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The mortar spectral element method
in domains of operators

Part II: The curl operator and the vector potential problem

by M. Azaiez!, F. BEN BELcAcEM?, C. BERNARDI® and M. EL Ruasr*

Abstract: The mortar spectral element method is a domain decomposition technique
that allows for discretizing second- or fourth-order elliptic equations when set in standard
Sobolev spaces. The aim of this paper is to extend this method to problems formulated
in the space of square-integrable vector fields with square-integrable curl. We consider
the problem of computing the vector potential associated with a divergence-free function
in dimension 3 and propose a discretization of it. The numerical analysis of the discrete
problem is performed and numerical experiments are presented, they turn out to be in
good coherency with the theoretical results.

Résumé: La méthode d’éléments spectraux avec joints est une technique de décomposition
de domaine permettant de discrétiser des équations elliptiques d’ordre 2 ou 4 posés dans
des espaces de Sobolev usuels. Le but de cet article est d’étendre cette méthode a cer-
tains probléemes variationnels formulés dans des espaces de champs de vecteurs de carré
intégrable a rotationnel de carré intégrable. On considere le probleme consistant a cal-
culer le potentiel vecteur associé a une fonction a divergence nulle en dimension 3 et on
en propose une discrétisation. On effectue ’analyse numérique du probleme discret et on
présente des expériences numériques cohérentes avec les résultats de ’analyse.
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1. Introduction.

The mortar element method, due to Bernardi, Maday and Patera [6], is a domain
decomposition technique which allows for working on general partitions of the domain,
without conformity restrictions, see [8] for a recent review. It is specially important when
combined with spectral type discretizations, since handling complex geometries from simple
subdomains can be performed with this method in a very efficient way. It can also be used
to couple different kinds of variational discretizations on the subdomains, such as finite
elements or spectral methods. It leads to discrete problems which are most often non
conforming in the Hodge sense, which means that the discrete space is not contained in the
variational one. It was first analyzed for problems which admit a variational formulation
in the usual Sobolev spaces. However a number of interesting problems involve other
types of Hilbert spaces which are often domains of operators issued from mechanics and
physics. Let us quote among them the spaces H(div,(2) of square-integrable vector fields
with square-integrable divergence and the space H(curl, ) of square-integrable vector
fields with square-integrable curl. Up to now, the mortar method has not yet been applied
in this case, except when associated with finite element discretizations [3][14][22] and also
for Darcy’s equations which model the flow in a porous medium and are formulated in
H(div,Q), see [2]. We refer to [19] and [10] for first works in the spectral element case
concerning Maxwell’s system. The aim of this paper is to extend the results of [2] to the
space H(curl, Q) in the case of a three-dimensional domain §2.

The problem that we have chosen to illustrate the interest of the discretization relies
on the standard result that a two- or three-dimensional vector field can be written as
the sum of a gradient and a curl, the uniqueness of this decomposition being enforced
by appropriate gauge and boundary conditions, see [20, Chap. I, Thm 3.2] and [1, §3.¢]
for a detailed study. Moreover, when the vector field is divergence-free, only the curl part
subsists: the vector field is the curl of a scalar function called stream function in the case of
dimension 2, of a vector field called vector potential in the three-dimensional case. In some
applications, it could be interesting to compute the curl part of the decomposition. More
interesting is the fact that very often a divergence-free vector field is well approximated
by a discrete function which has a small but non-zero divergence, and computing the curl
part of the decomposition of this approximate function leads to an accurate approximation
of the initial vector field which has the further property of being exactly divergence-free.
This turns out to be useful for a number of applications (for instance, when the discrete
function is involved in a convection equation). It can be noted that a similar system
also models stationary magnetic fields [9][22, §2.2.2]. So, we propose a mortar spectral
element discretization of this computation of the curl part which works even in complex
three-dimensional geometries such as multiply-connected ones. We prove a priori error
estimates of spectral type, which are optimal for conforming decompositions and nearly
optimal otherwise.

