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Spectral element discretization

of the vorticity, velocity and pressure formulation

of the Stokes problem

by Karima Amoura1, Christine Bernardi2 and Nejmeddine Chorfi3

Abstract: We consider the Stokes problem provided with non standard boundary con-
ditions which involve the normal component of the velocity and the tangential components
of the vorticity. We write a variational formulation of this problem with three independent
unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization
by spectral element methods which relies on this formulation. A detailed numerical anal-
ysis leads to optimal error estimates for the three unknowns and numerical experiments
confirm the interest of the discretization.

Résumé: Nous considérons les équations de Stokes munies de conditions aux limites
non usuelles portant sur la composante normale de la vitesse et la ou les composantes tan-
gentielles du tourbillon. Nous écrivons une formulation variationnelle de ce problème qui
comporte trois inconnues indépendantes: le tourbillon, la vitesse et la pression. Nous pro-
posons une discrétisation par une méthode d’éléments spectraux construite à partir de cette
formulation. Une analyse numérique détaillée permet d’établir des majorations d’erreur
optimales pour les trois inconnues et des expériences numériques confirment l’intérêt de la
discrétisation.
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1. Introduction.

We are interested in the spectral element discretization of the Stokes problem in a
two- or three-dimensional bounded domain, when provided with boundary conditions on
the normal component of the velocity and the vorticity in dimension 2, on the normal
component of the velocity and the tangential components of the vorticity in dimension
3. The formulation that we consider, first proposed in [13] and [18] (see also [14] and [1])
involves three unknowns, the vorticity, the velocity and the pressure. Even if the number of
unknowns makes its discretization expensive, it seems to be the best adapted formulation
for handling this type of boundary conditions. The first analysis of the corresponding
variational problem is performed in [13] and [18] in the two-dimensional case. We refer to
[4, §2] for the extension to three-dimensional simply-connected domains and to [6, §2.5]
for the treatment of multiply-connected domains. We only recall the main results proved
in these works, in view of their discrete analogues.

The numerical analysis of discretizations of the Stokes problem relying on this for-
mulation has first been performed for finite element methods, see [18] and the references
therein. It has recently been extended to the case of spectral methods in [4], where the
spaces of polynomials are the spectral analogues of the finite element spaces introduced
in [16]. We propose a discretization of this problem that relies on the spectral element
method. We consider a partition of the domain into rectangles in dimension 2 or rectangu-
lar parallelepipeds in dimension 3 which is conforming and without overlap. The discrete
spaces are constructed from tensorized spaces of polynomials of the same high degree on
each subdomain as in [4], and some matching conditions are enforced on the interfaces
between subdomains, in order to work with a conforming discretization. The discrete
problem is then obtained by the Galerkin method with numerical integration.

We perform the numerical analysis of this discretization. This study combines the
arguments introduced in [4] with some standard or less standard ideas of the spectral
element method. We thus prove optimal error estimates for the three unknowns. It can be
noted that this is a special property of the formulation that we use, since the approximation
of the pressure for other formulations of the Stokes problem is most often non optimal (see
[7, §24–26]). We present some numerical experiments which confirm the optimality of the
discretization.

Acknowledgement: The first author is very grateful toward Professor Fatma Zohra
Nouri for her help concerning this work. The second and third authors wish to thank her
for her invitation to the Université Badji-Mokhar at Annaba. They are also deeply grateful
toward Pascal Joly for his help concerning the numerical experiments.

An outline of the paper is as follows.
• In Section 2, we write the variational formulation of the problem in the case of homo-
geneous boundary conditions.
• Section 3 is devoted to the description of the spectral element discrete problem. We
also prove its well-posedness.
• Optimal error estimates are derived in Section 4.
• In Section 5, we present some numerical experiments which turn out to be in good
agreement with the analysis.
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2. The velocity, vorticity and pressure formulation.

Let Ω be a bounded connected domain in Rd, d = 2 or 3, with a Lipschitz–continuous
boundary ∂Ω. The generic point in Ω is denoted by x = (x, y) or x = (x, y, z) according
to the dimension d. We introduce the unit outward normal vector n to Ω on ∂Ω and we
consider the Stokes problem





−ν∆u+ grad p = f in Ω,

divu = 0 in Ω,

u · n = 0 on ∂Ω,

γt(curlu) = 0 on ∂Ω.

(2.1)

To make precise the sense of the operator γt, we recall that
• in dimension d = 2, for any vector field v with components vx and vy, curlv stands for
the scalar function ∂xvy − ∂yvx, so that the operator γt is the trace operator on ∂Ω,
• in dimension d = 3, for any vector field v with components vx, vy and vz, curlv stands
for the vector field with components ∂yvz − ∂zvy, ∂zvx − ∂xvz and ∂xvy − ∂yvx, and the
operator γt is the tangential trace operator on ∂Ω, defined by: γt(w) = w × n.
Of course, the operator γt is only defined on smooth enough functions as will be made
precise later on.

In system (2.1), the unknowns are the velocity u and the pressure p, while the data
f represent a density of body forces. The viscosity ν is a positive constant. To go further,
we introduce the vorticity ω = curlu and observe that system (2.1) is fully equivalent to





ν curlω + grad p = f in Ω,

divu = 0 in Ω,

ω = curlu in Ω,

u · n = 0 on ∂Ω,

γt(ω) = 0 on ∂Ω.

(2.2)

Note that the operator curl in the first line of this system coincides with the previous one
in dimension d = 3 while, in dimension d = 2, it is applied to scalar functions ϕ: curlϕ

here denotes the vector field with components ∂yϕ and −∂xϕ.

However, as noted in [6, §2.2], the boundary conditions both in problems (2.1) and
(2.2) are not sufficient to enforce the uniqueness of the solution in the case of multiply-
connected domains. To make precise the further conditions that are needed for this unique-
ness, we introduce some notation.

Notation 2.1. Let Σj , 1 ≤ j ≤ J , be connected open curves or surfaces, called “cuts”,
such that:
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(i) Each Σj is an open part of a smooth manifold with dimension d− 1,
(ii) Each Σj , 1 ≤ j ≤ J , is contained in Ω and ∂Σj is contained in ∂Ω,
(iii) The intersection of Σj and Σj′ , 1 ≤ j < j′ ≤ J , is empty,
(iv) The open set Ω◦ = Ω \ ∪J

j=1Σj is simply-connected.

The existence of such Σj is clear. We make the further assumption that the domain
Ω◦ is pseudo–Lipschitz, in the sense that, for each point x of ∂Ω◦, the intersection of Ω◦

with a smooth neighbourhood of x has one or two connected components and each of them
has a Lipschitz–continuous boundary (we refer to [2, §3.a] for a more precise definition).
Then, the further conditions read

〈u · n, 1〉Σj
= 0, 1 ≤ j ≤ J, (2.3)

where 〈·, ·〉Σj
stands for the duality pairing between H− 1

2 (Σj) and H
1
2 (Σj).

We introduce the domain H(div,Ω) of the divergence operator, namely

H(div,Ω) =
{
v ∈ L2(Ω)d; div v ∈ L2(Ω)

}
. (2.4)

Since the normal trace operator: v 7→ v · n can be defined from H(div,Ω) into H− 1
2 (∂Ω),

see [15, Chap. I, Thm 2.5], we also consider its kernel

H0(div,Ω) =
{
v ∈ H(div,Ω); v · n = 0 on ∂Ω

}
. (2.5)

Similarly, we introduce the domain of the curl operator

H(curl,Ω) =
{
ϑ ∈ L2(Ω)

d(d−1)
2 ; curlϑ ∈ L2(Ω)d

}
. (2.6)

The operator γt is also defined on H(curl,Ω) with values in H
1
2 (∂Ω) in dimension d = 2

or in H− 1
2 (∂Ω)3 in dimension d = 3, see [15, Chap. I, Thm 2.11]. So, we define the kernel

H0(curl,Ω) =
{
ϑ ∈ H(curl,Ω); γt(ϑ) = 0 on ∂Ω

}
. (2.7)

It must be noted that the spaces H(curl,Ω) and H0(curl,Ω) coincide with the spaces
H1(Ω) and H1

0 (Ω) in dimension d = 2, but this is no longer true in dimension d = 3.
Finally, let L2

0(Ω) stand for the space of functions in L2(Ω) with a null integral on Ω.

