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LOCALIZED MINIMIZERS OF FLAT ROTATING GRAVITATIONAL

SYSTEMS

JEAN DOLBEAULT∗ AND JAVIER FERNÁNDEZ∗

Abstract. We study a two dimensional system in solid rotation at constant angular
velocity driven by a self-consistent three dimensional gravitational field. We prove the
existence of non symmetric stationary solutions of such a flat system in the rotating
frame as long as the angular velocity does not exceed some critical value which depends
on the mass. The solutions can be seen as stationary solutions of a kinetic equation with a
relaxation-time collision kernel forcing the convergence to the polytropic gas solutions, or
as stationary solutions of an extremely simplified drift-diffusion model, which is derived
from the kinetic equation by formally taking a diffusion limit. In both cases, the solutions
are critical points of a free energy functional, and can be seen as localized minimizers in
an appropriate sense. Symmetry breaking occurs for small angular velocities.
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Introduction

In this paper, we look for some special solutions of flat systems in rotation made of
gravitating particles. We adopt the point of view of continuum mechanics, at two different
levels of description. At the kinetic level, the system is described by a distribution function
on the phase space. The microscopic structure of the system is revealed by the fact that
at some point in the physical space, the dispersion of velocities is taken into account. At
the macroscopic level, we consider only the spatial density of mass in the physical space.
Although the distribution of velocities is observable in some cases, the macroscopic density
of mass is by far a more interesting and fundamental object.

Many solutions of the equations of mechanics for gravitational systems have been iden-
tified over the last two centuries, from a numerical point of view as well as by explicit
calculations, which reflect well the diversity of observational data, see, e.g., [9]. In celestial
mechanics, the key question consists less in finding solutions than in understanding their
stability, since in most of practical cases, time scales are such that the observation of an
unstable solution is highly improbable. Stability issues for finite dimensional dynamical
systems of particles have been studied for about a century but the corresponding investi-
gations in continuum mechanics are much more recent. We may for instance quote the use
of Casimir functionals in fluid mechanics in [1, 2] as one of the earliest contributions, and
also [61, 59]. At the level of kinetic equations for gravitating systems, the topic has been
developed mostly by G. Wolansky, G. Rein and Y. Guo, see for instance [49, 60, 35, 36],
and the review papers [38, 53]. Only very simple configurations have been tackled up to
now, see [37, 51, 52, 27, 55, 10, 54, 25, 41] and references therein for some other recent con-
tributions. Roughly speaking, stability properties have been established only for radially
symmetric stationary solutions (in the reference frame of the center of mass) characterized
as minima of a free energy functional, after taking into account the Galilean invariance.
Notice here that we are going to restrict the topic to classical mechanics, hence discarding
any further consideration involving relativity or quantum mechanics. See [40] and [46, 24]
for some contributions in this direction.

Our goal is to make a first step towards more complex geometries than the ones which
have been considered up to now, and to open a new field of research in kinetic models.
Typical examples one would like to study are double systems, or systems with a spiral
geometry. For the moment, nobody knows how to deal with such systems at the kinetic
level. We will expose later some results obtained with fluid models of gravitating particles.
In this paper, we will use a dramatic simplification, which consists in reducing the problem
to the study of nonlinear diffusion equations by taking an appropriate diffusion limit and
consider solutions at the macroscopic level. Such a limit makes a lot of sense when one is
interested in quantities like the mass density. A rigorous derivation in the case of a given
potential has recently been done in [26], but the diffusion limit is still formal in presence of
a self-consistent potential as it is the case here. One could argue that the solutions found
in this paper are solutions both at the kinetic and macroscopic levels, but this would be
somewhat excessive since, after formally deriving the diffusion limit, we will systematically
adopt the macroscopic level point of view.

Let us insist on several important features of the model we shall consider. First of all,
one is interested in compactly supported solutions. This can be mathematically enforced
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by imposing boundary conditions and many papers in physics and astrophysics journals
do it, but it is in most of the cases rather unphysical. We will use artificial boundary
conditions as a technical step in our proofs, but we will be able to remove them in the
end. Another important issue is the type of statistical distribution one wants to take
into consideration. Although Maxwellian (Gaussian) distributions are very popular in
statistical physics, such distributions turn out not to make much sense in astrophysics since
they give rise to equilibrium solutions with infinite mass, while one is clearly interested in
systems with finite mass, even if it can be huge when measured in standard units. One
of the proposed remedies is to consider Gibbs states, i.e., equilibrium solutions, which are
polytropic type distribution functions at the kinetic level. By polytropic, we simply mean
that the distribution function is assumed to be a power law of the microscopic energy. In
astrophysics, such models are known as the model of polytropic gases, or polytropes. These
Gibbs states turn out to give porous media equations in the diffusion limit. Such equations
are well known in mathematics and various areas of physics, and have always raised lots of
interest. Coupled with a gravitational Poisson interaction, they have the nice property of
having stationary solutions with finite mass and compact support (which is also the case
of King’s model). Another feature that we want to include is that the solutions under
consideration can be characterized as critical points, and eventually localized minimizers

if some judicious constraints are imposed on the system, of some functionals which can be
interpreted from a thermodynamical point of view as free energies. In astrophysics and
in the case of the porous media equations, such functionals are sometimes called Tsallis’
entropies [58]. They are perfectly consistent with the free energies involving the so-called
Casimir functionals at the kinetic level (in the polytropic gases case), and they provide
useful estimates for diffusion limits, see [26]. How to select one such functional has to be
determined by physics and should involve a collision mechanism whose discussion goes far
beyond the scope of this introduction. We refer again to [26] for more detailed comments.

Many gravitating systems are rotating and the total angular momentum determines a
global axis of rotation. Since the goal of this paper is only to make a first mathematical
step into a whole world of models, we are going to assume several simplifying hypotheses.
First of all, we will consider a system in a solid motion of rotation: in the rotating reference
frame, we look for stationary solutions, and the only novelty is that a centrifugal force term
has to be added. We will see however that even such a small change produces tremendous
differences at the level of the solutions. For instance, solutions with a given mass may
exist only as long as the angular velocity is not too big, and radial symmetry is broken
even for small angular velocities. We will further restrict the model to flat systems, so that
two-dimensional coordinates can be used, but we will keep the gravitational interaction in
its three-dimensional version. Although highly simplified, such a model could for instance
be quite relevant for some physical situations like accretion disks of self-gravitating dust.
Many features could be added to the model, like the presence of a given central force
field created by a dense core or a massive object, say a star. To keep our analysis as
elementary as possible, we shall only consider self-consistent gravitational interactions.
From the mathematical point of view, scalings are crucial. We will therefore consider
mostly power law dependences, which are easier to handle. That is the case of polytropic
gases, or polytropes, which have already been mentioned above.

Strictly speaking, we are not going to prove any stability result neither at the kinetic
level nor at the macroscopic level of nonlinear diffusions. As far as we know, such questions
for systems in a solid motion of rotation are completely unknown. Our purpose is to
characterize some special critical points of the free energy in the rotating reference frame,
the localized minimizers, which are good candidates for a local stability analysis, that is
still to be done.
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This paper is organized as follows. The first section is devoted to a precise description
of the model at the kinetic level and to the formal diffusion limit. The main results are
then stated. For the convenience of the reader who is interested only in the mathematical
results, all definitions and notations needed for the understanding of these results have
been summarized in an appendix. In the second section, the results of G. Rein [50] in the
non rotational case are adapted to our setting. See [30] for a more recent presentation of
essentially the same results, which appeared as a preprint during the completion of this
paper, and [29] for a related paper. Although mostly not original, the sketches of the proofs
are given, since we will reuse them in the case of a nonzero angular velocity. The third
section is devoted to the proof of the main results and some additional properties of the
solutions, and the last one to some additional properties of the solutions.

As one can infer from this rather long introduction, our results are connected with many
topics in modeling. Establishing an exhaustive list of relevant references would be a difficult
task. Let us mention only a few papers in which the interested reader will be able to find
a more complete list of references.

For an introduction to statistical physics of gravitating systems and issues about bounded
domains models, we refer to [48]. An interesting list of issues concerning Maxwellian statis-
tics and gravitational Vlasov-Poisson systems has been developed in [3]. Concerning power
laws in astrophysics and Gibbs states, see [9], and [38] for some mathematical properties
of such equilibrium states. From a physics point of view, see [15] for a recent justifica-
tion of diffusion models and related thermodynamical functionals in astrophysics and two
dimensional turbulence, and references therein for earlier papers. Lyapunov functionals cor-
responding to porous media in an astrophysical context are usually called Tsallis’ entropies,
referring to [58], and the evolution equation is often called the generalized Smoluchowski-
Poisson equation. See [6, 7, 8] for some related papers. A whole series of papers concerning
Lyapunov functionals, diffusion equations and formal diffusion limits has been written by
Chavanis et al., see [12, 13, 14, 15, 16, 17, 18, 19]. For a justification of the diffusion limits
from a more mathematical point of view, let us quote [5, 34], and also [26] and references
therein. We will not insist on the following point in the paper, but it deserves to be men-
tioned that the energy profile of the Gibbs state is related with the entropy generating
function by some convex duality, see [5, 57, 20, 14, 17]. This last paper and [5] contain
formal Chapman-Enskog expansions of the type we are going to use in Section 1. As a last
observation, we quote two recent papers, [40, 39], which are devoted to local minimizers,

in the sense that they are local in the function space. We will consider a different notion
of minimizers, which is based on the localization of the support of the solutions, and for
this reason, we shall call them localized minimizers.

Further references will be quoted throughout this paper whenever appropriate.

1. A kinetic model and its diffusion limit

Our goal is to describe steady state solutions of a flat rotating gravitational system. We
start with a dynamical kinetic model and show at a formal level how solutions converge in
a certain diffusion limit to solutions of a nonlinear drift-diffusion equation.

1.1. A kinetic model. At the kinetic level, we consider a flat gravitational system in
three dimensions. In our model, the support of the mass distribution is contained in a
two-dimensional plane and we assume that the system rotates around an axis of symmetry
which is perpendicular to the plane. This amounts to consider a nonnegative solution of
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the following gravitational three-dimensional Vlasov-Poisson-Boltzmann system
{

∂tF + v · ∇xF −∇xψ · ∇vF = Qω(F )

∆ψ =
∫

R2×R
F dv dw ,

where the distribution function F is a measure concentrated on the manifold

{((x, z), (v,w)) ∈ (R2 × R) × (R2 × R) : z = 0 , w = 0}
and Qω(F ) is a collision kernel which depends on the angular velocity ω, to be specified
later. We will consider the nonnegative distribution function F as a function of t ∈ R,
x ∈ R

2 and v ∈ R
2, and impose ψ to be given as a solution of the three dimensional

gravitational Poisson equation, corresponding to a measure valued distribution of mass
whose support is constrained to the plane

ψ(t, x) = − 1

4π |x| ∗
∫

R2

F (t, x, v) dv .