A key idea for the implementation of the mortar technique has been introduced in
[4], it consists in handling the matching conditions on the interfaces between the elements
by introducing a Lagrange multiplier. We present the extension of this new formulation
to the type of problems which is analyzed here, next we write the resulting linear system
and we present the algorithm which is used to solve it. Some numerical experiments are
described, we check that they are in good agreement with the theoretical results.
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An outline of the paper is as follows.
e In Section 2, we recall the main properties of the space H(curl,€2). We present the
vector potential problem and prove its well-posedness.
e Section 3 is devoted to the description of the discretization of this problem and also to
the existence of a solution for the discrete problem.
e In Section 4, we derive a priori error estimates for the problem.
e In Section 5, we present some numerical experiments and check the accuracy of the
method.



2. The space H(curl,2) and the vector potential problem.

Let € denote a bounded connected domain in R?, with a Lipschitz—continuous bound-
ary. We denote by m the unit outward normal to 2 on 92. The generic point in 2 is
denoted by x = (z,¥, 2), while the components of any vector field v in R? are denoted by
Vg, Uy and v,.

The curl operator is defined on smooth functions by
Oyv, — 0,0y
curl v = | 0,v, — Oyv, |, (2.1)
02y — OyVy
and on all functions v in L?(2)3 in the distribution sense:

Yo € 2(Q)3,
(eurl v.) = [ (00 (002 = D) + vy Duipn = Du) + 02 (Ouipy = 0,0.)) (@) da
We introduce the space
H(curl, Q) = {v € L2()%; curl v € L2(Q)3},

provided with the norm

[N

ol eurtey = (10132 + lleurl vlF2q)e) " (2:2)
It is readily checked that H(curl, ) is a Hilbert space. Moreover, the space € (Q)? of
indefinitely differentiable functions on €2 is dense in H(curl, ), see [20, Chap. I, Thm
2.10]. This leads to the trace theorem on H(curl, Q).

Proposition 2.1. The trace operator: v — v X n, defined from the formula
Yo € H'(Q)?, (v x n,p) = /(v - curl ¢ —curl v - p)(x) dz, (2.3)
Q

is continuous from H(curl, Q) into the dual space H 2 (9Q)3.

Remark: The trace operator is not onto H _%(89)3 but onto a closed subspace of
H~2(99)3 which has been characterized in [23], see also [12] and [13].

Remark: Let I' be a connected part of 02 with a positive measure. The trace operator:

1 1
v — v X m is also continuous from H(curl, ) into the dual space HZ (I')’3 of HZ,(T)3,
as explained in [11] when 2 is a polyhedron.

We finally introduce the subspace

Hy(curl, Q) = {v € H(curl,Q); v x n=0on 89},
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which is also a Hilbert space. Moreover, the space 2(Q2)3 is dense in Hy(curl, ), see [20,
Chap. I, Thm 2.12].

The divergence operator in the case of dimension d = 3 is defined on all smooth vector
fields by
div v = v, + Oyvy + 0,v;, (2.4)

and also on all functions v in L?(Q)?3 in the distribution sense. With this operator, we can
associate the space

H(div,Q) = {v € L*(Q)*; div v € L*(Q)}.

It must be observed that, in contrast with H(curl, 2) and Hy(curl, 2), the intersection
Hy(curl, Q)N H (div, ) has some further regularity properties: It is continuously imbedded
in H%(Q)?’ [15] and, if the domain Q is convex, in H'(Q)3 [1, Thm 2.17]. Further results
are known [16][17][18] when  is a polyhedron: A function w in Hy(curl, Q) N H(div, ),
can be written

u =u, +grad S, (2.5)

where u, belongs to H!(Q2)? and S is a linear combination of the singularities of the
Laplace equation provided with Dirichlet boundary conditions.