In view of conditions (2.3) and according to [6, §2.5], we introduce the space

D(Ω) =
{
v ∈ H0(div,Ω); 〈v · n, 1〉Σj

= 0, 1 ≤ j ≤ J
}
. (2.8)

We now consider the variational problem

Find (ω,u, p) in H0(curl,Ω) × D(Ω) × L2
0(Ω), such that

∀v ∈ D(Ω), a(ω,u; v) + b(v, p) = 〈f , v〉,
∀q ∈ L2

0(Ω), b(u, q) = 0,

∀ϕ ∈ H0(curl,Ω), c(ω,u;ϕ) = 0,

(2.9)
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where 〈·, ·〉 denotes the duality pairing between H0(div,Ω) and its dual space. The bilinear
forms a(·, ·; ·), b(·, ·) and c(·, ·; ·) are defined by

a(ω,u; v) = ν

∫

Ω

(curlω)(x) · v(x) dx, b(v, q) = −
∫

Ω

(div v)(x)q(x) dx,

c(ω,u;ϕ) =

∫

Ω

ω(x) · ϕ(x) dx−
∫

Ω

u(x) · (curlϕ)(x) dx.

(2.10)

A direct consequence of the density of the space of infinitely differentiable functions
with a compact support in Ω in H0(div,Ω) and H0(curl,Ω), see [15, Chap. I, §2], is the
following statement. It involves the solutions qt

j , 1 ≤ j ≤ J , of the problem (see [2, Prop.
3.14] for more details on these functions)





−∆qt
j = 0 in Ω◦,

∂nq
t
j = 0 on ∂Ω,[

qt
j

]
j′

= constant, 1 ≤ j′ ≤ J ,[
∂nq

t
j

]
j′

= 0, 1 ≤ j′ ≤ J ,

〈∂nq
t
j , 1〉Σj′

= δjj′ , 1 ≤ j′ ≤ J ,

(2.11)

where [·]j′ denotes the jump through Σj′ (making its sign precise is not needed in what

follows). Note that each g̃rad qt
j belongs to H0(div,Ω), where g̃rad stands for the gradient

defined in the distribution sense on Ω◦, and that H0(div,Ω) is the direct sum of D(Ω) and

of the space spanned by the g̃rad qt
j , 1 ≤ j ≤ J .

Proposition 2.2. For any data f in the dual space of H0(div,Ω) satisfying

〈f , g̃rad qt
j〉 = 0, 1 ≤ j ≤ J, (2.12)

problems (2.2) − (2.3) and (2.9) are equivalent, in the sense that any triple (ω,u, p) in
H(curl,Ω) ×H(div,Ω) × L2

0(Ω) is a solution of problem (2.2)− (2.3) if and only if it is a
solution of problem (2.9).

We briefly recall from [18], [4, §2] and [6, §2.5] the main arguments for proving the
well-posedness of problem (2.9). It is readily checked that the kernel

V =
{
v ∈ D(Ω); ∀q ∈ L2

0(Ω), b(v, q) = 0
}
, (2.13)

coincides with the space of divergence-free functions in D(Ω). Similarly, the kernel

W =
{
(ϑ,w) ∈ H0(curl,Ω) × V ; ∀ϕ ∈ H0(curl,Ω), c(ϑ,w;ϕ) = 0

}
, (2.14)

coincides with the space of pairs (ϑ,w) in H0(curl,Ω)× V such that ϑ is equal to curlw

in the distribution sense. We observe that, for any solution (ω,u, p) of problem (2.9), the
pair (ω,u) is a solution of the following reduced problem

Find (ω,u) in W, such that

∀v ∈ V, a(ω,u; v) = 〈f , v〉. (2.15)
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We recall from [4, Lemma 2.3] and [6, Prop. 2.5.3 & 2.5.4] the following properties
(note that they require the further conditions on the Σj which are enforced in the definition
of D(Ω)): There exists a positive constant α such that

∀v ∈ V \ {0}, sup
(ω,u)∈W

a(ω,u; v) > 0,

∀(ω,u) ∈ W, sup
v∈V

a(ω,u; v)

‖v‖L2(Ω)d

≥ α
(
‖ω‖H(curl,Ω) + ‖u‖L2(Ω)d

)
.

(2.16)

When combining these properties with [15, Chap. I, Lemma 4.1], we derive that problem
(2.15) has a unique solution (ω,u) in W.

We also recall the standard inf-sup condition on the form b(·, ·): There exists a positive
constant β such that

∀q ∈ L2
0(Ω), sup

v∈H0(div,Ω)

b(v, q)

‖v‖H(div,Ω)
≥ β ‖q‖L2(Ω).

When applying this result with Ω replaced by Ω◦, we easily derive that

∀q ∈ L2
0(Ω), sup

v∈D(Ω)

b(v, q)

‖v‖H(div,Ω)
≥ β ‖q‖L2(Ω). (2.17)

Combining this with (2.16) yields the well-posedness of problem (2.9).

Theorem 2.3. For any data f in the dual space of H0(div,Ω), problem (2.9) has a unique
solution (ω,u, p) in H0(curl,Ω) × D(Ω) × L2

0(Ω). Moreover this solution satisfies

‖ω‖H(curl,Ω) + ‖u‖H(div,Ω) + ‖p‖L2(Ω) ≤ c ‖f‖H0(div,Ω)′ . (2.18)

We conclude with some regularity properties of the solution of problem (2.9) which
can easily be derived from [2, §2], [11] and [12]: The mapping: f 7→ (ω,u, p), where
(ω,u, p) is the solution of problem (2.9) with data f , is continuous from Hmax{0,s−1}(Ω)d

into Hs(Ω)
d(d−1)

2 ×Hs(Ω)d ×Hs(Ω), for
(i) all s ≤ 1

2 in the general case,
(ii) all s ≤ 1 when Ω is convex,
(iii) all s < π

α
in dimension d = 2 when Ω is a polygon with largest angle equal to α.

Moreover, when the data f belongs to L2(Ω)d, the pressure p belongs to H1(Ω), together
with the vorticity ω in dimension d = 2.
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3. The spectral element discrete problem.

From now on, we assume that Ω admits a partition without overlap into a finite
number of subdomains

Ω = ∪K
k=1Ωk and Ωk ∩ Ωk′ = ∅, 1 ≤ k < k′ ≤ K, (3.1)

which satisfy the further conditions:
(i) Each Ωk, 1 ≤ k ≤ K, is a rectangle in dimension d = 2 or a rectangular parallelepiped
in dimension d = 3,
(ii) The intersection of two subdomains Ωk and Ωk′ , 1 ≤ k < k′ ≤ K, if not empty, is
either a vertex or a whole edge or a whole face of both Ωk and Ωk′ ,
(iii) The Σj , 1 ≤ j ≤ J , introduced in Notation 2.1, are the union of whole edges (d = 2)
or faces (d = 3) of some Ωk.

The discrete spaces are constructed from the finite elements proposed by Nédélec on
cubic three-dimensional meshes, see [16, §2]. In order to describe them and for any triple
(ℓ,m, n) of nonnegative integers, we introduce
• in dimension d = 2, the space Pℓ,m(Ωk) of restrictions to Ωk of polynomials with degree
≤ ℓ with respect to x and ≤ m with respect to y,
• in dimension d = 3, the space Pℓ,m,n(Ωk) of restrictions to Ωk of polynomials with degree
≤ ℓ with respect to x, ≤ m with respect to y and ≤ n with respect to z.
When ℓ and m are equal to n, these spaces are simply denoted by Pn(Ωk). Relying on
these definitions, we introduce the local spaces, for an integer N ≥ 2,

Dk
N =

{
PN,N−1(Ωk) × PN−1,N (Ωk) if d = 2,
PN,N−1,N−1(Ωk) × PN−1,N,N−1(Ωk) × PN−1,N−1,N (Ωk) if d = 3,

Ck
N =

{
PN (Ωk) if d = 2,
PN−1,N,N (Ωk) × PN,N−1,N (Ωk) × PN,N,N−1(Ωk) if d = 3,

Mk
N = PN−1(Ωk).