Relevant position and velocity variables, respectively x and v, being in R
2, we shall identify

R
2 with C. Instead of x = (x1, x2) and v = (v1, v2), we shall write x = x1 + i x2 and

v = v1 + i v2, with the convention that v ·∇xF means Re[(v1 + i v2)(∂f/∂x1 − i ∂f/∂x2)] =
Re
[

v∇xf
]

, and so on. We are interested in the effects of a rotation with constant angular
velocity, and as a first step in this direction, we investigate the simple case where the
solution has a global solid motion of rotation. For our purpose, it is therefore convenient to
rewrite the equations in a rotating frame with constant angular velocity ω. Using complex
notations, we make the change of variables

(x, v) 7→ (x eiωt, (v + iωx) eiωt) =: Rω,t(x, v)

and define a new distribution function f by

F (t, x, v) = f(t, x eiωt, (v + iωx) eiωt)) = (f ◦ Rω,t) (x, v) .

The equation satisfied by f can be written as

∂tf + v · ∇xf + ω2 x · ∇vf + 2Re
(

i ω v∇vf
)

−∇xφ · ∇vf = Q(f)

where the collision kernel Q is defined by Q(f) := Qω(F )◦R−1
ω,t and the potential φ is given

by

φ(t, x) = − 1

4π |x| ∗
∫

R2

f(t, x, v) dv .

Written in cartesian coordinates, the equation satisfied by f is

∂tf + v · ∇xf + ω2 x · ∇vf + 2ω v ∧∇vf −∇xφ · ∇vf = Q(f) ,

φ = − 1

4π |x| ∗
∫

R2

f dv ,

where a ∧ b := a⊥ · b = (−a2, a1) · (b1, b2) = a1b2 − a2b1 = Re[i(a1 + i a2)(b1 − i b2)].
We are interested in stationary solutions and in the relaxation towards stationary so-

lutions. For that purpose, we introduce a collision kernel which relaxes the distribution
function towards a local Gibbs state in the rotating frame. By a local Gibbs state, we mean
a function

Gf (t, x, v) = γ

(

1

2
|v|2 + φ(t, x) − 1

2
ω2 |x|2 + µf (t, x)

)

,

where γ is a given energy profile and µf a local Lagrange multiplier associated to the
constraint

(1)

∫

R2

Gf (t, x, v) dv =

∫

R2

f(t, x, v) dv .
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Several kernels can be chosen, see for instance [17, 26]. Here we simply consider the
relaxation time approximation kernel which relaxes to the local Gibbs state in the rotating
frame

Qω(F ) = Gf ◦ Rω,t − F

or, equivalently,

Q(f) = Gf − f .

At this point we want to stress that such a kernel does not have any deep physical significa-
tion, but should be considered as a sound simplification of more realistic collision kernels.
From a mathematical point of view, it is only a kind of a projection operator onto the local
Gibbs state. See [26] for more comments. Notice that the local Gibbs state Gf has no
mean velocity in the rotating reference frame. This justifies why Q does not depend on ω
while Qω explicitly depends on the angular velocity. Taking Q independent of ω simply
means that the collision kernel tends to relax the solution towards a state in solid motion
rotating at constant angular velocity ω.

Condition (1) can be solved as follows: Define µ̄ implicitly by the condition
∫

R2

γ
(1

2
|v|2 + µ̄(ρ)

)

dv = ρ ,

which means that

(2) µ̄(ρ) = Γ−1(ρ)

where

Γ(s) := 2π

∫ ∞

s
γ(σ) dσ .

It is straightforward to check that the local Lagrange multiplier associated to (1) is such
that

µf (t, x) = µ̄(ρ(t, x)) − φ(t, x) .

If Γ is not invertible, an appropriate notion of generalized inverse has to be defined.
Collecting all these remarks, the problem written in the rotating frame solves the system

(3)

∂tf + v · ∇xf + ω2 x · ∇vf + 2ω v ∧∇vf −∇xφ · ∇vf = Gf − f ,

φ = − 1

4π |x| ∗
∫

R2

f dv .

The angular velocity parametrizes the set of the solutions. For simplicity, we will restrict
our statements to the case of polytropic gases, or polytropes, which corresponds to an
energy profile given by a power law:

γ(s) :=
( −s
k + 1

)k

+
and µ̄(ρ) = −(k + 1)

( ρ

2π

)
1

k+1

for some parameter k ∈ R
+. The generalization to other nonincreasing energy profiles γ

is easy and we leave it to the reader, but in any case, for a reason that will be made clear
later on, we shall assume that γ ≡ 0 on [0,+∞). In the polytropes case, we get

Γ(s) := 2π
( −s
k + 1

)k+1

+
∀ s ∈ R .

We are going to focus on stationary solutions with fixed mass

(4) M =

∫∫

R2×R2

f dx dv > 0 .
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For that purpose, let

β(s) :=

∫ 0

s
γ−1(σ) dσ

and define the free energy functional

Fω[f ] :=

∫∫

R2×R2

[

f

(

1

2
|v|2 − 1

2
ω2 |x|2 +

1

2
φ

)

+ β(f)

]

dx dv .

At a formal level, if f is a solution of (3), then

d

dt
Fω[f(t, ·, ·)] :=

∫∫

R2×R2

(

Gf − f
)

(

1

2
|v|2 + β′(f)

)

dx dv ,

so that by writing 1
2 |v|2− 1

2 ω
2 |x|2+φ+µf = −β′(Gf ), and using (1) and β′(f) = −γ−1(f),

the entropy production term takes the form

(5)
d

dt
Fω[f(t, ·, ·)] :=

∫∫

R2×R2

(

Gf − f
)(

γ−1(Gf ) − γ−1(f)
)

dx dv ,

which has a negative sign if γ is nonincreasing. Moreover, if γ is decreasing on its support,
it vanishes if and only if Gf = f almost everywhere on the support of f . As a consequence,
f is in the kernel of the collision operator. Any stationary state f has therefore to be a
global Gibbs state in the sense that

µf (x) = φ(x) − 1

2
ω2 |x|2 − µ∗

on the support of ρ :=
∫

R2 f(·, v) dv, for some constant µ∗ ∈ R. To be precise, there is one
such constant for each connected component of the support of ρ. This is easily deduced
by reinjecting the local Gibbs state in the left hand side of (3). As a consequence, such a
stationary distribution function is a critical point of the free energy functional under the
mass constraint

∫∫

R2×R2 f dx dv = M > 0, fixed, and µ∗ can be identified as the Lagrange
multiplier associated to this constraint. Note that because of the centrifugal force term
−ω2 x, which gives rise to the potential energy term −1

2 ω |x|2, the free energy does not
have any global minimizer and is actually not even bounded from below. It is however easy
to recover that a global Gibbs state taking the form

f∞(x, v) := γ

(

1

2
|v|2 + φ∞(x) − 1

2
ω2 |x|2 − µ∗

)

with φ∞(x) := − 1
4π |x| ∗

∫

R2 f
∞(x, v) dv and µ∗ such that

∫∫

R2×R2 f
∞(x, v) dx dv = M is a

critical point of Fω under Constraint (4).
In the special case of the polytropes, we can choose

β(f) =
f q

q − 1
with k =

1

q − 1
⇐⇒ q = 1 +

1

k
.

Note that β is defined up to a constant. The functional f 7→
∫∫

R2×R2 β(f) dx dv is convex
as soon as γ is nonincreasing, which holds true in the case of the polytropes. Looking for
stationary solutions with compact support requires q > 1 or equivalently k > 0, and the
problem is reduced to solve the fixed point equation

(6) φ = − 1

4π |x| ∗ ρ with ρ = Γ

(

φ− 1

2
ω2 |x|2 − µ∗

)

,

where the last identity has to be satisfied only on the support of ρ, and µ∗ is implicitly
fixed by the condition

∫

R2 ρ dx = M . Since

Γ(s) = 2π

(

−q − 1

q
s

)
q

q−1

,
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this amounts to write

− q

q − 1
ρq−1 + φeff − µ∗ = 0

on the support of ρ, where the effective potential in the rotating frame is defined by

φeff(x) := − 1

4π |x| ∗ ρ−
1

2
ω2 |x|2 .

1.2. Reduced variational problem. Because of (5), if γ is decreasing on its support,
stationary solutions of (3) are Gibbs states and therefore critical points of the free energy
functional. But they are not global minimizers of the free energy functional, which, as said
before, turns out to be unbounded from below for any non zero angular velocity. However,
since ρ =

∫

R2 Gf dv, we can write

Fω[f ] −Fω[Gf ] =

∫

R2

dx

{
∫

R2

[

β(f) − β(Gf ) − β′(Gf )(f −Gf )
]

dv

}

,

so that to any critical point of

ρ 7→ Fω[Gρ] =: Gω[ρ] with Gρ(x, v) := γ
(1

2
|v|2 + µ̄(ρ)

)

and φ(x) := − 1
4π |x| ∗ ρ, we may associate a critical point, Gρ, of Fω under Constraint (4).

This reduced variational problem takes the form

Gω[ρ] =

∫

R2

[

h(ρ) +
(1

2
φ(x) − 1

2
ω2 |x|2

)

ρ

]

dx

with

h(ρ) :=

∫

R2

[

(β ◦ γ)
(1

2
|v|2 + µ̄(ρ)

)

+
1

2
|v|2 γ

(1

2
|v|2 + µ̄(ρ)

)

]

dv

= 2π

∫ ∞

0

[

(β ◦ γ)(s+ µ̄(ρ)) + s γ(s+ µ̄(ρ))
]

ds

= 2π

∫ ∞

µ̄(ρ)

[

(β ◦ γ)(s) + s γ(s)
]

ds− ρ µ̄(ρ)

= H(µ̄(ρ)) − ρ µ̄(ρ)

with H(s) :=
∫ s
0 Γ(σ) dσ. Here we used the fact that G(µ̄(ρ)) = ρ. Notice that h′(ρ) =

−µ̄(ρ). In the special case of the polytropes, we obtain

h(ρ) =
κ

m− 1
ρm with m = 2 − 1

q
= 1 +

1

k + 1
, κ =

1

m
(2π)1−m .

Hence finding stationary solutions to (3) is equivalent to find critical points of Gω on the
set
{

ρ ∈ L1(R2) : ρ ≥ 0 a.e. ,
∫

R2 ρ dx = M
}

.

1.3. Diffusion limit. The stationary states of the kinetic equation are also the stationary
states of a nonlinear drift-diffusion problem, whose associated free energy is the func-
tional Gω. This can be seen at a formal level by taking the diffusion limit in Equation (3).
By diffusion limit, we mean that the physical parameters of the problem have to be ad-
justed in order that in the corresponding regime the dynamics is dominated by the collision
kernel and studied on a large time scale. After an appropriate adimensionalization, this



FLAT ROTATING GRAVITATIONAL SYSTEMS 9

means that we consider the equations

ε ∂tf + v · ∇xf + ω2 x · ∇vf + 2ω v ∧∇vf −∇xφ · ∇vf =
1

ε
(Gf − f) ,

φ = − 1

4π |x| ∗
∫

R2

f dv

in the singular limit ε → 0. Multiply the first equation for by 1 and v, and integrate with
respect to v. The corresponding system is

∂tρ+ ∇x · j = 0 ,(7)

ε2 ∂tj + ∇x ·
∫

R2

v ⊗ v f dv − ω2 x ρ+ ρ∇xφ = −j ,(8)

where

ρ =

∫

R2

f dv and j :=
1

ε

∫

R2

v f dv .