We now recall from [1, §3.e] a key result which holds in any bounded connected three-
dimensional domain §2 with a Lipschitz—continuous boundary. We introduce some notation
concerning the geometry of ().

e First, we denote by I';, 0 < ¢ < I, the connected components of the boundary 0f2.
e It is standard to note that there exist J disjoint open cuts ;, 1 < 57 < J, which are
parts of smooth manifolds, such that each 0%, is contained in 02 and that the open set

Q=0 \ U}']:1Ej is simply-connected. We make the further assumption that Q is pseudo—

Lipschitz, in the sense that each point of o) admits a neighbourhood that is made of one
or two connected components with Lipschitz-continuous boundaries (see [1] for a more
precise definition).

Next, for any vector field u in L?(2)3, there exists a function ¢ in H'(Q) and a function
v in H(curl, Q)N H(div, §2) such that (here, grad stands for the gradient operator on §2)

u = gx/';i g+ curl ¢ in Q, (2.6)
with the following properties:

diviyp =0 1in Q,
¥ x n=0 on 09,
(-n, ), =0, 0<i<I.

Moreover, let us consider a vector field w in L?(Q)3 which satisfies

divu =0 in (,
u-n=0 on 0, (2.7)
(u-n, )y, =0, 1<j<J
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With these assumptions, the function ¢ in (2.6) cancels. So the solution 1 is a solution of
the problem

curl v =u in €,
divyp =0 in €,
P xn=0 on 012, (2:8)

(-m,p, =0, 0<i<I

We now write the variational formulation of problem (2.8). Among the connected
components I';, 0 < ¢ < I, of 992, we agree to denote by I'g the boundary of the only
unbounded connected component of R3 \ Q and we introduce the space

H(Q)={peH(Q); p=00nT, and p = constant onT;, 1 <i < I}. (2.9)
Next, we consider the variational system:
Find (¢, 0) in Hy(curl, ) x H(Q) such that
V€& € Hy(curl, Q),
/curl 1Y - curl £dfv+/ £ - grad@dm:/u - curl £dx,
Q Q Q (2.10)
Yu € H(Q), /v,b-gradpd:c:O.
Q

Indeed, from the density of 2(2)? in Hp(curl,Q), it is readily checked that, for any
function 1 satisfying (2.8), the pair (2,0) is a solution of (2.10). Conversely, if problem
(2.10) admits a solution of the form (), 0), the fnction 4 is a solution of (2.8).

Problem (2.10) is of saddle-point type, so we introduce the kernel
w :{E € Hy(curl,Q); Yu € H(Q), /QE - grad pdx = O}. (2.11)
It is readily checked from the definition of H(2) that
W :{5 € Ho(curl,Q); div € =0inQ and (€ - n,1)p, =0, 0 <i < I}. (2.12)

We now consider the problem:

Find v in W such that
VE e W, / curl ¢ - curl £dx = / u - curl £dx. (2.13)
Q Q

It is proven in [1, Cor. 3.19] that the quantity

1

leurl €]l 2(q)s + [|div €]l L2@) + Y (€ - n, Dr,
i=0

Y



is a norm on Hy(curl, Q) N H(div, ) equivalent to the initial one. So the bilinear form:

(¥,§) — /curl v - curl £dx
Q

is elliptic on W and, for any w in L?(Q)3, problem (2.13) has a unique solution % in W.

The next idea consists in noting that grad p belongs to Hy(curl, 2) for all pin H(Q).
So, by taking & equal to grad p and using the Poincaré-Friedrichs inequality, we prove
the following inf-sup condition, for a positive constant :

¢ - grad pdx
e H@®), sp 2 > 8l (214)
£€Hy(curl,Q) HfHH(curl,Q)

This yields the well-posedness of problem (2.10).

Proposition 2.2. For any data w in L?(Q)3, problem (2.10) has a unique solution (1), 0)
in Hy(curl, ) x H(). Moreover, 0 is equal to zero.

Proof: It remains to prove the last assertion. The idea is to take &£ equal to grad # in the
first line of (2.10). This yields

/ lgrad 6| dz = 0.
Q

So, since € is connected, 6 is a constant and its nullity follows from the boundary conditions
that it satisfies on I'y.