(3.2)

The space DN which approximates H0(div,Ω) is then defined by

DN =
{
vN ∈ D(Ω); vN |Ωk

∈ Dk
N , 1 ≤ k ≤ K

}
. (3.3)

The space CN which approximates H0(curl,Ω) is defined by

CN =
{
ϕN ∈ H0(curl,Ω); ϕN |Ωk

∈ Ck
N , 1 ≤ k ≤ K

}
. (3.4)

Finally, for the approximation of L2
0(Ω), we consider the space

MN =
{
qN ∈ L2

0(Ω); qN |Ωk
∈Mk

N , 1 ≤ k ≤ K
}
. (3.5)

It can be noted that the functions in DN have continuous normal traces through the
interfaces Ωk ∩ Ωk′ while the functions in CN have continuous traces in dimension d = 2,
continuous tangential traces in dimension d = 3. Thanks to the previous choice, the
discretization that we propose is perfectly conforming.
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Setting ξ0 = −1 and ξN = 1, we introduce the N − 1 nodes ξj , 1 ≤ j ≤ N − 1, and
the N + 1 weights ρj , 0 ≤ j ≤ N , of the Gauss-Lobatto quadrature formula on [−1, 1].
Denoting by Pn(−1, 1) the space of restrictions to [−1, 1] of polynomials with degree ≤ n,
we recall that the following equality holds

∀Φ ∈ P2N−1(−1, 1),

∫ 1

−1

Φ(ζ) dζ =

N∑

j=0

Φ(ξj) ρj. (3.6)

We also recall [7, form. (13.20)] the following property, which is useful in what follows

∀ϕN ∈ PN (−1, 1), ‖ϕN‖2
L2(−1,1) ≤

N∑

j=0

ϕ2
N (ξj) ρj ≤ 3 ‖ϕN‖2

L2(−1,1). (3.7)

Denoting by Fk the affine mapping that sends ] − 1, 1[d onto Ωk, we introduce the
local discrete products, defined on continuous functions u and v on Ωk by

(u, v)k
N =

{
meas(Ωk)

4

∑N
i=0

∑N
j=0 u ◦ Fk(ξi, ξj)v ◦ Fk(ξi, ξj) ρiρj if d = 2,

meas(Ωk)
8

∑N
i=0

∑N
j=0

∑N
p=0 u ◦ Fk(ξi, ξj, ξp)v ◦ Fk(ξi, ξj, ξp) ρiρjρp if d = 3.

(3.8)
The global product is then defined on continuous functions u and v on Ω by

((u, v))N =
K∑

k=1

(u|Ωk
, v|Ωk

)k
N . (3.9)

The discrete problem is now constructed from (2.9) by using the Galerkin method
combined with numerical integration. It reads

Find (ωN ,uN , pN ) in CN × DN × MN , such that

∀vN ∈ DN , aN (ωN ,uN ; vN ) + bN (vN , pN ) = ((f , vN))N ,

∀qN ∈ MN , bN (uN , qN ) = 0,

∀ϕN ∈ CN , cN (ωN ,uN ;ϕN ) = 0,

(3.10)

where the bilinear forms aN (·, ·; ·), bN (·, ·) and cN (·, ·; ·) are defined by

aN (ωN ,uN ; vN ) = ν ((curlωN , vN ))N , bN (vN , qN ) = −((div vN , qN ))N ,

cN (ωN ,uN ;ϕN ) = ((ωN ,ϕN ))N − ((uN , curlϕN ))N .
(3.11)

It follows from (3.7) combined with Cauchy–Schwarz inequalities that the forms aN (·, ·; ·),
bN (·, ·) and cN (·, ·; ·) are continuous on

(
CN ×DN

)
×DN , DN ×MN and

(
CN ×DN

)
×CN ,

respectively, with norms bounded independently of N . Moreover, as a consequence of the
exactness property (3.6), the forms b(·, ·) and bN (·, ·) coincide on DN × MN .
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In order to perform the numerical analysis of problem (3.10), we first recall from the
finite element analogous result [16] that the range of DN by the divergence operator is
contained in MN . So, if VN denotes the kernel

VN =
{
vN ∈ DN ; ∀qN ∈ MN , bN (vN , qN ) = 0

}
, (3.12)

it is readily checked by taking qN equal to div vN in the previous line that VN is the space
of divergence-free functions in DN , i.e. coincides with DN ∩ V .

We now investigate some properties of the curl operator. It follows from [16] (see also
[10, Thm 2.1]) that the range of CN by the curl operator is contained in DN . We also have
the following result, which requires some further notation.

Notation 3.1. Let Γi, 0 ≤ i ≤ I, be the connected components of ∂Ω such that Γ0 is the
boundary of the only unbounded connected component of R

3 \ Ω.

We can now define the space

H1
⋄ (Ω) =

{
µ ∈ H1(Ω); µ = 0 on Γ0 and µ = constant on Γi, 1 ≤ i ≤ I

}
.

Lemma 3.2. The kernel of the curl operator in CN is reduced to {0} in dimension d = 2,
equal to the range of the space GN by the gradient operator in dimension d = 3, where
GN denotes the space

GN =
{
µN ∈ H1

⋄(Ω); µN |Ωk
∈ PN (Ωk), 1 ≤ k ≤ K

}
. (3.13)

Proof: In dimension d = 2, a curl-free function ϕN in CN is constant on Ω. Since it
vanishes on ∂Ω, it is zero. In dimension d = 3, let ϕN be a curl-free function in CN . Then
using [15, Chap. I, Thm 2.9] yields that, since the domain Ω◦ introduced in Notation 2.1
is simply connected, ϕN is equal on Ω◦ to the gradient of a function µ in H1(Ω◦), which is
defined up to an additive constant. The identity ϕN = gradµ on Ωk yields that each µ|Ωk

belongs to PN (Ωk). Finally, it follows from the fact that γt(ϕN ) vanishes on ∂Ω, that µ
has a zero tangential gradient on ∂Ω, hence is constant on each Γi. It also follows from the
fact that γt(ϕN ) is continuous through each Σj that the tangential gradient of the jump
of µ through each Σj is zero, so that the jump of µ is constant. Since µ is constant on
each Γi, the jump of µ though each Σj ∩Γi is zero, hence the jump of µ through each Σj is
zero. Thus, µ belongs to H1(Ω). Finally, subtracting to µ its value on Γ0 yields that ϕN

is the gradient of a function in GN . Conversely, it is readily checked that the gradients of
all functions in GN belong to CN and are curl-free.

We are now in a position to state and prove the key result of this section.

Proposition 3.3. There exists an operator AN from VN into CN

(i) which satisfies

∀vN ∈ VN , curlAN (vN ) = vN ; (3.14)
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(ii) such that, in dimension d = 3,

∀µN ∈ GN , ((AN (vN ), gradµN ))N = 0; (3.15)

(iii) which satisfies, for a constant c independent of N ,

∀vN ∈ VN , ‖AN (vN )‖H(curl,Ω) ≤ c ‖vN‖L2(Ω)d . (3.16)

Note from Lemma 3.2 that this operator is uniquely defined by (3.14) and the further
condition (3.15) in dimension d = 3. The proof of this proposition is rather technical, so
that we prefer to give it separetely in dimensions d = 2 and d = 3.

Proof: Case of dimension d = 2
Let vN be any polynomial in VN . We assume that Ω is contained in a rectangle Ω∗ =
]a, a′[×]b, b′[, and we denote by vN the extension of vN by zero to Ω∗. So, vN is still
divergence-free on Ω∗. Denoting its components by vNx and vNy, we consider the function
defined on Ω∗ by

ψN (x, y) =

∫ y

b

vNx(x, η) dη. (3.17)

It is readily checked that each ψN |Ωk
belongs to PN (Ωk). The continuity of ψN through

each horizontal edge shared by two subdomains Ωk (where horizontal edge means an edge
contained in a line y = y0) follows from its definition. Moreover, since vNx = vN · n is
continuous through all vertical edges shared by two subdomains Ωk, the same property
holds for ψN . So it belongs to H(curl,Ω). On the other hand, we observe that, since vN

is divergence–free,

(∂xψN )|Ωk
(x, y) =

∫ y

b

(∂xvNx)(x, η) dη = −
∫ y

b

(∂yvNy)(x, η) dη = −vNy(x, y).

