u

∂xi

)]
− τn

d∑
i=1

Tkn(χi)
(
x

τn

)
∇
[
Tkn

(
∂u

∂xi

)]
.

(4.12)

Since ∇χi ∈ Lp
#(Y )d, for some p > 2, and since ∇u ∈ L

2p
p−2 (Ω) by (4.5), the first term of

the right hand side of (4.12) is bounded in L2(Ω)-norm by a constant times∥∥∇χi 1{|χi|>kn}
∥∥

Lp(Y )
,

which converges to 0 by the Lebesgue dominated convergence theorem. Similarly, the
second term is bounded in L2(Ω)-norm by a constant times∥∥∥∥ ∂u∂xi

1{∣∣∣ ∂u
∂xi

∣∣∣>kn

}∥∥∥∥
L

2p
p−2 (Y )

,

which also converges to 0. Finally, since∇2u ∈ Ld∨2(Ω)d×d by (4.5), the last term of (4.12)
is an O (τnkn) in L2(Ω)d-norm. Therefore, by choosing kn such that

lim
n→+∞

τn k
2
n = 0

(the square will be necessary below), estimate (4.11) and equality (4.12) imply the con-
vergence

∇ūn −∇u+
d∑

i=1

∇χi

(
x

τn

)
∂u

∂xi
−→ 0 strongly in L2(Ω)d. (4.13)

Note that the convergence (4.13) combined with the Hölder type inequality∥∥∥∥∥
d∑

i=1

∇χi

(
x

τn

)
∂u

∂xi

∥∥∥∥∥
L2(Ω)

≤ c

d∑
i=1

‖∇χi‖Lp(Y ) ‖∇u‖
L

2p
p−2 (Y )

,

and the inequality |ūn − u| ≤ d τn k
2
n, imply that

ūn ⇀ u weakly in H1
0 (Ω). (4.14)

On the other hand, following for example [4] (pages 26-27), by (4.3) and (4.2) there exists,
for each i ∈ {1, . . . , d}, an antisymmetric matrix-valued function Φi in H1

#(Y )d×d such
that

(Aei −A∇χi)−A∗ei = divΦi in D′(Rd).
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Then, by the definitions (4.1) of An, (4.8) of ūn and by the strong convergence (4.13) we
have

An∇ūn −A∗∇u = τn

d∑
i=1

div
[
∂u

∂xi
Φi

(
x

τn

)]
− τn

d∑
i=1

Φi

(
x

τn

)
∇
(
∂u

∂xi

)
+ o(1),

(4.15)

where o(1) denotes a strongly convergent sequence to 0 in L2(Ω)2. Since Φi is antisym-
metric, the first term of the right hand side of (4.16) is divergence-free. Moreover, since

∇2u ∈ Ld∨2(Ω)d×d and Φi ∈ L
2d

d−2

# (Y )d×d by the Sobolev embedding theorem, the second
term is an O (τnkn) in L2(Ω)-norm, whence

div (An∇ūn) −→ div (A∗∇u) strongly in H−1(Ω). (4.16)

Now, let us conclude the first step. Using successively the assumption (4.6), the weak
convergence (4.14) and the strong one (4.16), yields∫

Ω
An∇(un − ūn)− · ∇(un − ūn)− dx

= −
∫

Ω
An∇(un − ūn) · ∇(un − ūn)− dx

≤
∫

Ω
An∇ūn · ∇(un − ūn)− dx− 〈fn, (un − ūn)−〉H−1(Ω),H1

0 (Ω)

=
∫

Ω
An∇ūn · ∇(un − ūn)− dx+ o(1)

=
∫

Ω
A∗∇u · ∇(un − ūn)− dx+ o(1) = o(1).

(4.17)

This combined with the equi-coerciveness of An implies that ∇(un − ūn)− strongly con-
verges in L2(Ω)d, which concludes the first step.

Second step: Proof of (4.7).
Set

νn := ‖un − ūn‖H1(Ω) and vn :=
un − ūn

τn + νn
. (4.18)

The sequence νn converges to 0 by the first step and vn is bounded in H1
0 (Ω). Let us

consider a positive sequence εn such that

lim
n→+∞

εn = lim
n→+∞

νn

εn
= lim

n→+∞

τn k
2
n

εn
= 0. (4.19)

Such a sequence εn exists since νn and τn k2
n converge to 0.

Now, let us study the set {un− (1− εn)u < 0}. Since (t 7→ t−) is 1-Lipschitz, we have
by the definition (4.8) of ūn

(un − u)− ≤ (un − ūn)− + |ūn − u| ≤ (un − ūn)− + d τn k
2
n,

whence
un − (1− εn)u < 0 =⇒ − (un − u)− + εn u < 0

=⇒ − (un − ūn)− − d τn k
2
n + εn u < 0.

This combined with the definition (4.18) of vn yields

{un − (1− εn)u < 0} ⊂ En :=
{
−
(
τn + νn

εn

)
vn −

d τn k
2
n

εn
+ u < 0

}
. (4.20)
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Finally, let us prove that (un − (1− εn)u)− strongly converges to 0 in H1
0 (Ω). On the

one hand, proceeding as in (4.17) yields

α ‖∇ (un − (1− εn)u)− ‖2
L2(Ω)

≤ −
∫

Ω
An∇ (un − (1− εn)u) · ∇ (un − (1− εn)u)−

≤ (εn − 1)
∫

Ω
An∇u · ∇ (un − (1− εn)u)1{un−(1−εn) u<0} + o(1)

≤ c ‖∇u1{un−(1−εn) u<0}‖L2(Ω),

whence by taking into account the inclusion (4.20),

α ‖∇ (un − (1− εn)u)− ‖2
L2(Ω) ≤ c ‖∇u1En‖L2(Ω). (4.21)

On the other hand, since u ≥ 0 a.e in Ω, we have ∇u1En = ∇u1En∩{u>0} a.e. in Ω.
Moreover, in the definition (4.20) of En the sequence vn converges a.e. in Ω (up to a
subsequence) to some function in H1

0 (Ω). Then, thanks to the limits (4.19) satisfied
by εn, the sequence 1En∩{u>0} converges to 0 a.e. in Ω. Therefore, by the Lebesgue
dominated convergence theorem the sequence ∇u1En strongly converges to 0 in L2(Ω)d.
This combined with estimate (4.21) yields the strong convergence (4.7).
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