Remark: It can be noted that problem (2.10) is well-posed even for functions u which
do not satisfy (2.7) and that, in this case, the vector field w in (2.10) can be replaced by
its projection onto functions satisfying (2.7). We are specially interested in the case where
u is not divergence-free but has a small divergence, since in this case curl ¥ provides a
divergence-free approximation of w.

Some further regularity on @ can be derived from the previous arguments, since it
belongs to Hy(curl, Q) N H(div, ), see (2.5). Moreover, when u belongs to H(curl, ),
the same properties hold for curl .



3. Discretization of the vector potential problem.

From now on, we assume that €2 is a three-dimensional bounded connected polyhe-
dron with a Lipschitz—continuous boundary. We also assume that 2 admits a disjoint
decomposition into a finite number of rectangular parallelepipeds, denoted by 2:

K
Q={J%% and N =0 1<k#kK <K (3.1)
k=1

Note that, as indicated in [21], the extension to more complex subdomains leads to similar
results, however it involves very technical arguments that we prefer to avoid in this work.
We make the further assumption that the intersection of each 9, with 052, if not empty,
is a corner, a whole edge or a whole face of ;. For 1 < k < K, we denote by I'j s,
1 < ¢ < L(k), the (open) faces of € which are not contained in 9€2. Let also nj be
the unit outward normal vector to €2 on 0€2;. Note that the decomposition is said to be
conforming if the intersection of two different domains {2 is either empty or a corner or a
whole edge or face of both of them, however we do not make this assumption since it is a
priori not necessary for the mortar method.

Let us now introduce the skeleton S of the decomposition, S = UK 9y, \ 0Q. As
suggested in [6][7], we choose a disjoint decomposition of this skeleton into mortars 7,,:

M
S:UWm and Y Ny =0, 1<m#m' <M, (3.2)
m=1

where each v, = [y (m),¢m) 18 @ whole face of a subdomain €2, denoted by €2y (,y,)-

To describe the discrete spaces, for each nonnegative integer n, we define on each
Qp, resp. I'y e, the space P, (Q4), resp. P, (I'y ), of restrictions to €, resp. to I'y 4, of
polynomials with 3 variables, resp. 2 variables (the tangential coordinates on I'y ), and
degree < n with respect to each variable. The discretization parameter ¢ is then a K—tuple
of positive integers (Nq,..., Ng), with each Ny > 2.

The discrete space corresponding to Hy(curl, Q) is defined by analogy with [2, §4]: it
is the space Cs(€2) of functions vs such that:
e their restrictions vs |, to each Q, 1 <k < K, belong to Py, (Q%)3,
e their tangential traces vs X m vanish on 02,
e the mortar function ¢ being defined on the skeleton by

Plym = v6|Qk(m) X Ni(m), 1<m< M,

the following matching condition holds on each edge I'y, ¢, 1 <k < K, 1 < ¢ < L(k), which
is not a mortar:

Wx € Py a(Tu)’s | (vsi0, X met)(r) - x(r)dr =0, (3.3)
Tre

This space is not contained in Hy(curl, ) in the general case. But it provides accurate
approximations of functions in this space, see [2, §5] for the first results on this subject.
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We also need a mortar approximation of the space H(f2), which is not the standard
one [7] but is more appropriate for the present problem. It is the space Hs(€2) of functions
us such that:

e their restrictions p;q, to each 2, 1 <k < K, belong to Py, (%),

e the traces of the s, for all k, 1 < k < K, such that 9 N OS2 has a positive measure,
vanish on I'g and are constant on each I';, 1 <17 < I,

o the us|q, for all k, 1 < k < K, such that 09 NIy has a zero measure, belong to
Lg(Qk)7

e the mortar function ¢ being defined on each vy, 1 < m < M, by @, = gradpus |,
(where grad, denotes the tangential gradient), the following matching condition holds on
each edge I'y ¢, 1 <k < K, 1 </ < L(k), which is not a mortar:

VX € Pn,—2(Tr.0)?, / (gradpps o, — @)(7) - x(7)dT = 0. (3.4)
Tk,e

Starting from the standard Gauss-Lobatto formula on | — 1,1], we define on each
Q) and in each direction the nodes z¥, y¥ and z¥, and the weights p>*, p?* and p>",
0 <@ < Ng, such that the corresponding quadrature formula is exact on Pay, —1(€2). A
discrete product is then introduced on each €2 by

Nk Nk Ng
ko E k _k E Kk w.k y.k 2k
(U5,v5)5—§ E E us (27, Y5 2 )vs (47, Y5 2 )pz Pj Pp -
i=0 j=0 p=0

This leads to the global discrete product on €2:

K
U(;,/U(S Z u(va(S (35)
k=1

which coincides with the scalar product of L?(€) for all functions us annd vs such that
each product (usvs)|q,, 1 <k < K, belongs to Pan, —1(2). We also define, for 1 <k < K,
Z% as the Lagrange interpolation operator on all nodes (zF, yj, p) 0<1i,7,p < N, with
values in Py, (€2), and finally the global operator Zs by

(Zsv) 0 = Zvj,, 1<k<K. (3.6)

The discrete problem reads, for any continuous function w on Q:
Find (5, 605) in C5(§2) x Hs(S2) such that

V€s € Cs5(2), (curl 95, curl &5)5 + (€5, grad 605); = (u, curl &5)s,

3.7
Vus € Hs(Q2), (1bs,grad ps)s = 0. (3.7)

Remark: It can be observed that adding a constant on each {2; to the part 65 of the
solution does not modify the problem. Since moreover we are not interested in the approx-
imation of the part § = 0 of the solution of problem (2.10), the second and third e in the
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definition of H(2) can without any change be replaced for instance by
e the trace of pus on OS2 is such that grad, ps vanishes on 052,

e the pgq, for all k, 1 <k < K, belong to L§().

This is only a simpler way of “fixing the constants”.

We first introduce the discrete kernel
Ws(9) 2{65 € Cs5(2); Vus € Hs(), (&5, 8rad ps)s = 0}- (3.8)

So, for any solution (15, 05) of problem (3.7), the function s is a solution of the reduced
problem:

Find 15 in W5(Q2) such that
V€s € Ws(Q), (curl s, curl &5)5 = (u, curl &5)s. (3.9)
We first check that this equation is well-posed.

Lemma 3.1. For any function w continuous on Q, problem (3.9) has a unique solution
s in Ws(Q).

Proof: Equation (3.9) results into a square linear system, so that the existence of a
solution follows from its uniqueness. Thus, we take u equal to zero, which yields

(curl s, curl vs)5 = 0.

Then, each (curl t5),, 1 < k < K, belongs to Py, (2;)* and vanishes on the (Nj +1)?
distinct points of a tensorized grid, hence is zero. As a consequence, there exists a function
X]§7 defined up to an additive constant, such that 15, is equal to grad X’g. It is readily
checked that x’§ belongs to Py, (). Moreover, since 15 X n vanishes on 0f2, the same
property holds for grad;xs, where x;s is defined by xs0, = x¥. So the constant on all
{2 can be chosen such that x;|q, for all k such that 92 N O has a positive measure,
has a null trace on I'y and a constant trace on each I';, 1 < ¢ < I, and belong to Lg(Qk)
otherwise. Finally, it is readily checked that, on each face of €, grad;xs|q, is equal
to s |, up to the sign, so that the matching conditions on 15 on all I'y , that are not
mortars yield the desired conditions on y;s. Thus y;s belongs to Hy(€2). The nullity of 15
is then derived from the orthogonality condition in Ws(£2), see (3.8).