This equation yields that curlψN is equal to vN on Ω. Finally, since
• ∂xψN vanishes on the horizontal edges of Ω and on Ω∗ \ Ω,
• ∂yψN vanishes on the vertical edges of Ω and also on Ω∗ \ Ω,
• and ψN is zero at (a, b),
it is zero on Γ0 and equal to a constant ci on each Γi, 1 ≤ i ≤ I. Then, it follows
from the condition 〈vN · n, 1〉Σj

= 0 that all these constants are equal to zero. So, ψN

belongs to CN and satisfies curlψN = vN on Ω. From Lemma 3.2, the restriction of this
ψN to Ω thus coincides with AN (vN ). Moreover estimate (3.16) follows from a simple
Poincaré–Friedrichs inequality applied to (3.17).

Proof: Case of dimension d = 3
The construction of a function ψN is now performed in four steps.
1) Like in dimension d = 2, we assume that Ω is contained in a rectangular parallelepiped
Ω∗ =]a, a′[×]b, b′[×]c, c′[, and we denote by vN the extension of vN by zero to Ω∗. Denoting

its components by vNx, vNy and vNz, we first define a function ψ♯
N = (ψ♯

Nx, ψ
♯
Ny, ψ

♯
Nz) by

ψ
♯
Nx(x, y, z) =

∫ z

c

vNy(x, y, ζ)dζ,

ψ
♯
Ny(x, y, z) = −

∫ z

c

vNx(x, y, ζ) dζ, ψ
♯
Nz = 0.

(3.18)
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The first two components of ψ♯
N |Ωk

belong to PN−1,N,N (Ωk) and PN,N−1,N (Ωk), respec-

tively, so that ψ♯
N |Ωk

belongs to Ck
N . This function is such that the first two components of

its curl are equal to vNx and vNy. Moreover, since vN belongs to VN , vN is divergence–free.
This yields

(∂xψ
♯
Ny − ∂yψ

♯
Nx)(x, y, z) = −

∫ z

c

(∂xvNx+∂yvNy)(x, y, ζ) dζ

=

∫ z

c

(∂zvNz)(x, y, ζ) dζ = vNz(x, y, z).

So, curlψ
♯
N is equal to vN on each Ωk. Moreover the continuity of ψ♯

Nx through each
face of two Ωk contained in a plane y = y0 and z = z0 follows from its definition and the
property of vN . Simillarly, ψ♯

Ny is continuous through each face of two Ωk contained in

a plane x = x0 and z = z0, so that ψ♯
N belongs to H(curl,Ω). Moreover the following

inequality is easily derived from (3.18)

‖ψ♯
N‖H(curl,Ω) ≤ c ‖vN‖L2(Ω)3 . (3.19)

2) Noting that ∂Ω is contained in the union of a finite number of planes, we denote by γℓ,
1 ≤ ℓ ≤ L, the connected components of the intersections of ∂Ω with these planes. For
each γℓ, according as γℓ is contained in a plane x = x0 or in a plane y = y0 or in a plane
z = z0, we set

gℓ
Ny(y, z) = −

∫ z

c

vNx(x0, y, ζ) dζ, gℓ
Nz(y, z) = 0,

or gℓ
Nx(x, z) =

∫ z

c

vNy(x, y0, ζ) dζ, gℓ
Nz(x, z) = 0

or gℓ
Nx(x, y) =

∫ z0

c

vNy(x, y, ζ) dζ, gℓ
Ny(x, y) = −

∫ z0

c

vNx(x, y, ζ) dζ.

We observe that the vector gℓ
N with these components is tangential to γℓ and that its

restriction to each intersection γℓ ∩ ∂Ωk which has a positive measure in γℓ belongs to
PN−1,N (γℓ ∩∂Ωk)×PN,N−1(γℓ ∩∂Ωk), with obvious notation for these new spaces. More-
over, the two-dimensional curl of these functions gℓ

N is equal to zero on each γℓ (indeed,
∂zg

ℓ
Ny vanishes on the faces contained in a plane x = x0, ∂zg

ℓ
Nx vanishes on the faces

contained in a plane y = y0 and (∂xg
ℓ
Ny −∂yg

ℓ
Nx)(x, y) = vNz(x, y, z0) also vanishes on the

faces contained in a plane z = z0) and the tangential components of gℓ
N and gℓ′

N on each
edge shared by γℓ and γℓ′ are equal. Since ∂Ω \ ∪N

j=1∂Σj is simply-connected, it follows

from [9, Prop. 3.1] that there exists a function kN in H1(∂Ω \ ∪N
j=1∂Σj), vanishing at a

corner of Γ0, such that the tangential gradient of the restriction of kN to each γℓ is equal to
gℓ

N . Moreover the following estimate can be derived from [9, Prop. 4.7] (a more complete
proof of it would involve rather complex notation, so that we have rather avoid it and refer
to [9] for the details)

‖kN‖
H

1
2 (∂Ω\∪N

j=1
∂Σj)

≤ c ‖ψ♯
N × n‖

H
−

1
2 (∂Ω)

. (3.20)

Note that the restriction of kN to each γℓ ∩Ωk which has a positive measure in γℓ belongs
to PN (γℓ ∩ Ωk) and that the jump of kN through each ∂Σj is constant.
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3) We recall from [5, Chap. II, Thm 4.1] that, if γ denotes a face of Ωk that is contained
in ∂Ω, there exists a lifting operator Lγ

k from PN (γ) into PN (Ωk) such that, for any ϕN in
PN (γ), the trace of Lγ

kϕN is equal
• to ϕN on γ,
• to zero on the opposite face to γ,
• and, when ϕN is zero on an edge of γ, to zero on the face that shares this edge with γ.
We use iteratively this operator on the Ωk, k = 1, . . . , K, and on the faces γ of Ωk which
are contained in ∂Ω and, at each step, we subtract from kN the trace of the new function
to the other Ωk′ , k′ > k, that share a face or an edge with Ωk (we refer to [5, Chap. II]
for details on this procedure). Thus we derive the existence of a µN in H1(Ω◦) such that

ψ
♯
N − g̃rad µN belongs to CN (we recall that g̃rad denotes the gradient on Ω◦). Moreover,

it follows from [5, Chap. II, Thm 4.1] that this function satisfies

‖g̃radµN‖L2(Ω)3 ≤ c ‖kN‖
H

1
2 (∂Ω\∪N

j=1
∂Σj)

,

whence, thanks to (3.19) and (3.20),

‖g̃radµN‖L2(Ω)3 ≤ c′ ‖vN‖L2(Ω)3 . (3.21)

4) Finally, the Lax–Milgram lemma combined with (3.7) and a generalized Poincaré–
Friedrichs inequality yields that there exists a unique µ̃N in GN such that

∀ρN ∈ GN , ((grad µ̃N , grad ρN ))N = ((ψ♯
N − g̃radµN , grad ρN ))N .

Moreover this function satisfies

‖grad µ̃N‖L2(Ω)3 ≤ 3
3
2 (‖ψ♯

N‖L2(Ω)3 + ‖g̃radµN‖L2(Ω)3). (3.22)

The choice of µ̃N yields that the function ψN = ψ
♯
N − g̃radµN − grad µ̃N is equal to

AN (vN ), so that the desired estimate follows from (3.19), (3.21) and (3.22).

In analogy with the continuous case, we now introduce the discrete kernel

WN =
{
(ϑN ,wN ) ∈ CN × VN ; ∀ϕN ∈ CN , cN (ϑN ,wN ;ϕN ) = 0

}
, (3.23)

and observe that, for any solution (ωN ,uN , pN ) of problem (3.10), the pair (ωN ,uN ) is a
solution of the reduced problem

Find (ωN ,uN) in WN , such that

∀vN ∈ VN , aN (ωN ,uN ; vN ) = ((f , vN))N . (3.24)

Thanks to Proposition 3.3, we are now in a position to prove the well-posedness of this
problem.

Lemma 3.4. The form aN (·, ·; ·) satisfies the posivity property

∀vN ∈ VN \ {0}, sup
(ωN ,uN )∈WN

aN (ωN ,uN ; vN ) > 0. (3.25)
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Proof: Let vN be a polynomial in VN such that aN (ωN ,uN ; vN ) vanishes for all pairs
(ωN ,uN ) in WN . We set ϑN = AN (vN ) and we consider the equation

Find zN in VN , such that

∀wN ∈ VN , ((zN ,wN ))N =
((
ϑN , AN(wN )

))
N
. (3.26)

Since the norms ‖ · ‖H(div,Ω) and ‖ · ‖L2(Ω)3 are equal on VN , it follows from (3.7) that
the bilinear form in the left-hand side is elliptic on VN , so that this problem has a unique
solution zN . Moreover, this function satisfies for any ϕN in CN

((zN , curlϕN ))N =
((
ϑN , AN (curlϕN )

))
N
.