At a heuristic level, it is quite easy to identify the limit by an appropriate Chapman-Enskog
expansion, see for instance [4, 5, 17]. For a rigorous approach, but in the case where there is
no self-consistent potential, we refer to [26] and references therein. Let f = f0+ε f1+O(ε2)
and formally identify the limits order by order. At order O(ε−1), we get

Gf0 − f0 = O(ε) .

By passing to the limit ε→ 0, this means

f0 = γ

(

1

2
|v|2 + µ̄(ρ)

)

where ρ is the solution of (7). To complete the description of the diffusion limit, we only
need to identify j. Consider therefore (8). Again at a formal level, by identifying the first
order term in ε, we get

j = −∇x ·
∫

R2

v ⊗ v f0 dv + ω2 x ρ− ρ∇xφ+O(ε) .

Passing formally to the limit ε→ 0, we get

j = −∇x(ν(ρ)) + ω2 x ρ− ρ∇xφ ,

where ν is given in terms of ρ by

(9) ν(ρ) :=
1

2

∫

R2

|v|2 γ
(

1

2
|v|2 + µ̄(ρ)

)

dv .

Notice that

ν ′(ρ) = 2π

∫ ∞

0
s γ′(s+ µ̄(ρ)) ds · µ̄′(ρ) = −2π

∫ ∞

0
γ(s+ µ̄(ρ)) ds · µ̄′(ρ) = −ρ · µ̄′(ρ) ,

using again the fact that Γ(µ̄(ρ)) = ρ, so that

ν(ρ) = −
∫ ρ

0
σ µ̄′(σ) dσ .

Summarizing, we have obtained that, in the limit ε→ 0, ρ = ρ(t, x) is a solution of

(10)
∂tρ = ∇ ·

[

∇ν(ρ) − ω2 x ρ+ ρ∇xφ
]

,

φ = − 1

4π |x| ∗ ρ
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with µ̄ and ν given by (2) and (9). In the case of the polytropes, we have

ν(ρ) = κρm with κ =
1

m
(2π)1−m .

1.4. Ranges of validity. We will refer to [4, 5, 17, 13] for further discussions on formal
asymptotics and applications in physics, and to [26] and references therein for rigorous
proofs of diffusion limits providing nonlinear diffusion equations.

As quoted in [5], the functional Gω is a Lyapunov functional for (10). For a solution,
using the fact that h′(ρ) = −µ̄(ρ), we get

d

dt
Gω[ρ(t, ·)] = −

∫

R2

ρ
∣

∣∇µ̄(ρ) − (∇xφ− ω2 x)
∣

∣

2
dx .

This expression can be recovered by taking the limit as ε → 0 of (5). See [4, 5] for more
details. As a consequence, we recover that for the nonlinear diffusion equation (10) as for
the kinetic model (3), stationary states are given by (6).

The assumption γ ≡ 0 on [0,+∞) guarantees the existence of solutions with finite
mass. At the kinetic level, see [38]. This can also be seen at the level of the diffusion
equation. With porous media type diffusion, which is the case for all polytropes, the
diffusion coefficient ν ′(ρ) becomes 0 as the density decays to 0 and stationary solutions
have compact support. Otherwise, all mass would diffuse and runaway because of the
centrifugal force. Such a runaway phenomenon occurs for instance with linear diffusions, or
more elaborate nonlinear diffusions like the one based on the Fermi-Dirac distribution, see
for instance [13]. For completeness, let us mention a related work in three dimensions, [47],
and references therein. We will come back to this paper in the conclusion.

Up to now, no restrictions have been imposed on the power k ∈ R
+. Since

m = 2 − 1

q
=
k + 2

k + 1
,

the range of m is therefore (1, 2), which corresponds to q ∈ (1,∞). However, in the
case ω = 0, the existence of a minimizer is achieved if and only if q is big enough to
prevent concentration of minimizing sequences. The reason goes as follows. By a standard
interpolation method, one can prove that for ρ =

∫

R2 f dv, f ≥ 0 a.e.,

‖ρ‖Lm(R2) ≤ CInterp ‖f‖
q

2q−1

Lq(R2×R2)

(
∫∫

R2×R2

|v|2 f dx dv
)

q−1
2q−1

with m = 2 − 1

q

for some positive constant CInterp, see for instance [23]. Then
∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy ≤ CHLS ‖ρ‖2
L4/3(R2)

for some positive constant CHLS, by the Hardy-Littlewood-Sobolev inequality, see, e.g., [43].
The free energies Fω and Gω are therefore bounded from below if 4/3 ∈ (1,m), which
amounts to

q ∈ (3/2,∞) ⇐⇒ m ∈ (4/3, 2) ⇐⇒ k ∈ (0, 2) .

We refer to [50] for more details. The critical case corresponds to q = 3
2 , m = 4

3 , k = 2 and
will not be dealt with here since it requires a specific analysis which is out of the scope of
this paper.

In [50], Rein considers flat distribution functions f as in Section 1.1, which solve the
Vlasov-Poisson system without collision kernel, in the case with no angular motion, i.e.,
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ω = 0 , and proves the existence of a radially symmetric and compactly supported minimizer
of the free energy functional Fω on the set

{

f ∈ L1(R4) : f ≥ 0 , f is radially symmetric ,

∫∫

R2×R2

f dx dv = M

}

.

Here by radially symmetric we mean that f depends only on |x|, |v| and (x · v), and β
is assumed to be a convex function verifying appropriate conditions both near the origin
and at infinity. In Section 2 we expose the results of [50, 30] without the radial symmetry
assumption, but in the simpler setting of nonlinear diffusions. These results can also be
seen as relevant for the Euler-Poisson equation, see [30]. The more general case of a non
zero angular velocity ω is considered in Section 3.

Before giving more details, let us mention again that a major difficulty appears when ω
is turned on, since there are no more global minimizers of the free energy. The difficulty
can be overcome by solving the problem with positions in a fixed ball of radius R, which
from a physical point of view prevents the runaway of the particles when the centrifugal
force dominates the gravitational attraction. In this compactly supported case, the results
for the non rotational case can be adapted, see Section 3 for details, and as ω tends to 0,
the minimizers converge to a minimizer corresponding to ω = 0. The minimizers in the
rotational case are however not radial, at least for very small angular velocities, but their
support is close to the one of solutions with ω = 0. The non-radiality of the minimizers,
at least for sufficiently large angular velocities, is not a complete surprise. Indeed the
results of [33, 32] and their extensions do not apply because the centrifugal force term
has the wrong monotonicity, and a similar phenomenon of symmetry breaking has been
observed for instance in the case of Caffarelli-Kohn-Nirenberg inequalities, see [11, 28], and
of the Hénon problem, see [56], which share some qualitative features with our minimization
problem. If R has been taken large enough initially, solutions are global stationary solutions
not only in the ball of radius R, but also in the whole euclidean space. By a continuation
argument, one can prove that such an R can be found for larger and larger values of ω, until
some critical value is reached. This critical value depends on the mass M of the solution.

1.5. Main results. From now on, we assume that the setting is the one of the polytropes:

β(f) =
f q

q − 1
, h(ρ) =

κ

m− 1
ρm ,

with q ∈ (3/2,∞), m ∈ (4/3, 2) or k ∈ (0, 2). More general settings are not very difficult to
handle, but require case by case technical assumptions, and will therefore not be considered
here. Unless it is explicitly specified, variables are all in R

2. Integrals are also supposed to
be extended to the whole space unless otherwise stated.

The above derivation of the model is quite lengthy, so for the convenience of the reader,
we have summarized all useful equations and notations in an appendix. Recall that

Gω[ρ] :=
κ

m− 1

∫

R2

ρm dx− ω2

2

∫

R2

|x|2 ρ dx− 1

8π

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy

is the so called reduced free energy functional, and consider the set

XM :=

{

ρ ∈ L(R2) : ∃R > 0 such that supp(ρ) ⊂ B(0, R) and

∫

R2

ρ dx = M

}

,

where L(R2) is the set of nonnegative functions ρ in L1(R2) satisfying the assumption

(11) ρ(x) = ρ(−x) ∀ x ∈ R
2 a.e.
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Definition A localized minimizer is a critical point ρ of Gω which is compactly supported

in a ball B(0, R − ε) for some R > 0 and ε ∈ (0, R), and which is a minimizer of Gω

restricted to the set {ρ ∈ L1
+(R2) : supp(ρ) ⊂ B(0, R) and

∫

R2 ρ dx = M}.
We will also consider radial localized minimizers which are radial critical points as above,

with the minimization set further restricted to radial functions.

Theorem 1. For any M > 0, there exists ω∗(M) = ω∗ > 0 and ω∗(M) = ω∗ > 0 with
ω∗ ≤ ω∗ such that

(i) If ω ∈ [−ω∗, ω∗], Gω[ρ] admits a localized minimizer ρω
∞ ∈ XM .

(ii) If |ω| > ω∗, Gω[ρ] admits no localized minimizer.

Ou next goal is to give a characterization of ω∗. The idea is simpler to explain in the
case of radial functions. Define therefore Sω

M,rad as the set of radial localized minimizers of
mass M . Each ρω

∞ ∈ Sω
M,rad can be explicitly written in terms of its own potential

ρω
∞(x) = Am

(

λ[ρω
∞] + ω2

2
|x|2 − φω

∞(x)
)

1
m−1

+
where φω

∞ = − 1

4π | · | ∗ ρ
ω
∞ ,

with Am := [m−1
κ m

]1/(m−1), and λ[ρω
∞] < 0 a parameter which is determined by M , but

eventually depending on ρω
∞. We define

R1[ρ
ω
∞] := min {r > 0 : supp(ρω

∞) ⊂ B(0, r)}
and notice that for any x ∈ ∂B(0, R1[ρ

ω
∞]), λ[ρω

∞] = φω
∞(x) − ω2

2
|x|2. Let

h[ρω
∞] := sup

{

φω
∞(x) − ω2

2
|x|2 : |x| > R1[ρ

ω
∞]
}

.

We observe that λ[ρ0
∞] < h[ρ0

∞] = 0. This suggests to consider

sup
{

ω ≥ 0 : sup
ρω
∞
∈Sω

M,rad

(λ[ρω
∞] − h[ρω

∞]) < 0
}

.

Since, even for radial functions, uniqueness of localized minimizers is not known if ω 6= 0,
further precautions are therefore needed. Let

R2[ρ
ω
∞] = max

{

r > R1[ρ
ω
∞] : ∃x ∈ ∂B(0, r) such that φω

∞(x) − ω2

2
|x|2 = h[ρω

∞]
}

.