Lemma 3.2. The space of functions us in Hs(€2) such that

v£6 € C&(Q)a (557grad M(S)(S =0, (310)
is reduced to {0}.
Proof: It is readily checked that, for any us in Hs(€2), grad ps belongs to Cs(£2). So

taking &5 equal to grad ps in (3.10) yields that each y5,, 1 < k < K, is constant, hence
zero due to the definition of Hs(2).



Lemma 3.2 states that there is no spurious modes for the Lagrange multiplier in
problem (3.7) or equivalently that the following inf-sup condition holds: There exists a
constant s possibly depending on ¢ such that

(&5, grad pi5)s

Yus € Hs(2),  sup > Bs lps | (uen)s (3.11)
&5€Cs(Q) ||€5||H(curl,UQk)
where the broken norms || - || g(curl,un,) and || - || #1(ua,) are defined in an obvious way by
K 1
Hﬁé“H(curl,UQk) = (Z ”55 | ”%I(curl,Q@) ’
k=1
. ) (3.12)
sl oo = (3 s 0 W)
k=1

This leads to the following result.

Proposition 3.3. For any function u continuous on §, problem (3.7) has a unique solution
(5,05) in Cs(02) x Hs(§2). Moreover, 65 is equal to zero.

Proof: Since problem (3.7) is equivalent to a square linear system, the existence and
uniqueness of the solution (1s,0s) is derived from Lemma 3.1, combined with (3.11).
Next, using the same argument as in the proof of Lemma 3.2, we take &s equal to grad 05,
which yields that 65 vanishes on €.
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4. Error analysis.

We are interested in evaluating the quantity [|u —curl 5|/ 12(q)s, where (15,0) is the
solution of problem (3.7). From the first line in (2.8), we observe that

K K
VEs € Cs5(Q), Z/ curl v - curl & dw:Z/ u - curl & de, (4.1)
k=1" k=1"

so that no consistency error due to the nonconformity of the method appears in this line.
We recall from the standard property of the Gauss—Lobatto formula [5, Rem. 13.3] that

Vzs € P (), l2slToa < (26, 28)5 < 3° 25l 22 qy)- (4.2)
So we have, for all & in C5(12),
|lcurl 15 — curl 55H2L2(Q)3 < (curl s — curl &5, curl 15 — curl 55)5.
Using (3.7) (with 65 = 0) yields

||curl 15 — curl £5||%2(Q)3 < (u — curl &, curl 5 — curl 55)6

= (I(;u — curl &5, curl 95 — curl 55)6,
where the operator Zs is introduced in (3.6). Using once more (4.2) thus gives
lcurl 45 — curl & 12(0)s < 3% || Zsu — curl & |2 (),
whence, thanks to triangle inequalities,

lu — curl 5|20 < c( inf |lu—curl &2 + [|[u — Zsul| L2 0)2). (4.3)
&¢€Cs(Q)

The approximation properties of the operator Zs are stated in [5, Thm 14.2]: For any
function v in H*(Qy), s > 2,

lv = Z5 vl L2y < Ny Iollae (- (4.4)

In order to estimate the distance of u to the curl of C5(2), we recall the following result
from [2, Lemma 5.2].

Lemma 4.1. Assume that the function w satisfies (2.7) and is such that each wq,,
1 < k < K, belongs to H**()3, sp > 3. If the decomposition is conforming and if
moreover for each mortar ¥, 1 < m < M, which is a face of both Q) and Q, Ni(m)
is > N}, there exists a constant ¢ independent of § such that

K

inf —curl & 2 )3 < No* . . 4.5
géelgé(mllu url &l (Q)s_ck; = | e (s (4.5)
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In the case of non conforming decompositions, we refer to [10, Prop. 11] for the next
result.