Note that AN (curlϕN ) is equal to ϕN in dimension d = 2, to the sum of ϕN and of the
gradient of a function µN in GN in dimension d = 3. Then, it follows from the choice of
ϑN , see (3.15), that

((zN , curlϕN ))N = ((ϑN ,ϕN ))N .

So the pair (ϑN , zN ) belongs to WN and taking (ωN ,uN ) equal to (ϑN , zN ) yields thanks
to (3.7) that vN = curlϑN is zero, which concludes the proof.

Lemma 3.5. There exists a positive constant α∗ independent of N such that the form
aN (·, ·; ·) satisfies the inf-sup condition

∀(ωN ,uN) ∈ WN ,

sup
vN∈VN

aN (ωN ,uN ; vN )

‖vN‖L2(Ω)d

≥ α∗

(
‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d

)
.

(3.27)

Proof: For any (ωN ,uN ) in WN , we set vN = uN +curlωN and observe that it belongs
to VN . Next, we have

aN (ωN ,uN ; vN ) = ν ((curlωN ,uN ))N + ν ((curlωN , curlωN ))N .

Thanks to the definition of WN , we have

((curlωN ,uN ))N = ((ωN ,ωN ))N .

Combining this with (3.7) leads to

aN (ωN ,uN ; vN ) ≥ ν ‖ωN‖2
H(curl,Ω).

On the other hand, using once more the definition of WN and (3.7), we write

‖uN‖2
L2(Ω)d ≤

((
uN , curlAN (uN )

))
N

=
((
ωN , AN (uN )

))
N

≤ 3d ‖ωN‖
L2(Ω)

d(d−1)
2

‖AN (uN )‖
L2(Ω)

d(d−1)
2

.
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So, we derive from (3.16) that

‖uN‖L2(Ω)d ≤ 3d c ‖ωN‖
L2(Ω)

d(d−1)
2

,

whence
aN (ωN ,uN ; vN ) ≥ ν

2
‖ωN‖2

H(curl,Ω) + c′ ν ‖uN‖2
L2(Ω)d .

We also have
‖vN‖L2(Ω)d ≤

√
2

(
‖ωN‖2

H(curl,Ω) + ‖uN‖2
L2(Ω)d

) 1
2 .

Combining the last two inequalities gives the desired inf-sup condition.

The following result is a direct consequence of Lemmas 3.4 and 3.5, see [15, Chap. I,
Lemma 4.1]. Let Ik

N denote the Lagrange interpolation operator at the nodes Fk(ξi, ξj) in
dimension d = 2 and Fk(ξi, ξj, ξp) in dimension d = 3, with values in PN (Ωk) and IN the
global interpolation operator, defined on continuous functions f by (INf)|Ωk

= Ik
Nf |Ωk

,
1 ≤ k ≤ K. The following property is then easily derived from (3.7): For any vN in DN ,

((f , vN))N = ((INf , vN ))N ≤ 3d ‖INf‖L2(Ω)d‖vN‖L2(Ω)d .

Corollary 3.6. For any data f continuous on Ω, problem (3.24) has a unique solution
(ωN ,uN ) in WN . Moreover this solution satisfies for a constant c independent of N

‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d ≤ c ‖INf‖L2(Ω)d . (3.28)

In order to go further, we now establish an inf-sup condition on the form bN (·, ·). It
relies on the Boland and Nicolaides argument [8] and requires a standard finite element
result, which involves the Nédélec operator [16, §2] but is much simpler here since the
constant can depend on the size of the Ωk (but requires that the Σj are the union of faces
of the subdomains). We refer to [17] for the first proof of this result.

Lemma 3.7. There exists a positive constant β♯ such that the form b(·, ·; ·) satisfies the
inf-sup condition

∀q ∈ M1, sup
v∈D1

b(v, q)

‖v‖H(div,Ω)
≥ β♯ ‖q‖L2(Ω). (3.29)

Lemma 3.8. There exists a positive constant β∗ independent of N such that the form
bN (·, ·; ·) satisfies the inf-sup condition

∀qN ∈ MN , sup
vN∈DN

bN (vN , qN )

‖vN‖H(div,Ω)
≥ β∗ ‖qN‖L2(Ω). (3.30)

Proof: We recall that the forms b(·, ·) and bN (·, ·) coincide on DN ×MN , so that we work
with the form b(·, ·). Any qN in MN admits the expansion

qN = q̃N + qN , with qN |Ωk
=

1

meas(Ωk)

∫

Ωk

qN (x) dx, 1 ≤ k ≤ K.
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Then, each q̃N |Ωk
belongs to Mk

N ∩ L2
0(Ωk). So, using an appropriate mapping that sends

the reference domain ] − 1, 1[d onto Ωk, it follows from [4, Lemma 3.9] that there exists a
function vk

N in Dk
N ∩H0(div,Ωk) such that

div vk
N = −q̃N |Ωk

and ‖vk
N‖H(div,Ωk) ≤ β−1

k ‖q̃N‖L2(Ωk), (3.31)

for a constant βk only depending on Ωk. We thus define the function ṽN such that each
ṽN |Ωk

is equal to vk
N , 1 ≤ k ≤ K, and observe that, since the Σj are the union of faces of

some Ωk, ṽN · n vanishes on Σj , so that ṽN belongs to DN . On the other hand, since qN

belongs to L2
0(Ω) and is constant on each Ωk, hence to belongs to M1, Lemma 3.7 yields

the existence of a function v in D1 such that

div v = −qN |Ωk
and ‖v‖H(div,Ω) ≤ β−1

♯ ‖qN‖L2(Ω). (3.32)

The argument of Boland and Nicolaides consists now in taking vN = ṽN + λv, for a
positive integer λ. Indeed, it can be checked by integration by parts on each Ωk that
b(ṽN , qN ) is equal to zero, so that, thanks to the choice of ṽN and v,

b(vN , qN ) ≥ ‖q̃N‖2
L2(Ω) + λ ‖qN‖2

L2(Ω) − λ ‖v‖H(div,Ω) ‖q̃N‖L2(Ω).

This yields

b(vN , qN ) ≥ ‖q̃N‖2
L2(Ω) + λ ‖qN‖2

L2(Ω) − λβ−1
♯ ‖qN‖L2(Ω) ‖q̃N‖L2(Ω)

≥ 1

2
‖q̃N‖2

L2(Ω) + λ(1 − λ

2β2
♯

) ‖qN‖2
L2(Ω).

We now take λ equal to β2
♯ , so that

b(vN , qN ) ≥ 1

2
min{1, β2

♯ }
(
‖q̃N‖2

L2(Ω) + ‖qN‖2
L2(Ω)

)
.

We also have

‖vN‖H(div,Ω) ≤
(

max
1≤k≤K

β−1
k ) ‖q̃N‖L2(Ω) + β♯ ‖qN‖L2(Ω).

The two previous inequalities, when combined with the orthogonality property

‖qN‖2
L2(Ω) = ‖q̃N‖2

L2(Ω) + ‖qN‖2
L2(Ω),

lead to the desired inf-sup condition.

The proof of the final theorem is now completely standard, see [15, Chap. I, Lemma
4.1] for instance.

Theorem 3.9. For any data f continuous on Ω, problem (3.10) has a unique solution
(ωN ,uN , pN) in CN × DN × MN . Moreover this solution satisfies for a constant c inde-
pendent of N

‖ωN‖H(curl,Ω) + ‖uN‖H(div,Ω) + ‖pN‖L2(Ω) ≤ c ‖INf‖L2(Ω)d . (3.33)
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4. Error estimates.

We now wish to derive the error estimates between the solution (ω,u, p) of problem
(2.9) and the solution (ωN ,uN , pN ) of problem (3.10). The arguments are very similar to
their analogues in the case of one element, see [4, §4], and require several lemmas. In all
that follows, c stands for a generic constant which can vary from one line to the next one
but is always independent of N .