In fact, in the radial case with ω 6= 0, the effective potential φω
∞(x) − ω2

2
|x|2 attains it

maximum at only one point.
We shall say that Property Prad

ω holds true if and only if there exists R(ω) such that
R1[ρ

ω
∞] < R(ω) < R2[ρ

ω
∞] for any ρω

∞ ∈ Sω
M,rad.

Theorem 2. For any M > 0, the maximal interval in ω containing ω = 0 for which
Property Prad

ω holds true is an open interval.

Let ωrad
∗ := sup{ω ≥ 0 : Prad

ω holds true}. Observe that if there is at most one localized
minimizer ρω for any given value of ω, then Prad

ω holds true as long as λ[ρω
∞] < h[ρω

∞].
On the other hand, for any M > 0 and for any ω ∈ (−ωrad

∗ , ωrad
∗ ), there exists a radial

localized minimizer and λ[ρω
∞] < h[ρω

∞] for any ρω
∞ ∈ Sω

M,rad . The proof is based on a

continuation argument: we shall prove that for any ω0 ≥ 0, if Prad
ω0

holds true, then one can
construct radial localized minimizers for any ω > ω0, ω − ω0 small enough, and Property
Prad

ω still holds true, see Section 3.5 for more details. If Gωrad
∗

has a unique radial compactly
supported critical point, then

λ[ρωrad
∗

∞ ] = h[ρωrad
∗

∞ ] .

In the non radial case, for any localized minimizer ρω
∞ one can also define λ[ρω

∞] and
h[ρω

∞] using a set of paths connecting supp(ρω
∞) to infinity. Under an additional technical

assumption, we will be able to extend the statement of Theorem 2 to this situation. See
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Theorem 26 in Section 3 for more details. Notice that as soon as symmetry is broken,
uniqueness is also lost due to the invariance under rotation of the equations. We shall see
that this is always the case for ω 6= 0 when considering localized minimizers

There is no reason why one should expect ωrad
∗ and ω∗ to be related. Because of the

technical assumption in the non radial case, we will only give a lower bound for ω∗. It is an
open question to decide whether ω∗ = ω∗ or not, but one can reasonably conjecture that
localized minimizers exists for any ω ∈ (0, ω∗).

Notice that with the above definition of localized minimizers, an endpoint of the family
(ρω

∞)ω∈(0,ω∗] cannot be considered as a localized minimizer. On the opposite, if ω → 0,
the localized minimizers converge to the unique global radial minimizer of G0 verifying
Condition (11), as we shall see later. As already mentioned, we will prove that ρω

∞ is never
radially symmetric for ω 6= 0, small.

2. Preliminary results: the case ω = 0

We start by fixing ω = 0 and study the existence of minimizers of the energy for the
following non rotational problem. On the set

XM =

{

ρ ∈ L1
+(R2) :

∫

R2

ρ(x) dx = M

}

,

where L1
+(R2) denotes the set of functions ρ ∈ L1(R2) that are positive almost everywhere,

and with φρ given in terms of ρ by

φρ = − 1

4π

∫

R2

ρ(y)

|x− y|dy ,

consider the reduced free energy

G0[ρ] =
κ

m− 1

∫

R2

ρm dx+
1

2

∫

R2

φρ ρ dx =
κ

m− 1

∫

R2

ρm dx− 1

8π

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy .

Problem 1. Fix M > 0 and m ∈ (3/2, 2) and find all minimizers of

I0
M = inf

{

G0[ρ] : ρ ∈ XM

}

.

This problem has been considered by Rein in [50] in view of stability results for kinetic
equations, and more recently in [30] using a reduced free energy functional and tools of
the concentration-compactness method. We will therefore give only the sketches of the
proofs, for the completeness of this paper, and also because we are going to reuse several
intermediate results and techniques in the rotational case, ω 6= 0. Our presentation differs
from the ones of [50, 30] only by minor details (see below) and we do not claim any
originality here.

Theorem 3. Fix M > 0 and m ∈ (3/2, 2). The infimum I0
M is achieved by a unique

minimizer ρ0
∞ ∈ XM (up to translations) of G0. This minimizer is compactly supported,

radially symmetric, monotone non increasing and takes the form

ρ0
∞(x) = (m−1

κ m
)

1
m−1

(

λ0 − φ0
∞(x)

)
1

m−1

+
∀ x ∈ R

2 ,

for some λ0 < 0. Here φ0
∞ := φρ0

∞

denotes the potential associated to the density ρ0
∞.

To prove this result, one has to consider a minimizing sequence (ρn)n∈N for Problem 1
and it is sufficient to prove that there exists ρ0

∞ ∈ XM such that, up to the extraction of a
subsequence, ρn weakly converges ρ0

∞ in L1 ∩ Lm(R2) and limn→∞ G0[ρn] ≥ G0[ρ
0
∞]. The

proof of Theorem 3 relies on a series of Lemmata. Observe that in the setting of Theorem 3,
m > 3/2 > 4/3 so that L4/3(R2) ⊂ L1 ∩ Lm(R2).



14 J. DOLBEAULT AND J. FERNÁNDEZ

Lemma 4. For any ρ ∈ L1(R2) ∩ Lm(R2), m ∈ (4/3, 2), φρ is in Lq(R2) for 1
q = 1

m − 1
2

and there exists a positive constant C such that

1

4π

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy ≤ C ‖ρ‖2 θ
L1(R2) ‖ρ‖

2 (1−θ)
Lm(R2)

where θ = 3m−4
4 (m−1) . As a consequence,

(12) G0[ρ] ≥
κ

m− 1
‖ρ‖m

Lm(R2) −
C

2
‖ρ‖2 θ

L1(R2) ‖ρ‖
2 (1−θ)
Lm(R2)

ist bounded from below for any m ∈ (3/2, 2).

Proof. By the usual Hardy-Littlewood-Sobolev inequality, φρ belongs to Lq(R2). Using
Hölder’s inequality, we get

1

4π

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy ≤ C ‖ρ‖2
L4/3(R2)

,

and ‖ρ‖2
L4/3(R2)

can be interpolated between L1 and Lm again by Hölder’s inequality. Con-

cerning the reduces free energy, observe that

x 7→ κ

m− 1
xm − C

2
M2 θ x2 (1−θ)

is bounded from below as long as 2 (1 − θ) < m, that is for m ∈ (3/2, 2). �

Lemma 5. With the above notations, −∞ < I0
M < 0 if m ∈ (3/2, 2). As a consequence,

I0
M is achieved on the set {ρ ∈ XM : ‖ρ‖Lm(R2) ≤ A} for some positive constant A which

only depends on M and m.

Proof. This follows from a scaling argument. Consider ρ ∈ XM and for any λ > 0, define
ρλ ∈ XM by

ρλ(x) := λ2ρ(λx) ∀ x ∈ R
2 .

Then

G0[ρ
λ] = λ2(m−1)

(

κ

m− 1

∫

R2

ρm dx− λ3−2m

8π

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy

)

is negative for λ small enough, and so is I0
M . Then by (12), x = ‖ρ‖Lm(R2) is such that

κ
m−1 x

m − C
2 M

2 θ x2 (1−θ) ≤ 0, which determines an explicit expression of

A :=

(

(m− 1)C

2κ

)

2(m−1)
m(2m−3)

M
3m−4

m(2m−3) .

�

Lemma 6. Let 0 < M1 < M2. Then

I0
M1

≥
(

M1
M2

)
3m−4
2m−3 I0

M2
.

Proof. This also follows from a scaling argument. For ρ ∈ X 0
M2

, take µ, λ > 0 and define

ρλ,µ by

ρλ,µ(x) = µρ(λx) ∀ x ∈ R
2 .

Then ρλ ∈ F0
M1

if and only if M1 = µλ−2M2. Since

G0[ρ
λ,µ] =

µm λ−2 κ

m− 1

∫

R2

ρm dx− 1

8π
µ2 λ−3

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy ,
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by taking µmλ−2 = µ2λ−3, i.e., λ = µ2−m, we get G0[ρ
λ,µ] = µ3m−4 G0[ρ]. Hence

µ =
(

M1
M2

)
1

2m−3
and G0[ρ

λ,µ] =
(

M1
M2

)
3m−4
2m−3 G0[ρ] ,

which completes the proof. �

Observe that by Lemmata 5 and 6, we can relax the mass constraint in Problem 1 and
simply require that

∫

R2 ρ dx ≤M .
Denote by ρ∗ the radially symmetric decreasing rearrangement associated to a given

function ρ.

Lemma 7. For any ρ ∈ XM ,

G0[ρ
∗] ≤ G0[ρ] .

Moreover, the inequality is strict unless ρ and ρ∗ are equal up to a translation.

Proof. It is an immediate consequence of the preservation of the Lp norm, for any p ≥ 1,
by the symmetric rearrangement, and of Riesz’ inequality, see [44] for more details. �

Define

M(R) :=

∫

|x|>R
ρ(x) dx .

Lemma 8. [50] There exists a constant K > 0 such that, for any radially symetric ρ ∈
L1

+ ∩ L4/3(R2) and any R > 0

−
∫

|x|>R
φρ ρ dx ≤ KM(R)√

R
‖ρ‖L4/3(R2) .

For any α ≥ 2, there exists a positive constant C(α) such that

1 − (1 − x)α − xα ≥ C(α)x (1 − x) ∀ x ∈ (0, 1) .

With m ∈ (3/2, 2), take α = 3m−4
2m−3 > 2. Let Cm := C(3m−4

2m−3 ) and A be the constant in

Lemma 5. If ‖ρ‖Lm(R2) ≤ A, then ‖ρ‖L4/3(R2) ≤Mθ A1−θ, with θ = 3m−4
4 (m−1) .

Lemma 9. [50] For any radially symmetric ρ ∈ XM such that ‖ρ‖Lm(R2) ≤ A and any
R > 0,

G0[ρ] − I0
M ≥ −

(

Cm I0
M

M2
(M −M(R)) +

KMθ A1−θ

√
R

)

M(R) .

Proof. Let ρ1 := ρ IB(0,R) and ρ2 := ρ− ρ1 and φi = φρi . By Lemma 8

G0[ρ] =
κ

m− 1

(
∫

R2

ρm
1 dx+

∫

R2

ρm
2 dx

)

+
1

2

∫

R2

φ1 ρ1 dx+
1

2

∫

R2

φ2 ρ2 dx+

∫

R2

φ1 ρ2 dx

is bounded from below by

I0
M−M(R) + I0

M(R) −
KMθ A1−θ M(R)√

R
.

By Lemma 6 and since I0
M < 0, with x = M

M(R) , we get

G0[ρ] − I0
M +

KMθ A1−θ M(R)√
R

≥ [(1 − x)α + xα − 1]I0
M ≥ −Cm x (1 − x)I0

M ,

so the proof is complete. �
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Proof of Theorem 3. Consider a minimizing sequence (ρn)n∈N for Problem 1. We can
further assume that all ρn are radial and such that ‖ρn‖Lm(R2) ≤ A. By Lemma 9, we can
also require that the functions ρn are supported in a fixed ball of radius

R ≤
(

KM1+θ A1−θ

Cm |I0
M |

)2

.