Lemma. 4.2. Assume that the function 1 is such that each vq,, 1 < k < K, belongs to
H**t1(Qy)3, sp > 3. If the ratios Ny /Ny for all subdomains Q, and € such that 9Qy N

0 is not empty, are bounded independently of §, there exists a constant ¢ independent
of § such that

K
1
inf 1 ¢ — curl 2 < Ni °F . ) 4.6
ey 28y levrl & = curl Ealliaap < e 3 NI [9hlnn s (46)

Estimate (4.5) proves the optimal approximation properties of the space Cs(2) in
the case of a conforming decomposition (indeed taking Nj(,,) > N} is not restrictive in
this case). Estimte (4.6) is no longer optimal but deals with the general nonconforming
decomposition which is much more complex. Moreover the lack of optimality is of order
(maxj<k<k Nk)i, so is not too high, and there also the fact that all ratios Ny /Ny are
bounded for adjacent domains €2, and €/ is not restrictive.

Theorem 4.3. Assume that the function w satisfies (2.7), that the fonction 1 satisfies
(2.8) and is such that each vq,, 1 < k < K, belongs to Hs= Q)3 s > % Then, if
the ratios Ny /Ny for all subdomains QU and Qs such that 0, N OQy is not empty, are
bounded independently of §, the following error estimate holds between this function u
and the function curl ;s issued from problem (3.7):

K
1_s
lu—curl sl 2()e < ¢ > NI [[9]] grorer (s (4.7)
)

Moreover, if the decomposition is conforming and if, for each mortar v, 1 < m < M,
which is a face of both Q) and Qy, Nym) is > Ni, this estimate can be improved as

follows
K

[u—curl |2y < ¢ > N [lul| e o,)2- (4.8)
k=1

Estimate (4.8) is fully optimal and only involve the regularity of the data w. When the
functions u does not satisfy (2.7), exactly the same estimate holds either with u replaced
by its projection onto the space of functions satisfying (2.7) or with a further regularity
assumption on the function ¢ which appears in (2.6). Moreover, note that the restriction
SE > % comes from the use of the quadrature formula, however it does not seem too restric-
tive. On the other hand, even if estimate (4.7) is not fully optimal, numerical experiments
show the good convergence of the discretization even for nonconforming decompositions.
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5. Numerical algorithms and experiments.

We now explain how to translate the discrete problem (3.7) into a square linear system,
and we propose algorithms for solving this sytem. Since this is very similar to [2, §7], we
only give a brief description of these algorithms which rely on the following idea, due to
[4]: The matching conditions through the skeleton can be handled via the introduction of
a further Lagrange multiplier.

Let now Cs(£2) be the space of functions vs such that
e their restrictions v; |, to each 2, 1 <k < K, belong to Py, ()3,
e their tangential traces vs X m vanish on 012,
and Hs(£2) the space of functions jus5 such that
e their restrictions us |, to each Qp, 1 <k < K, belong to Py, () N L§ (),
e the tangential gradient of the traces of the usq, for all k, 1 < k < K, such that
0. N OS2 has a positive measure, vanish.
We also need the space Ls(S) of functions vs in L?(S) such that their restrictions to each
Iy ¢ which is not a mortar belong to Py, —2(I'x¢). The set of indices (k,¢), 1 < k < K,
1 < ¢ < L(k), such that I'y ; is not a mortar is denoted by K.

We thus consider the modified problem:
Find (1,05, s, 05, 0'5) in C(;(Q) X L5(3)3 X E(s(Q) X L5(8)2 such that

V&5 € Cs(Q), (curl 45, curl &s)s + (&5, grad 65)s
+ ¢c5(&s,7s5) = (u, curl &)s,
Vps € Ls(S)*,  cs(vps, ps) =0, (5.1)
Yus € Hs(Q), (s, grad us)s + hs(ps, o5) =0,
Vxs € Ls(S)?,  hs(6s,xs) =0,

where the bilinear forms cs(-, ) and hs(-,) are defined by

cs(95..ps) = Z/F (Bsj0, x mi+@(05))(T) - pa(r) dr.

(k,b)ek

s(tis,xs) = Y gradTﬁbamk — @(ps)) (1) - xs(T)dr,
(k,0)ekc /T

with obvious definitions of the mortar functions ¢(-) and ¢(-), see (3.3) and (3.4). Clearly,
for any solution (s, 7s,0s,0s) of problem (5.1), (25, 0s) is a solution of problem (3.7).