Lemma 4.1. The following estimate holds for the error between the solution (ω,u, p) of
problem (2.9) and the solution (ωN ,uN , pN ) of problem (3.10):

‖ω − ωN‖H(curl,Ω)+‖u− uN‖H(div,Ω)

≤ c inf
(ϑN ,wN )∈WN

(
‖ω − ϑN‖H(curl,Ω) + ‖u−wN‖L2(Ω)d

+ E
f
N +Ea

N (ϑN ,wN)
)
,

(4.1)

where the quantities EfN and Ea
N (ϑN ,wN ) are defined by

E
f
N = sup

vN∈DN

〈f , vN 〉 − (f , vN )N

‖vN‖L2(Ω)d

,

Ea
N (ϑN ,wN) = sup

vN∈DN

(a− aN )(ϑN ,wN ; vN )

‖vN‖L2(Ω)d

.

(4.2)

Proof: Let (ϑN ,wN ) be an approximation of (ω,u) in WN . It follows from (3.24) that,
for all vN in VN ,

aN (ωN − ϑN ,uN −wN ; vN ) = ((f , vN ))N − aN (ϑN ,wN ; vN ).

Then, using problem (2.9) (we recall that VN is contained in V ) leads to

aN (ωN − ϑN ,uN −wN ; vN ) = ((f , vN ))N − 〈f , vN 〉+a(ω − ϑN ,u−wN ; vN )

+ (a− aN )(ϑN ,wN ; vN ).

When using the inf-sup condition (3.27), we derive

‖ωN −ϑN‖H(curl,Ω)+‖uN −wN‖L2(Ω)d ≤ c
(
‖curl (ω−ϑN )‖L2(Ω)d +EfN +Ea

N (ϑN ,wN )
)
.

We conclude thanks to a triangle inequality, by noting that both u and uN are exactly
divergence-free.

Lemma 4.2. The following estimate holds for the error between the solution (ω,u, p) of
problem (2.9) and the solution (ωN ,uN , pN ) of problem (3.10):

‖p− pN‖L2(Ω) ≤ c inf
qN∈MN

‖p− qN‖L2(Ω)

+ c inf
(ϑN ,wN )∈WN

(
‖ω − ϑN‖H(curl,Ω) + ‖u−wN‖L2(Ω)d

+ E
f
N + Ea

N (ϑN ,wN )
)
,

(4.3)
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where the quantities EfN and Ea
N (ϑN ,wN ) are defined in (4.2).

Proof: It follows from problems (2.9) and (3.10) (note also that b(·, ·) and bN (·, ·) coincide
on DN × MN ) that, for any vN in DN and qN in MN ,

bN (vN , pN − qN ) = ((f , vN))N − 〈f , vN〉 + a(ω − ωN ,u− uN ; vN )

+ (a− aN )(ωN ,uN ; vN ) + b(vN , p− qN ).

Moreover, we use the identity

(a− aN )(ωN ,uN ; vN ) = (a− aN )(ϑN ,wN ; vN ) + (a− aN )(ωN − ϑN ,uN −wN ; vN ).

So, the inf-sup condition (3.30) combined with Lemma 4.1 and the fact that the norm of
aN (·, ·; ·) is bounded independently of N leads to the desired estimate.

In order to evaluate the distance of (ω,u) to WN , we now prove an inf-sup condition
on the form cN (·, ·; ·).

Lemma 4.3. There exists a positive constant γ∗ independent of N such that the form
cN (·, ·; ·) satisfies the inf-sup condition

∀ϕN ∈ CN , sup
(ωN ,uN )∈CN×VN

cN (ωN ,uN ;ϕN )

‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d

≥ γ∗ ‖ϕN‖H(curl,Ω). (4.4)

Proof: For any ϕN in CN , we take (ωN ,uN ) equal to (ϕN ,−curlϕN ) and recall that
it belongs to CN × VN (see for instance [2, form. (3.15)]). Next, we derive from (3.7) that

cN (ωN ,uN ;ϕN ) = ((ϕN ,ϕN ))N + ((curlϕN , curlϕN ))N ≥ ‖ϕN‖2
H(curl,Ω).

On the other hand, we have

‖ωN‖H(curl,Ω) + ‖uN‖L2(Ω)d ≤
√

2 ‖ϕN‖H(curl,Ω),

which leads to the desired inf-sup condition.

Corollary 4.4. The following estimate holds

inf
(ϑN ,wN )∈WN

(
‖ω − ϑN‖H(curl,Ω) + ‖u−wN‖L2(Ω)d

)

≤ c inf
(ζN ,zN )∈CN×VN

(
‖ω − ζN‖H(curl,Ω) + ‖u− zN‖L2(Ω)d +Ec

N (ζN , zN )
)
,

(4.5)

where the quantity Ec
N (ζN , zN ) is defined by

Ec
N (ζN , zN ) = sup

ϕN∈CN

(c− cN )(ζN , zN ;ϕN )

‖ϕN‖H(curl,Ω)
. (4.6)
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Proof: For any (ζN , zN ) on CN × VN , we derive from the inf-sup condition (4.4) the
existence of a pair (ζ̃N , z̃N ) also in CN × VN which satisfies for all ϕN in CN ,

cN (ζ̃N , z̃N ;ϕN ) = cN (ζN , zN ;ϕN ),

and moreover

‖ζ̃N‖H(curl,Ω) + ‖z̃N‖L2(Ω)d ≤ γ−1
∗ sup

ϕN∈CN

cN (ζN , zN ;ϕN )

‖ϕN‖H(curl,Ω)
.

We also note that

cN (ζN , zN ;ϕN ) = −c(ω − ζN ,u− zN ;ϕN ) − (c− cN )(ζN , zN ;ϕN ).

Since the pair (ϑN ,wN ) with ϑN = ζN − ζ̃N and wN = zN − z̃N belongs to WN , the
desired estimate is easily derived from the two previous lines.

By combining Lemmas 4.1 and 4.2 and Corollary 4.4, we observe that the full error

‖ω − ωN‖H(curl,Ω) + ‖u− uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

is bounded by the sum of the three terms of approximation error

inf
ζN∈CN

‖ω − ζN‖H(curl,Ω), inf
zN∈VN

‖u− zN‖L2(Ω)d , inf
qN∈MN

‖p− qN‖L2(Ω),

plus the three quantities EfN , Ea
N (ϑN ,wN ) and Ec

N (ζN , zN ) which are issued from numer-
ical integration.

In order to estimate these last ones, we introduce the orthogonal projection operator
Πk

N−1 from L2(Ωk) onto PN−1(Ωk) and we denote by Ik
N the Lagrange interpolation op-

erator at the nodes Fk(ξi, ξj) in dimension d = 2, at the nodes Fk(ξi, ξj, ξp) in dimension
d = 3, with values in PN (Ωk). Indeed, using (3.6) leads to, for any vN in DN ,

∫

Ωk

f(x) · vN (x) dx− (f , vN)k
N

=

∫

Ωk

(f − Πk
N−1f)(x) · vN (x) dx− (Ik

Nf − Πk
N−1f , vN )k

N ,

so that, owing to (3.7),

E
f
N ≤ c

K∑

k=1

(
‖f − Πk

N−1f‖L2(Ωk)d + ‖f − Ik
Nf‖L2(Ωk)d

)
. (4.7)

Similarly, we have for any vN in DN

(a− aN )(ϑN , zN ; vN ) = ν

N∑

k=1

(∫

Ω

(
curlϑN−Πk

N−1(curlω)
)
(x) · zN (x) dx

− ν
(
curlϑN − Πk

N−1(curlω), zN

)k

N

)
,
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so that

Ea
N (ϑN ,wN ) ≤ c

(
‖curl (ω−ϑN )‖L2(Ω)d +

K∑

k=1

‖curlω −Πk
N−1(curlω)‖L2(Ωk)d

)
. (4.8)

Similar arguments also lead to

Ec
N (ζN , zN ) ≤ c

(
‖ω − ζN‖

L2(Ω)
d(d−1)

2
+

K∑

k=1

‖ω − Πk
N−1ω‖

L2(Ωk)
d(d−1)

2

+ ‖u− zN‖L2(Ω)d +
K∑

k=1

‖u− Πk
N−1u‖L2(Ωk)d

)
.