Hence, up to the extraction of a subsequence, ρn converges as n → ∞ to some limit
ρ0
∞ ∈ XM weakly in L1 ∩ Lm(R2). By the Fréchet-Kolmogorov criterion, φρn strongly

converges to φρ0
∞

in L4(R2), which shows that G0[ρ
0
∞] = I0

M . See [50] for more details.
Uniqueness of the minimizer up to translations follows from the equality cases in the Riesz

inequality for symmetric rearrangements and the expression of φ0
∞ follows from the Euler-

Lagrange equations, where the Lagrange multiplier λ0 associated to the mass constraint
comes out to be negative. �

As a conclusion to this section, we observe that the inequality G0[ρ] ≥ I0
M for all ρ ∈ XM

can be rewritten as

κ

m− 1
‖ρ‖m

Lm(R2) dx+ |I1
0 | ‖ρ‖

3m−4
2m−3

L1(R2)
≥ 1

8π

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy ∀ ρ ∈ XM .

Written for ρλ(x) := λ3/2 ρ(λx), the right hand side of the above inequality is independent
of λ. By optimizing with respect to λ > 0, we get

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy ≤ Cm ‖ρ‖
3m−4

2(m−1)

L1(R2)
‖ρ‖

m
2(m−1)

Lm(R2)
∀ ρ ∈ XM ,

with Cm := 16π κ
1

2(m−1)

(

m−1
2m−3 |I1

0 |
)

2m−3
2(m−1)

. Using κ = 1
m (2π)1−m, we get

Cm := 8
√

2πm
− 1

2(m−1)
(

m−1
2m−3

|I1
0 |
)

2m−3
2(m−1) .

By homogeneity, we observe that the constraint ‖ρ‖L1(R2) = M does not play any role
anymore and that the inequality is invariant under scalings.

Corollary 10. Let m ∈ (3
2 , 2). For any ρ ∈ L1

+ ∩ Lm(R2),
∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy ≤ Cm ‖ρ‖
3m−4

2(m−1)

L1(R2)
‖ρ‖

m
2(m−1)

Lm(R2)
,

the constant Cm is optimal and the equality case is achieved by

ρ(x) =
(

− 1 − φρ(x)
)

1
m−1

+
∀ x ∈ R

2

where ρ is radially symmetric and φρ = 1
4π |·| ∗ρ. Moreover, in the equality case, ρ is unique

up to translations, multiplications by constants and scalings.

3. The case ω 6= 0

3.1. The variational problem. Consider now the case ω 6= 0 and recall that for a density
ρ ∈ L1

+(R2), the reduced free energy is

Gω[ρ] =

∫

R2

ρm

m− 1
dx− ω2

2

∫

R2

|x|2 ρ dx− 1

8π

∫∫

R2×R2

ρ(x) ρ(y)

|x− y| dx dy .

For a given M > 0, the set XM is the set of nonnegative functions ρ with compact support
in L1(R2) satisfying Condition (11) and such that

∫

R2 ρ dx = M .

Problem 2. Fix M > 0, m ∈ (3/2, 2), and find a critical point of Gω in XM .
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Because of the centrifugal force term, Gω is not bounded from below if ω 6= 0 and there is
therefore no global minimizer. Our strategy is to find localized minimizers, i.e., functions ρ
in XM with compact support and such that for some R > 0, supp(ρ) ⊂ B(0, r) with r < R
and ρ minimizes Gω on the set of functions in XM with support in B(0, R). We denote by
R0 = R0(M) the radius of the support of the unique minimizer in the case ω = 0.

3.2. Minimization for densities supported in a fixed ball. As a first step, we fix
R > 0 and prove the existence of minimizers with densities supported in the ball B(0, R).
The scheme is basically the one of Section 2, so we shall skip most of the details.

Lemma 11. Consider ρ ∈ Lm(R2), m ∈ (4/3, 2), with compact support in B(0, R) for
some R > 0. Then

Gω[ρ] ≥ G0[ρ] − ω2

2
R2 ‖ρ‖L1(R2),

which is bounded from below by I0
M − ω2R2M/2 with M = ‖ρ‖L1(R2).

Proof. The proof is a straightforward consequence of Lemma 4 after noticing that functions
in Lm(R2) with compact support are also in L1(R2). �

Lemma 12. For any M > 0 and any R > R0(M),

−∞ < Iω
M (R) := inf {Gω[ρ] : ρ ∈ XM , supp(ρ) ⊂ B(0, R)} < 0 .

Proof. The minimizer of the non rotational problem is an admissible function in XM , and
its energy is negative. �

Proposition 13. For any M > 0 and any R > R0(M), there exists a function ρω
∞ ∈ XM

with supp(ρ) ⊂ B(0, R) such that Gω[ρω
∞] = Iω

M(R). Moreover, there exists λω ∈ R such
that

ρω
∞ = Am

(

λω + ω2

2
|x|2 − φω

∞(x)
)

1
m−1

+
∀ x ∈ B(0, R) .

Here Am := [m−1
κ m

]1/(m−1) and φω
∞ denotes the potential associated to the density ρω

∞.

Proof. Let (ρω
n)n∈N be a minimizing sequence. There exists ρω

∞ ∈ L1 ∩ Lm(R2) such that

ρω
n ⇀ ρω

∞ in L1 ∩ Lm(R2) .

As in Theorem 3, ‖ρω
∞‖L1(R2) = M and limn→∞ Gω[ρω

n ] = Gω[ρω
∞]. On B(0, R), x 7→ |x|2 is

bounded, so the convergence of
∫

R2 |x|2 ρω
n dx to

∫

R2 |x|2 ρω
∞ dx is straightforward. �

Observe that we have not proven yet that supp(ρω
∞) ⊂ B(0, r) for some r < R with R

well chosen, i.e., that ρω
∞ is a localized minimizer. This is the purpose of the next section,

at least when ω is small.

3.3. Existence of a localized minimizer for small values of ω. For a given R > 0,
the family (ρω

∞)ω is uniformly bounded in Lm(R2) as ω → 0. This follows from (12) written
for ρ = ρω

∞, namely

κ

m− 1
‖ρ‖m

Lm(R2) −
C

2
‖ρ‖2 θ

L1(R2) ‖ρ‖
2 (1−θ)
Lm(R2)

≤ G0[ρ] = Gω[ρω
∞] + ω2

2

∫

R2

|x|2 ρω
∞ dx < ω2

2
M R2

using Gω[ρω
∞] = Iω

M(R) < 0. Hence, (ρω
∞)ω is weakly relatively compact in L1 ∩ Lm(R2) as

ω → 0 and the limit can be identified with ρ0
∞.

Theorem 14. Let ρω
∞ be a minimizer in the sense of Proposition 13, for some R > R0(M).

Then (ρω
∞)ω strongly converges in L1∩Lm(R2) as ω → 0 to the unique radial minimizer ρ0

∞

of Problem 1 verifying Condition (11)
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Proof. Let ρ∞ be the weak limit of a convergent subsequence (ρn)n∈N = (ρωn
∞ )n∈N, with

limn→∞ ωn = 0. Since ρn is a minimizer of Iωn
M (R) and ρ0

∞ is in the corresponding set of
admissible functions, it follows that

Gωn [ρ0
∞] − ω2

n

2

∫

R2

|x|2ρ0
∞ dx ≥ Gωn [ρn] ≥ G0[ρn] − ω2

n

2
M R2 ≥ G0[ρ

0
∞] − ω2

n

2
M R2 ,

thus showing that G0[ρ∞] = limn→∞Gωn [ρn] = I0
M using arguments similar to those of

Theorem 3: (ρn)n∈N is a minimizing sequence for Problem 1. If the convergence in Lm(R2)
was not strong, then we would get G0[ρ∞] < I0

M . Up to the extraction of a further sub-
sequence, the convergence also holds almost everywhere and in L1(R2). From Theorem 3,
the minimizer ρ0

∞ of Problem 1 is unique up to translations: ρ∞(x) = ρ0
∞(x + x0) for any

x ∈ R
2, for some x0 ∈ R

2 such that |x0| ≤ R − R0(M). Using Condition (11), x0 = 0.
The limit is unique, so the convergence to ρ0

∞ holds for any subsequence and the proof is
complete. �

Corollary 15. Let λω be defined as in Proposition 13. Then limω→0 λ
ω = λ0 where λ0 is

defined in Theorem 3.

Proof. Since φω
∞ strongly converges to φ0

∞ in L4(R2), the result follows from the observation
that on B(0, R0(M)),

λω =
(

1
Am

ρω
∞

)m−1 − ω2

2
|x|2 + φω

∞ →
(

1
Am

ρ0
∞

)m−1 − ω2

2
|x|2 + φρ0 = λ0 a.e.

�

Lemma 16. Let ω > 0 and assume that Problem 2 admits a localized minimizer, ρω
∞. Then

there exists ǫ > 0 such that ρω
∞ ∈ L2+ǫ(R2).

Proof. Take µ > λω+ω2

2
R2, and observe that by Proposition 13,

∫

R2(ρ
ω
∞)2+ǫ dx = A2+ǫ

m (I1+
I2) with

I1 :=

∫

|φω
∞
|<µ

(

λω + ω2

2
|x|2 − φω

∞

)
2+ǫ
m−1

+
dx ≤M

(

µ− |λω| + ω2

2
R2
)

2+ǫ
m−1

−1
,

I2 :=

∫

|φω
∞
|≥µ

(

λω + ω2

2
|x|2 − φω

∞

)
2+ǫ
m−1

+
dx ≤ 2

µs

∫

|φω
∞
|≥µ

(φω
∞)

2+ǫ
m−1 dx ,

with s = q − 2+ǫ
m−1 > 0, 1/q = 1/m − 1/2 as given by Lemma 4, and with both integrals

I1 and I2 restricted to the support of ρω
∞. Now, also from the first part of Lemma 4, the

result will follow as long as ǫ is small. �

Lemma 17. The potential φω
∞ is a continous function.

Proof. By Hardy’s inequality, for any x, y ∈ R
2,

|φω
∞(x) − φω

∞(y)| ≤ ‖ρω
∞‖L2+ǫ(R2)

(

∫

K

∣

∣

∣

∣

1

|z − x| −
1

|z − y|

∣

∣

∣

∣

2+ǫ
1+ǫ

dz

)

1+ǫ
2+ǫ

with K := B(x,R) ∪B(y,R). �

Corollary 18. With the above notations, limω→0 ‖φω
∞ − φ0

∞‖L∞(R2) = 0.

Proof. This is an easy consequence of Theorem 14 and Lemma 17. �

Corollary 19. For any ǫ ∈ (0, 1), there exists ωǫ such that supp(ρω
∞) ⊂ B(0, (1 + ǫ)R0)

for any ω ∈ (0, ωǫ).