Problem (5.1) is equivalent to the following linear system

D E G 0 V) AU

ET 0 0 0 I1 0

G"' 0 0 H el | o |’ (52)
0 0 HT o )Y 0
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where the vector U is made of the values of u at all nodes (acf,yf,z]’;), 0<1,7,p < Ng,
1 < k < K, and the matrix A is fully diagonal, its diagonal terms being the p*" p?’kpf;k.
The main unknown is the vector ¥ of the values of s at all nodes (z¥, y;-“, z}’j), 0<4,5,p<
N, 1 <k < K. The matrix G is block-diagonal, with one block per each subdomain 2y,
and the matrix D is symmetric, whence the symmetry of the global system. The number

of non-zero coefficients in £ and H is very small.

System (5.2) is solved via a stabilized bi-gradient algorithm. We refer to [19, §5.5] for
more details on this procedure in a slightly different framework.

The numerical experiments that we present are aimed to prove the convergence of

the method. The domain Q is the cube | — 1,1[3, with the following non-conforming
decomposition
Ql :]_171[2X]_1ﬂ0[’ QQ :]_17O[X]_171[X]071[7 QB :]071[X]_171[X]0a1[

We have chosen as mortars the three faces

v =] —1,0[x] — 1,1[x{0}, ~2=]0,1[x] —1,1[x{0}, ~3={0}x]—1,1[x]0,1].

We work with the smooth data u given by

u(r,y,2) = (x(@)X (1)X'(2), 4x () x ()X (2), = 5x"(2)x (¥)x(2)), (5.3)
with x(t) = sinh(2) sinh(¢) — sinh(1) sinh(2¢),

which obviously satisfies the conditions (2.7).

Table 1 presents the maximum of the three components of the error u — curl; at
the Gauss-Lobatto nodes contained in the i, 1 < k < 3, and in the ~v,,, 1 < m < 3, for
the discretization parameter § = (N1, No, N3) given by

Ny =12, Ny =10, N3 = 8. (5.4)
Table 2 presents the same quantities for the discretization parameter given by
Ny = 16, Ny = 14, N3 =12. (5.5)

In this table, the symbol § means the zero machine value.

M Qs Q3 g V2 V3
z-comp. | 2.18.1079(4.24.107(4.21.1079|2.18.105|2.08. 105 | 4.21. 10~
y-comp. |2.37.105(2.34.105(2.37.1056.96.105|2.37.105 |2.34. 105
z-comp. |5.66.109]2.33.1076(4.32.1079 |5.59.10~7|4.32.1076 |1.81.106

TABLE 1: The maximum of the error for the discretization parameter given in (5.4)
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0 0y Q3 gl V2 V3
z-comp. [2.03.107133.18.10714/2.03.10733.18 . 10~ 14[2.03. 10713 i
y-comp. [6.03.10711/6.02.1071(6.03.10112.68.10713/6.03. 107 11/6.02. 10~ 1!
z-comp. i 9.68.10713/9.68.10713 i i 9.68.10713

TABLE 2: The maximum of the error for the discretization parameter given in (5.5)
The curves of isovalues of the three components of the discrete solution curl %5 in
the plane y = % and for the discretization parameter given in (5.5) are presented in Figure

1 (their analogues for the parameter in (5.4) are completely similar).

y=0.5

y=0.5

37
322
273
225
177
129
0.804
0.322
-0.161
~0.643
-1.13
-1.61
-2.09
257
-3.06
-3.54

-4.02

T
-1 0 1

FIGURE 1: The isovalues of the discrete solution curl s

It can be noted that the error, which is already of order 1076 in Table 1, is still reduced
in Table 2, so that the convergence is really of spectral type. Moreover the continuity of

the tangential trace of 15 through the I';, ; is correctly enforced, despite the nonconformity
of the method.
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