(4.9)

We recall from [7, Thms 7.1 & 14.2] the approximation properties of the operators
Πk

N−1 and Ik
N : For any function g in Hs(Ωk), s ≥ 0,

‖g − Πk
N−1g‖L2(Ωk) ≤ cN−s ‖g‖Hs(Ωk), (4.10)

and, for any function g in Hs(Ωk), s > d
2
,

‖g − Ik
Ng‖L2(Ωk) ≤ cN−s ‖g‖Hs(Ωk). (4.11)

These estimates make complete the evaluation of EfN and reduce the evaluation of both
quantities Ea

N (ϑN ,wN ) and Ec
N (ζN , zN ) to a bound for the approximation errors.

The approximation error for the pressure can also be estimated from (4.10). Indeed,
since each Πk

N−1 preserves the integral on Ωk, for each function p in L2
0(Ω), the function

equal to Πk
N−1p on each Ωk belongs to MN .

Lemma 4.5. For any function p in L2
0(Ω) such that each p|Ωk

, 1 ≤ k ≤ K, belongs to
Hs(Ωk), s ≥ 0, the following estimate holds

inf
qN∈MN

‖p− qN‖L2(Ω) ≤ cN−s

K∑

k=1

‖p‖Hs(Ωk). (4.12)

Estimating the other approximation error terms requires some further local properties
that we now state.
• In dimension d = 2, the interpolation operator Ik

N satisfies [7, Thm 14.2], for any
function g in Hs(Ωk), s > 3

2 ,

‖g − Ik
Ng‖H1(Ωk) ≤ cN1−s ‖g‖Hs(Ωk). (4.13)

• In dimension d = 3, a spectral analogue Rk
N of the Nédélec operator [16, §2] has been

constructed in [3, §4]. It maps smooth functions in H(curl,Ωk) onto the space Ck
N defined

in (3.2) and satisfies, for all functions ϕ in Hs(Ωk)3, s ≥ 2,

‖ϕ−Rk
Nϕ‖L2(Ωk)3 ≤ cN−s ‖ϕ‖Hs(Ωk)3 , (4.14)
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and, for all functions ϕ in H(curl,Ωk) such that curlϕ belongs to Hs(Ωk)3, s ≥ 3
2 ,

‖curl (ϕ−Rk
Nϕ)‖L2(Ωk)3 ≤ cN−s ‖curlϕ‖Hs(Ωk)3 . (4.15)

Morevoer these operators satisfy the following properties on the boundary of ∂Ωk: The
trace of Ik

Ng on each edge of Ωk in dimension d = 2 only depends on the trace of g on this
edge, the tangential trace of Rk

Nϕ on each face of Ωk in dimension d = 3, only depends on
the tangential trace of ϕ on this face.

This leads to the next result in an obvious way. Indeed, for any function ω in
H0(curl,Ω), taking ζN such that each ζN |Ωk

is equal to Ik
Nω in dimension d = 2, Rk

Nω

in dimension d = 3 and using the previous properties yield that ζN belongs to CN . The
following statement requires the space, for s ≥ 0,

Hs(curl,Ωk) =
{
ϕ ∈ Hs(Ωk)

d(d−1)
2 ; curlϕ ∈ Hs(Ωk)d

}
. (4.16)

Note that this space coincides with Hs+1(Ωk) in dimension d = 2.

Lemma 4.6. For any function ω in H0(curl,Ω) such that each ω|Ωk
, 1 ≤ k ≤ K, belongs

to Hs(curl,Ωk), s > d+1
2

, the following estimate holds

inf
ζN∈CN

‖ω − ζN‖H(curl,Ω) ≤ cN−s

K∑

k=1

‖ω‖Hs(curl,Ωk). (4.17)

Finally, we recall [2, Thm 3.17] that any function u in V is equal to curlψ, for a
function ψ in H0(curl,Ω). Moreover, only in dimension d = 2, if u|Ωk

belongs to Hs(Ωk),
ψ|Ωk

belongs to Hs+1(Ωk). So, an approximation ψN of ψ in CN can be defined as equal
to Ik

Nψ (d = 2) or to Rk
Nψ (d = 3) on each Ωk. It can also be noted that,

• in dimension d = 2, the quantity 〈curlψN · n, 1〉Σj
, is equal to the difference of values

of ψN , hence of ψ, between two Γi, so it is zero,
• in dimension d = 3, the integral of curlRk

Nψ on each face of Ωk is equal to the integral
of curlψ (see [3, §4]),
so that the nullity of the 〈curlψ · n, 1〉Σj

is preserved by this approximation. So, curlψN

belongs to VN , and the following estimate follows from (4.13) and (4.15).

Lemma 4.7. For any function u in V such that each u|Ωk
, 1 ≤ k ≤ K, belongs to Hs(Ωk),

s > d− 3
2 , the following estimate holds

inf
zN∈VN

‖u− zN‖L2(Ω)d ≤ cN−s

K∑

k=1

‖u‖Hs(curl,Ωk). (4.18)

Theorem 4.8. Assume that the data f belong to Hσ(Ω)d for a real number σ > d
2 and

also that the solution (ω,u, p) of problem (2.9) belongs to Hs(curl,Ω)×Hs(Ω)d ×Hs(Ω)
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for a real number s > d+1
2 . Then, the following error estimate holds between this solution

and the solution (ωN ,uN , pN ) of problem (3.10)

‖ω − ωN‖H(curl,Ω) + ‖u− uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

≤ c
( K∑

k=1

N−s
(
‖ω‖Hs(curl,Ωk) + ‖u‖Hs(Ωk)d + ‖p‖Hs(Ωk)

)
+N−σ ‖f‖Hσ(Ωk)d

)
.

(4.19)

Estimate (4.19) is fully optimal. Note that this optimality is not obtained for the
pressure in most spectral discretizations of the Stokes problem. However, the regularity
which is required for this estimate (s > d+1

2 ) does not seem reasonable in the general case.

Let Πc
N denote the orthogonal projection operator from H0(curl,Ω) onto CN . By

combining estimate (4.17) with an interpolation argument, we easily obtain, for all s ≥ 0,

‖ω − Πc
Nω‖H(curl,Ω) ≤ cN−s

K∑

k=1

‖ω‖
Hs+1(Ωk)

d(d−1)
2

. (4.20)

Note that the replacement of Hs(curl,Ωk) by Hs+1(Ωk)
d(d−1)

2 is due to the fact that
no interpolation result seems to be known concerning the interpolation of the spaces
Hs(curl,Ωk). A similar projection operator can be used for the approximation of functions
in V , which leads to the next corollary.

Corollary 4.9. Assume that the data f belong to Hσ(Ω)d for a real number σ > d
2 and

also that the solution (ω,u, p) of problem (2.9) belongs toHs+1(Ω)
d(d−1)

2 ×Hs(Ω)d×Hs(Ω)
for a real number s ≥ 0. Then, the following error estimate holds between this solution
and the solution (ωN ,uN , pN ) of problem (3.10)

‖ω − ωN‖H(curl,Ω) + ‖u− uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

≤ c
( K∑

k=1

N−s
(
‖ω‖

Hs+1(Ωk)
d(d−1)

2
+ ‖u‖Hs(Ωk)d + ‖p‖Hs(Ωk)

)
+N−σ ‖f‖Hσ(Ωk)d

)
.

(4.21)

In view of the regularity results stated in Section 2, the assumptions of Corollary 4.9
are now reasonable except in dimension d = 3 and in the case of a nonconvex polyhedron
Ω. However, in this case, it follows from [11] and [12] that ω admits the expansion

ω = ωr + gradS
f
Ω, (4.22)

where the regularity of ωr only depends on that of f while SfΩ is a linear combination
of the singular functions associated with the Laplace operator with Dirichlet boundary
conditions in Ω, the coefficients of this combination only depending on f . Since gradS

f
Ω

is curl-free, using a separate approximation of the two terms in this expansion leads to
the following estimate which is now valid without assumptions on the regularity of the
solution.
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Corollary 4.10. Assume that the data f belong to Hσ(Ω)d for a real number σ > d
2 .

Then, the following error estimate holds between the solution (ω,u, p) of problem (2.9)
and the solution (ωN ,uN , pN ) of problem (3.10)

‖ω − ωN‖H(curl,Ω) + ‖u− uN‖H(div,Ω) + ‖p− pN‖L2(Ω)

≤ cN−min{σ,σΩ} ‖f‖Hσ(Ω)d ,
(4.23)

where σΩ is a real number ≥ 1 only depending on Ω.
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5. Some numerical experiments.