As a consequence, for any R > R0, if ω is small enough, ρω
∞ is a localized minimizer for

Problem 2. This proves Theorem 1 (i).
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Proof. Since ρ0 is radial, the minimizer of Problem 1 solves the following fixed point identity

φ0
∞(r) = − 1

2π

∫ ∞

0

s

r
f
(s

r

)

ρ0
∞(s) ds , ρ0

∞(r) =
(

λ0 − φ0
∞(r)

)
1

m−1

+
I[0,R](r) ,

where λ0 is implicitly fixed by the condition: 2π
∫∞
0 ρ0

∞(r) r dr = M . By writing the kernel

− 1
4π |x| in radial coordinates and by integrating with respect to the angle, we obtain

f(t) =

∫ π

0

dθ√
1 + t2 − 2t cos θ

.

See [50] for more details. A simple calculation shows that

dφ0
∞

dr
(r) =

1

2π r2

∫ ∞

0

∫ π

0

1 − s
r cos θ

(1 + s2

r2 − 2 s
r cos θ)

3
2

dθ ρ0
∞(s) s ds ,

so that the potential φ0
∞ is an increasing function at least for |x| ≥ R0.

Take R = (1 + ǫ0)R0 and consider minimizers ρω
∞ supported in the ball B(0, R). For

any ǫ ∈ (0, ǫ0), we define Aǫ := B(0, R) \ B(0, (1 + ǫ)R0). Because of the monotonicity
property of φ0

∞, there exists δ = δ(ǫ) such that

λ0 − φ0
∞ < −2 δ ∀ x ∈ Aǫ .

By Corollaries 15 and 17, for ω small enough,

λω − φω
∞ + ω2

2
|x|2 < −δ ∀ x ∈ Aǫ ,

which proves that supp(φω
∞) ⊂ B(0, (1 + ǫ)R0). �

3.4. There are no solutions for large values of ω.

Lemma 20. Let ω1 > ω2 ≥ 0 and consider two minimizers ρω1
∞ and ρω2

∞ in the sense of
Proposition 13. Then

(i) Gω[ρω1
∞ ] ≤ Gω[ρω2

∞ ],
(ii)

∫

R2 |x|2 ρω1
∞ dx ≥

∫

R2 |x|2 ρω2
∞ dx.

Proof. Since ρω2
∞ is a minimizer for angular velocity ω2, we observe that

κ

m− 1

∫

R2

(ρω2
∞ )m dx− 1

2
ω2

2

∫

R2

|x|2 ρω2
∞ dx− 1

8π

∫∫

R2×R2

ρω2
∞ (x) ρω2

∞ (y)

|x− y| dx dy

≤ κ

m− 1

∫

R2

(ρω1
∞ )m dx− 1

2
ω2

2

∫

R2

|x|2 ρω1
∞ dx− 1

8π

∫∫

R2×R2

ρω1
∞ (x) ρω1

∞ (y)

|x− y| dx dy

≤ κ

m− 1

∫

R2

(ρω1
∞ )m dx− 1

2
ω2

1

∫

R2

|x|2 ρω1
∞ dx− 1

8π

∫∫

R2×R2

ρω1
∞ (x) ρω1

∞ (y)

|x− y| dx dy

which is the statement of (i). By adding the following two inequalities

κ

m− 1

∫

R2

(ρω1
∞ )m dx− 1

2
ω2

2

∫

R2

|x|2 ρω1
∞ dx− 1

8π

∫∫

R2×R2

ρω1
∞ (x) ρω1

∞ (y)

|x− y| dx dy

≥ κ

m− 1

∫

R2

(ρω2
∞ )m dx− 1

2
ω2

2

∫

R2

|x|2 ρω2
∞ dx− 1

8π

∫∫

R2×R2

ρω2
∞ (x) ρω2

∞ (y)

|x− y| dx dy

and

κ

m− 1

∫

R2

(ρω2
∞ )m dx− 1

2
ω2

1

∫

R2

|x|2 ρω2
∞ dx− 1

8π

∫∫

R2×R2

ρω2
∞ (x) ρω2

∞ (y)

|x− y| dx dy

≥ κ

m− 1

∫

R2

(ρω1
∞ )m dx− 1

2
ω2

1

∫

R2

|x|2 ρω1
∞ dx− 1

8π

∫∫

R2×R2

ρω1
∞ (x) ρω1

∞ (y)

|x− y| dx dy ,

we obtain (ii). �
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Lemma 21. Let ρω
∞ be a critical point for Problem 2. There exists a positive constant C

such that, if ρ0
∞ is the radial minimizer for Problem 1, then

ω2 ≤ C
∫

R2 |x|2 ρ0
∞(x) dx

.

Proof. Observe that if ρω
∞ ∈ XM , the rescaled functions x 7→ ρω,λ

∞ (x) := λ2 ρω
∞(λx) are also

in XM for any λ > 0. Hence the function Fω(λ) := Gω[ρω,λ
∞ ] attains a minimum at λ = 1,

which means that

2κ

∫

R2

(ρω
∞)m dx+ ω2

∫

R2

|x|2 ρω
∞ dx− 1

8π

∫∫

R2×R2

ρω
∞(x) ρω

∞(y)

|x− y| dx dy = 0 ,

ω2 =
−2κ

∫

R2(ρ
ω
∞)m dx+ 1

8 π

∫∫

R2×R2
ρω
∞

(x) ρω
∞

(y)
|x−y| dx dy

∫

R2 |x|2 ρω
∞ dx

.

On the one hand, by Lemma 20 (ii),

ω2 ≤ − G0[ρ
ω
∞]

(m− 1)
∫

R2 |x|2 ρω
∞ dx

≤ |G0[ρ
ω
∞] |

(m− 1)
∫

R2 |x|2 ρ0
∞ dx

.

On the other hand, by (12),

| G0[ρ
ω
∞] | ≤ C

2
M2 θ ‖ρω

∞‖2 (1−θ)
Lm(R2)

− κ

m− 1
‖ρω

∞‖m
Lm(R2)

is bounded because the function t 7→ C
2 M

2 θ t2 (1−θ) − κ
m−1 t

m is bounded on R
+ for any

m ∈ (3/2, 2). �

As a consequence, we obtain the statement (ii) of Theorem 1.

3.5. A continuation method for radial minimizers.

Lemma 22. Let ρ be a nonnegative radial function and assume that supp(ρ) ⊂ B(0, R)
for some R > 0. If for some x0 ∈ R

2 \ B(0, R) x0 ·
(

∇φρ(x0) − ω2 x0

)

≤ 0 holds, where

φρ = − 1
4π |·| ∗ ρ, then x0 ·

(

∇φρ(µx0) − ω2 (µx0)
)

< 0 for any µ > 1.

Proof. If ρ is a radial function,

φρ(x) = − 1

4π

∫

R2

ρ(y)

|x− y| dy

can be rewritten as

φρ(x) = − 1

4π

∫ ∞

0
s ρ(s)

∫ π

−π

dθ√
r2 + s2 − 2 r s cos θ

= − 1

2π

∫ ∞

0
ρ(s)

s

r
f
(s

r

)

ds

with r = |x| and

f(t) :=

∫ π

0

dθ√
1 + t2 − 2 t cos θ

.

Hence
x

|x| · ∇φρ(x) =
1

2π

∫ ∞

0
ρ(s)

s

r2

[

f
(s

r

)

+
s

r
f ′
(s

r

)]

ds .

We observe that

f(t) + t f ′(t) =

∫ π

0

1 − t cos θ

(1 + t2 − 2 t cos θ)3/2
dθ

is nonnegative for t < 1, that is s < r. If ρ is radial, supp(ρ) ⊂ B(0, R) and x ∈ R
2\B(0, R),

then
x

|x| · ∇φρ(x) > 0 .
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Moreover, for any t ∈ (0, 1),

d

dt

[

t2
(

f(t) + t f ′(t)
)]

=

∫ π

0
t
(3 cos(2 θ) + 1) t2 − 8 cos θ t+ 4

2 (t2 − 2 cos θ t+ 1)5/2
dθ

= t
(t− 1)2 K

(

4 t
(t+1)2

)

+
(

3 − t2
)

E
(

4 t
(t+1)2

)

(t− 1)2
√

(t+ 1)2
,

where K and E are respectively the complete elliptic integrals of the first and second kind,
and satisfy the relations

K(0) =
π

2
and 0 ≤ dK

dk
=

∫ 1

0

dt
√

(1 − t2) [1 − (1 − k2) t2]
=

E(k)

k (1 − k2)
− K(k)

k
.

Since K and E take positive values for t ∈ (0, 1), it follows that K
(

4 t/(t+ 1)2
)

and

E
(

4 t/(t+ 1)2
)

take positive values for t ∈ (0, 1). Hence

d

dt

[

t2
(

f(t) + t f ′(t)
)]

≥ 0

and we conclude that µ 7→ x
|x| · ∇φρ(µx) is decreasing for µ > 1. �

Consider a critical point ρ of Gω and assume that ρ is radial and compactly supported.
Then ρ can be explicitly written in terms of its own potential, which amounts to consider
the integral equation

ρ(x) = Am

(

λ[ρ] + ω2

2
|x|2 − φω

∞(x)
)

1
m−1

+
where φω

∞ = − 1

4π | · | ∗ ρ .

We can also define R1[ρ] := min{r > 0 : supp(ρ) ⊂ B(0, r)} and notice that for any x ∈
∂B(0, R1[ρ]), λ[ρ] = φω

∞(x) − ω2

2
|x|2. Let

h[ρ] := sup
{

φω
∞(x) − ω2

2
|x|2 : |x| > R1[ρ]

}

.

From Lemma 22, we deduce the

Corollary 23. Let ρ be a nonnegative radial compactly supported function in L(R2). If ρ
is a critical point of Gω such that

∫

R2 ρ dx = M and h[ρ] > λ[ρ], then x ·
(

∇φρ − ω2 x
)

> 0
for any x ∈ ∂B(0, R1[ρ]).

As in Section 1.5, define Sω
M,rad as the set of radial localized minimizers with angular

velocity ω. We recall that by definition of a radial localized minimizer, for any ρω
∞ ∈ Sω

M,rad,

there exists ε[ρω
∞] > 0 such that

Gω[ρω
∞] = min

{

Gω[ρ] : ρ ∈ Lrad(R
2) , supp(ρ) ⊂ B(0, R1[ρ

ω
∞]+ε[ρω

∞]) and

∫

R2

ρ dx = M

}

where Lrad(R
2) is the set of nonnegative radial functions ρ in L1(R2). Notice that the

assumption (11) is automatically satisfied.

Proof of Theorem 2. We have already seen in Section 3.3 that Prad
0 is true. Now fix ω0 > 0

such that Prad
ω is true in [0, ω0]. First of all observe that, up to a subsequence, ρω

∞ converges
strongly in L1 ∩Lm(R2) as ω → ω0 to a radial localized minimizer ρω0

∞ . It is also true that
λ(ρω

∞) → λ(ρω0
∞ ). Moreover, it is easy to see that Lemmata 16 and 17, and Corollary 18

also hold for ω → ω0. So, in order to complete the proof we only need to get an analog
of Corollary 19. But to do so, only the monotonicity property of the potential in a small
neighborhood of the support of ρω0

∞ is needed. In our case this is ensured by Corollary 23.
�
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3.6. Symmetry breaking: minimizers are not radially symmetric if ω 6= 0, small.

In the non rotational case the minimizer is radial and unique up to translations. Here by
radial we mean radial in the plane, or axially symmetric if we consider the three dimensional
flat system, with mass concentrated on the plane. The key point is the fact that the
potential energy term is decreased under symmetric rearrangements whereas the other
term appearing in the energy remains unchanged. On the other hand, in the rotational
case the term

∫

R2 |x|2 ρ dx behaves in the opposite direction, and the resulting behaviour
of the energy is unclear. Is the minimizer of the rotational problem radial ? The answer is
no in general, and quite surprisingly, even for small values of ω.

Proposition 24. There exists ε > 0 such that for any ω ∈ (0, ε), any localized minimizer
of Gω in XM is non radially symmetric.

Proof. Let ρω
∞ be a minimizer for the problem with angular velocity ω and suppose that it

is radial. Define for any λ > 0 the scaled density

ρω,λ
∞ (x) := λρω

∞(λx1, x2) ∀ x = (x1, x2) ∈ R
2 ,

and consider the function F (λ) := Gω[ρω,λ
∞ ]. Observe that, by Corollary 15, ρω,λ

∞ is an
admissible function for Problem 2, at least for λ close to 1. Since ρω

∞ is a minimizer, it
follows that F ′(1) = 0. Taking into account the radiality of ρω

∞, this implies that

2κ

∫

R2

(ρω
∞)m dx+ ω2

∫

R2

|x|2 ρω
∞ dx = − 1

4π

∫

R2

φω
∞ ρω

∞ dx .

On the other hand, since Gω[ρω
∞] < 0, it follows that

κ

m− 1

∫

R2

(ρω
∞)m dx ≤ ω2

2

∫

R2

|x|2 ρω
∞ dx− 1

8π

∫

R2

φω
∞ ρω

∞ dx

= ω2

∫

R2

|x|2 ρω
∞ dx+ κ

∫

R2

(ρω
∞)m dx ,

κ
2 −m

m− 1

∫

R2

(ρω
∞)m dx ≤ ω2

∫

R2

|x|2 ρω
∞ dx .

Let ω0 ∈ (0, ω∗). By Lemma 20,
∫

R2 |x|2 ρω
∞ dx can be bounded by Cω0 :=

∫

R2 |x|2 ρω0 dx
uniformly with respect to ω ∈ (0, ω0). Hence

κ
2 −m

m− 1

∫

R2

(ρω
∞)m dx ≤ ω2 Cω0 .

By Theorem 14, we know that ρω
∞ ⇀ ρ0

∞ both in L1 and Lm, and in particular, it follows
that

∫

R2(ρ
0
∞)m dx ≤ 0, which is a contradiction. �

3.7. Strict localized minimizers. The strategy of proof for radial localized minimizers
(Lemma 22) cannot be extended to the non radial case, as it is shown by the following
result.

Proposition 25. Assume that supp(ρ) ⊂ B(0, R) for some R > 0. There exists t0 ∈
(1,
√

3/2) such that, if for some x0 ∈ B(0, t0 R)c,

(13) x0 ·
(

∇φρ(x0) − ω2 x0

)

≤ 0 ,

and if we define

t 7→ f(t) := x0 ·
(

∇φρ(t x0) − ω2 (t x0)
)

,

then f ′ takes negative values for any t > t0. Alternatively, if supp(ρ) ⊂ B(0, 3R/5), the
same result holds with t0 = 1.
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On the contrary, there exists a nonnegative function ρ ∈ L1(R2) with supp(ρ) ⊂ B(0, R)
for some R > 0 such that f defined as above takes negative (respectively, positive) values
in an interval (1, 1 + ε) (respectively (1 + ε, 1 + 2ε)) for some ε > 0.

Proof. This proof is based on a computation. We start with the following observations:

(1) x0 · y ≤ |x0|2 for any y ∈ supp(ρ), so that

−x0 · (x0 − y)

|x0 − y|3 ≤ 0 .

(2) Using the expression of φρ, we get

f(t) =

∫

R2

x0 · (t x0 − y)

|t x0 − y|3
ρ(y)

4π
dy − t ω2 |x0|2 .

(3) Assumption (13) means f(1) ≤ 0, that is

ω2 |x0|2 ≥
∫

R2

x0 · (x0 − y)

|x0 − y|3
ρ(y)

4π
dy .

Hence

f(t) ≤
∫

R2

[

x0 · (t x0 − y)

|t x0 − y|3 − t
x0 · (x0 − y)

|x0 − y|3
]

ρ(y)

4π
dy .

With r := |y|/|x0| ∈ [0, 1] and α := (x0 · y)(|x0| |y|)−1 ∈ [−1, 1], we observe that

|t x0 − y|2 − |x0 − y|2 = |x0|2 (t2 − 1 − 2 t r (α− 1)) ≥ |x0|2 (t2 − 1) ≥ 0

for any t ≥ 1. For any given (r, α) ∈ [0, 1] × [−1, 1], define

g(t) := |x0|
[

x0 · (t x0 − y)

|t x0 − y|3 − t
x0 · (x0 − y)

|x0 − y|3
]

.

We compute

g′(t) =
|x0|5

|t x0 − y|5
(

t2 − 2 t r α+ r2 − 3(t− r α)2
)

− |x0|
x0 · (x0 − y)

|x0 − y|3

and either
(

t2 − 2 t r α+ r2 − 3(t− r α)2
)

≤ 0, or not. In the first case, g′(t) ≤ 0. Assume
from now on that the second case holds. With s := r α ∈ [−1, 1], this means

0 ≤ t2 − 2 s t+ r2 − 3(t− s)2 = −2 t2 + 4 s t+ r2 − 3 s2 ,

which defines a family of domains whose boundary are ellipses Er parametrized by r ∈ [0, 1],
all of them contained in E1 corresponding to r = 1, which is itself included in the half-plane
corresponding to s > 0 and has a non empty intersection with the half-plane corresponding
to t > 1. Using |t x0 − y|5 ≥ |x0 − y|5, we get

g′(t) ≤ |x0|5
|x0 − y|5

(

−2 t2 + 4 s t+ r2 − 3 s2
)

− |x0|
x0 · (x0 − y)

|x0 − y|3 =:
h(t)

|x0 − y|5 ,

where

h(t) = −2 t2 + 4 s t− 1 + 3 s+ r2 s− 5 s2 .

For s > 0, the function h is nonnegative inside a family of ellipses parametrized by r ∈ [0, 1],
all of them contained in the one corresponding to r = 1, which itself contains E1. See
Figure 1. However, h(t) < 0 in the half-plane corresponding to t >

√

3/2 ≈ 1.22474 . . .
Notice that the condition h(1) > 0 means s ∈ (3/5, 1).
For more accurate estimates, one has to use

g′(t) =
r2 − 3 s2 − 2 t2 + 4 s t

(r2 + t2 − 2 s t)5/2
− 1 − s

(r2 − 2 s + 1)3/2
.
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Numerically, one finds that the optimal value for t0 is t0 ≈ 1.17355 . . ., which, for r = 1
and s ≈ 0.898872 . . ., gives g′(t0) = 0 and g′(t) > 0 for any t ∈ (0, t0). Explicit but
ugly algebraic computations can be done, which show that g′(t) takes negative values in
a neighborhood of t = 1+ and changes sign for higher values of t. Details are left to the
reader. �

In Proposition 25, we only used the Poisson equation but did not take into account the
fact that we are interested in the sign of f only for critical points of Gω. It is an open
question to decide whether in such a case f is automatically positive or not.

Because of the above considerations and in order to extend the method which has been
proposed for the radial case to the non radial one, we have to impose an additional restric-
tion on the notion of localized minimizers.

Definition A strict localized minimizer ρ is a localized minimizer of Gω for which there

exists an open simply connected set Ω with the two properties:

(1) supp(ρ) ⊂ Ω,

(2) {x ∈ R
2 : ρ(x) −ω2

2
|x|2>λ[ρ]}=Ω\supp(ρ).

3.8. A continuation method for non radial but strict localized minimizers. Define
Sω

M as the set of strict localized minimizers. Exactly as for radial minimizers, each ρω
∞ ∈ Sω

M
can be explicitly written in terms of its own potential, which amounts to consider the
integral equation

ρω
∞(x) = Am

(

λ[ρω
∞] + ω2

2
|x|2 − φω

∞(x)
)

1
m−1

+
where φω

∞ = − 1

4π | · | ∗ ρ
ω
∞ ,

Am := [m−1
κ m

]1/(m−1) and λ[ρω
∞] < 0 is a parameter which is determined byM , but eventually

depends on ρω
∞. Let µ[ρω

∞] := minx∈supp(ρω
∞

)(φ
ω
∞(x) −ω2

2
|x|2) and consider the set of paths

Γ[ρω
∞] :=

{

γ∈C0([0,∞); R2) : γ(0)∈supp(ρω
∞) , (φeff)ω∞(γ(0)) = µ[ρω

∞] , lim
s→∞

|γ(s)| = ∞
}

where (φeff)ω∞(x) := φω
∞(x) + ω2

2
|x|2. Along a path γ ∈ Γ[φω

∞], define the highest altitude
of the effective potential (φeff)ω∞ as

h[γ, ω, ρω
∞] := sup

s∈[0,∞)

(

φω
∞(γ(s)) − ω2

2
|γ(s)|2

)

.

We shall say that Property Pω holds true if and only if there exists an open set D(ω) such
that for any ρω

∞ ∈ Sω
M , there exists a rotation R around the origin such that

(1) supp(ρω
∞) ⊂ R−1(D(ω)),
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(2) If φω
∞(x) − ω2

2
|x|2 = infγ∈Γ[φω

∞
] h[γ, ω, ρ

ω
∞], then Rx ∈ R

2 \ D(ω).

Observe that, since λ[ρω
∞]−h[γ, ω, ρω

∞] ≤ 0, Property Pω true implies that every minimizer
ρω
∞ ∈ Sω

M is a strict localized minimizer. We could also consider only the case R = Id but
this would probably be by far more restrictive.

Theorem 26. For any M > 0, the maximal interval in ω containing ω = 0 for which
Property Pω holds true is an open interval.

Proof. First of all observe that, up to a subsequence, (ρω
∞)ω converges strongly to some

minimizer ρω0
∞ as ω → ω0 in L1 ∩ Lm(R2). The analogues of Lemmata 16 and 17, and

Corollary 15 and 18 also hold for ω → ω0. Suppose that Pω0 holds. It follows that for any
ρω0
∞ ∈ Sω0

M

h[γ, ω0, ρ
ω0
∞ ] > λ[ρω0

∞ ] .

By continuity, the same will be true for any ρω
∞ ∈ Sω

M as long as |ω − ω0| is small enough.
Since Property Pω holds true for ω → 0, the proof is complete. �

Observe that Theorem 1 (i) is a consequence of Theorem 26.
As in the radial case, if we knew that localized minimizers are all strict, then we could

characterize the supremum of ω > 0 such that Pω holds as

sup
{

ω0 > 0 : ∀ω ∈ (0, ω0) , sup
ρω
∞
∈Sω

M

(

inf
γ∈Γ[ρω

∞
]
h[γ, ω, ρω

∞] − λ[ρω
∞]
)

> 0
}

.

4. Concluding remarks

4.1. Ground states and critical points. In the porous medium context, ground states,

or to be precise, nonnegative solutions converging to 0 at infinity, have been studied already
long ago, see for instance [22, 21]. It has been proved that such solutions may have several
connected components. It has also to be noted that such ground states are not minimizers
of an energy, but only critical points, which can be somewhat misleading from the point of
view of physics. There is usually no external potential to interact with.

From a variational point of view, after the seminal paper [31], a very extended literature
has been devoted to the construction of critical points concentrated at specific locations
determined by an external potential, and it is out of the scope of this paper to review even
the latest contributions. Finding such critical points has however been done mostly in the
context of the Schrödinger operator and we are not aware of any contribution which applies
to porous media equations coupled to the gravitational Poisson equations.

4.2. Fluid models, axial symmetry and symmetry breaking. Various stationary
solutions of fluid models have been studied. In [42], the existence of steady, compactly
supported, axisymmetric solutions of the Euler-Poisson system in the three dimensional
space is considered, for prescribed mass and angular momentum. In this paper, the author
proves that stationary solutions, which are seen as critical points of a free energy functional,
exist as long as the angular velocity is not too big, whereas no solution exists for angular
velocities bigger than some critical value. This result is quite similar to Theorem 1, but
in a three dimensional setting and in the case of axisymmetric densities. Let us emphasize
that a function f is axisymmetric if, in a cylindrical coordinates system (r, θ, z) ∈ [0,∞)×
[0, 2π) × R, f only depends on r and z. We will use below a weaker notion of partial

symmetry.

Steady, spherically symmetric solutions of the three dimensional Euler-Poisson system
are also considered in [45], but instead of fixing the mass as a constraint, the authors
prescribe the value of the central density, i.e., the density at the origin. They prove the
existence of steady solutions as long as the central density is bigger than some critical value
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which depends on the angular velocity. Moreover, for a fixed central density, the radius of
the support increases with angular velocity.

Concerning the existence of solutions with fixed mass and large angular momenta, but
without symmetry assumption, McCann in [47] builds critical points of the free energy
functional made of solutions with support splitted into two disjoint components, rotating
at constant angular velocity. To each component is associated a mass, and the mass ratio
is specified. Such critical points are local minimizers, where local has to be understood
with respect to the Wasserstein metric, see [47] for more details.

The results of our paper are concerned with the simplified situation of flat systems,

but such a simplified framework allows us to give more detailed results, for instance on
the continuation of the solutions, symmetry breaking or how to characterize the critical
angular velocity.

4.3. Scalings. The centrifugal force term in the free energy introduces a length scale.
Scalings are therefore of no use to study the problem corresponding to ω 6= 0, fixed, but
there is a scaling invariance exactly as in the case ω = 0 if one also varies ω in terms of the
scaling parameter.

Proposition 27. For any M > 0, the critical angular velocities ω∗(M) and ω∗(M) in the
sense of Theorems 1 and 26 satisfy

ω∗(M) = M
1
2

m−3
2m−3 ω∗(1) and ω∗(M) = M

1
2

m−3
2m−3 ω∗(1) .

Moreover, ρω
∞ ∈ XM is a localized minimizer with angular velocity ω if and only if (ρω

∞)λ ∈
X1 with ρλ(x) := λρ(λ2−m x), λ = M−1/(2m−3), is also a localized minimizer, with angular

velocity λ(m−3)/2ω.
For any given ω > 0,

(1) there is a localized minimizer in XM if M > (ω/ω∗(1))
2(2m−3)/(m−3),

(2) there is no localized minimizer in XM if M < (ω/ω∗(1))2(2m−3)/(m−3).

Proof. For any λ > 0, let ρλ(x) := λρ(λ2−m x) and observe that supp(ρλ) = λm−2 supp(ρ),

‖ρλ‖L1(R2) = λ2m−3 ‖ρ‖L1(R2) and Gω2[ρ
λ] = λ3m−4 Gλ(m−3)/2 ω1

[ρ] .

With λ = (M2/M1)
1/(2m−3) and λ(m−3)/2 ω2 = ω1, it is clear that ρλ is a localized minimizer

of Gω2 if ρ is a localized minimizer of Gω1 . �

4.4. Dynamical stability. As far as we know, the notion of localized minimizers is new
and seems particularly well adapted to gravitational problems. Such a notion is motivated
by the study of the dynamical stability, which is still to be understood. However, at a
formal level, we can state a result and formulate an open problem which should attract
interest.

Proposition 28. Fix M > 0 and ω ∈ (0, ω∗(M)) such that Pω holds and consider a strict
localized minimizer ρω

∞ ∈ XM with associated Lagrange multiplier λω such that, a.e. on the
support of ρω

∞,

λω =
(

1
Am

ρω
∞

)m−1 − ω2

2
|x|2 + φω

∞ .

For any ε > 0, sufficiently small, there exists η > 0 such that the following property holds.
Let ρ be a solution of the evolution equation (10), that is

∂tρ = ∇ ·
[

∇ν(ρ) − ω2 x ρ+ ρ∇xφ
]

φ = − 1

4π |x| ∗ ρ
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with initial datum ρ(x, t = 0) = ρ0 ∈ XM and assume that

Gω[ρ0] < Iω
M + ε .

Then there exists η > 0 such that, if for any t > 0,

(14)
(

1
Am

ρ(·, t)
)m−1 − ω2

2
|x|2 + φρ(·, t) < λω + f(ε) x ∈ supp(ρ(·, t)) a.e. ,

for some continuous function f with f(0) = 0, f(s) > 0 for any s > 0, then

sup
ρω
∞
∈Sω

M

‖ρ(·, t) − ρω
∞‖Lm(R2) < η ∀ t > 0 .

Such a stability result is a rather easy consequence of the localized minimization method
developed in this paper, but proving that a bound like (14) holds for any t > 0 if it holds
at t = 0 is an open question.

An alternative approach based on McCann’s approach in [47] can also be used. Since
Equation (10) is formally the gradient flow of the reduced free energy with respect to the
Wasserstein distance, a dynamical stability result should hold in the corresponding sense.

4.5. Partial symmetry. One of the features that we have established in this paper is the
symmetry breaking, which is known to be a difficult question. See for instance [11, 28]
for related issues in the simpler case of the Caffarelli-Kohn-Nirenberg inequality. Using
the Schwarz foliated symmetrization, see for instance [56], the symmetry assumption (11)
results in a partial symmetry property of the localized minimizers which can be described
as follows.

Proposition 29. If ρ is a localized minimizers of Gω in the sense of Theorem 1, up to a
rotation, in radial coordinates (r, θ) ∈ (0,∞) × [0, 2π),

ρ(r, θ + π) = ρ(r, θ) and ρ(r, 2π − θ) = ρ(r, θ) ,

and for any r > 0, θ 7→ ρ(r, θ) is monotone non increasing on (0, π/2).

The proof is left to the reader.

Appendix: Summary of the notations

To a given energy profile γ, we associate a local Gibbs state

Gf (t, x, v) := γ

(

1

2
|v|2 + φ(t, x) − 1

2
ω2 |x|2 + µf (t, x)

)

.

Here Gf is defined with respect to a given distribution function f and µf is the local
Lagrange multiplier associated to the constraint

∫

R2

Gf (t, x, v) dv =

∫

R2

f(t, x, v) dv =: ρf . (1)

With µ̄ implicitly by the condition
∫

R2 γ
(

1
2 |v|2 + µ̄(ρ)

)

dv = ρ, which means that

µ̄(ρ) = Γ−1(ρ) (2)

where Γ(s) := 2π
∫∞
s γ(σ) dσ, then µf is explicitly given by µf = µ̄ ◦ ρf −φ. At the kinetic

level, the main purpose of the paper is to find a stationary solution (f, φ) of

∂tf + v · ∇xf + ω2 x · ∇vf + 2ω v ∧∇vf −∇xφ · ∇vf = Gf − f =: Q(f) ,

φ = − 1

4π |x| ∗
∫

R2

f dv ,
(3)
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where Q is a relaxation time approximation kernel. The free energy functional is defined
as

Fω[f ] :=

∫∫

R2×R2

[

f

(

1

2
|v|2 − 1

2
ω2 |x|2 +

1

2
φ

)

+ β(f)

]

dx dv

with β(s) :=
∫ 0
s γ

−1(σ) dσ.
The reduced free energy functional, is

Gω[ρ] :=

∫

R2

[

h(ρ) +
(1

2
φ− 1

2
ω2 |x|2

)

ρ

]

dx

with h(ρ) = H(µ̄(ρ)) − ρ µ̄(ρ) and H(s) :=
∫ s
0 Γ(σ) dσ. Notice that Γ(µ̄(ρ)) = ρ, h′(ρ) =

−µ̄(ρ) and Gω[ρ] is such that Gω[ρ] = Fω[Gρ] with Gρ(x, v) := γ
(

1
2 |v|2 + µ̄(ρ)

)

. In the

diffusion limit, with ν(ρ) := 1
2

∫

R2 |v|2 γ
(

1
2 |v|2 + µ̄(ρ)

)

dv, ρf converges to a solution of the
system

∂tρ = ∇ ·
[

∇ν(ρ) − ω2 x ρ+ ρ∇xφ
]

,

φ = − 1

4π |x| ∗ ρ ,
(10)

and Gω is the associated free energy functional (Lyapunov functional). Hence finding
stationary solutions to (3) or (10) is equivalent to find critical points of Gω on the set
{

ρ ∈ L1(R2) : ρ ≥ 0 a.e. ,
∫

R2 ρ dx = M
}

.

The case of polytropic gases, or polytropes, corresponds to

γ(s) :=
( −s
k + 1

)k

+
and µ̄(ρ) = −(k + 1)

( ρ

2π

)
1

k+1

for some parameter k ∈ R
+. As a consequence, we have

Γ(s) = 2π
( −s
k + 1

)k+1

+
and β(f) =

f q

q − 1
with k =

1

q − 1
⇐⇒ q = 1 +

1

k
,

h(ρ) =
κ

m− 1
ρm with m = 2 − 1

q
= 1 +

1

k + 1
, κ =

1

m
(2π)1−m ,

and the nonlinear diffusion equation holds with ν(ρ) = κρm.
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