Before presenting the numerical experiments, we briefly describe how problem (3.10) is
implemented. We only treat the case of dimension d = 2 for simplicity. Let ϕj , 0 ≤ j ≤ N ,
denote the Lagrange polynomials in PN (−1, 1) associated with the nodes ξj . We fix an
integer j∗ between 1 and N − 1 (usually equal to the integer part of N

2
), define J ∗ as the

set {0, . . . , N} \ {j∗} and set

ϕ∗
j (ζ) = ϕj(ζ)

ξj − ξj∗

ζ − ξj∗

, j ∈ J ∗. (5.1)

We now describe the vectors of unknowns, in dimension d = 2 for simplicity. The
vector Ω⋄ of unknowns coresponding to ωN is made of
• the values of ωN inside each Ωk, more precisely of ωN at the nodes Fk(ξi, ξj), 1 ≤ i, j ≤
N − 1,
• the values of ωN at the nodes Fk(±1, ξj) or Fk(ξi,±1), 1 ≤ i, j ≤ N − 1, on each edge
of Ωk which is not contained in ∂Ω (so that the node is shared by two subdomains),
• and also the values of ωN at the vertices of the Ωk, one value for each vertex which is
not contained in ∂Ω.
Note however that multiplying the vector Ω⋄ by a matrix Qω leads to a vector Ω̃⋄ = QωΩ⋄

made of K blocks Ω⋄
k: The coefficients ωk

ij of Ω⋄
k correspond to the expansion of ωN on

Ωk. If ζk and ηk denote the components of F−1
k , it reads

ωN |Ωk
(x, y) =

N∑

i=0

N∑

j=0

ωk
ij ϕi ◦ ζk(x, y)ϕj ◦ ηk(x, y) (5.2)

where all the values of ωN at the nodes which belong to ∂Ω are equal to zero.

Similarly, the vector U of unknowns corresponding to uN is made of
• the values of uNx at the nodes Fk(ξi, ξj), 1 ≤ i ≤ N − 1, j ∈ J ∗, and of uNy at the
nodes Fk(ξi, ξj), i ∈ J ∗, 1 ≤ j ≤ N − 1,
• the values of uNx at the nodes Fk(ξi,±1), 1 ≤ i ≤ N − 1, of edges of Ωk which are
parallel to the x-axis and the values of uNy at the nodes Fk(±1, ξj), 1 ≤ j ≤ N − 1, of
edges of Ωk which are parallel to the y-axis,
• the values of uNx at the nodes of each edge which are parallel to the y-axis and shared
by two subdomains and the values of uNy at the nodes of each edge which are parallel to
the x-axis and shared by two subdomains,
• and also the appropriate values of uN at the vertices of the Ωk (the continuity of uN · n
implies that the values of uN |Ωk

at a vertex a are the same for all Ωk such that a is a
vertex of Ωk),
• minus J values, one per Σj , in order to enforce the conditions (2.3).

There also, multiplying the vector U by a matrix Qu leads to a vector Ũ = QuU made of
K blocks Uk: The coefficients uk

ij of Uk correspond to the expansion of uN on Ωk, which
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reads

uNx|Ωk
(x, y) =

N∑

i=0

∑

j∈J ∗

uk
x,ij ϕi ◦ ζk(x, y)ϕ∗

j ◦ ηk(x, y),

uNy|Ωk
(x, y) =

∑

i∈J ∗

N∑

j=0

uk
y,ij ϕ

∗
i ◦ ζk(x, y)ϕj ◦ ηk(x, y),

(5.3)

where all the values of uN · n at the nodes which belong to ∂Ω are equal to zero.

Finally, the vector P of unknowns corresponding to pN is made of K blocks, each
of them made of the coefficients of a pseudo-pressure p̃N at the nodes Fk(ξi, ξj), i ∈ J ∗,
j ∈ J ∗,

p̃N |Ωk
(x, y) =

∑

i∈J ∗

∑

j∈J ∗

pij ϕ
∗
i ◦ ζk(x, y)ϕ∗

j ◦ ηk(x, y), (5.4)

where the value of p̃N at one arbitrary node of one of the Ωk is taken equal to zero. The
function p̃N vanishes at this node but does no longer belong to L2

0(Ω), however the real
pressure pN can easily be recovered in a post-processing step, thanks to the formula

pN (x, y) = p̃N (x, y)− 1

meas(Ω)
((p̃N , 1))N . (5.5)

Problem (3.10) can thus be written equivalently as the square linear system



QT
u AQω 0 QT

u B

0 BT Qu 0
QT
ω Cω Qω QT

ω CuQu 0







Ω⋄

U

P


 =



QT
u F

0
0


 , (5.6)

where, for each matrix M , MT denotes the transposed matrix of M . The global matrix

is not symmetric, even if the sub-blocks

(
0 QT

u B

BT Qu 0

)
and QT

ω Cω Qω are. Note that,

up to the multiplicative constant −ν−1, the matrix Cu coincides with AT .

The choice of system (5.6), which relies on the multiplication by theQ-type matrices, is
that now the matrices A, B, Cω and Cu are fully block-diagonal, each block corresponding
to one subdomain Ωk.

In what follows, system (5.6) is solved via the GMRES method, so that it has not to
be assembled. We also use local preconditioners: Each block which appears in the global
matrix in (5.6) is preconditioned by the matrix issued from its incomplete LU factorization.
Note finally that, as standard in spectral methods, the tensorization properties of the
polynomial spaces yield that each product of one of these blocks, corresponding to the
subdomain Ωk, by a vector is realized with cNd+1 operations, which highly reduces the
cost of the inversion.

We first check the convergence of the discretization. We work with the L-shaped
domain Ω =] − 1, 1[2\[0, 1[2, divied into three square subdomains

Ω1 =] − 1, 0[×]0, 1[, Ω2 =] − 1, 0[2, Ω3 =]0, 1[×] − 1, 0[, (5.7)

23



as illustrated in Figure 1. We consider the solution (ω,u, p) of problem (2.2) given by
ω = curlu, u = curlψ, with

ψ(x, y) = sin(πx) sin(πy), p(x, y) = xy +
1

12
. (5.8)

Figure 2 presents the curves of the errors

‖ω − ωN‖H(curl,Ω), ‖u− uN‖H(div,Ω), ‖p− pN‖L2(Ω),

in logarithmic scale, as a function of N , for N varying from 5 to 30. As can be expected
from Theorem 4.8, the convergence is exponential for this solution, and the slope for the
error on the pressure is exactly the same as for the two other unknowns.
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Figure 1: The L-shaped domain and its decomposition

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N

lo
g(

er
ro

r)

pressure
velocity
vorticity

Figure 2: The error curves for the solution obtained from (5.8)
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We now present two numerical experiments, again in dimension d = 2 and in the more
realistic case where the data f = (fx, fy) is given by fx = y, fy = 0, but the homogeneous
boundary condition in the fourth line of (2.2) is replaced by

u · n = g on ∂Ω, (5.9)

where g belongs to L2(∂Ω) and has a null integral on ∂Ω. We refer to [4, §5] for the rather
simple extension of the previous analysis to the new boundary condition (5.9). For both
experiments, we work with a Poiseuille type flow and in the case where g is equal to zero
when n = (0,±1) is parallel to the y-axis.

The first numerical experiment still deals with the L-shaped domain Ω =]−1, 1[2\[0, 1[2

and its decomposition (5.7), as drawn in Figure 1. The datum g is given by

g(−1, y) = y2 − 1, −1 ≤ y ≤ 1, and g(1, y) = −8y(1 + y), −1 ≤ y ≤ 0. (5.10)

Note that, even if the function g is very smooth, the corresonding solution is not since the
domain Ω is not convex. Figure 3 presents, from left to right and from top to bottom, the
values of the vorticity, the two components of the velocity and the pressure for the discrete
solution obtained with N = 35.
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Figure 3: The values of the discrete solution issued from (5.10)

The second numerical experiment deals with the multiply-connected domain

Ω =] − 2, 2[2 \ [−1, 1]2, (5.11)
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divided in an obvious way into four equal squares and four equal rectangles, as illustrated
in Figure 4, and with the cut Σ1 equal to ]1, 2[×{1}.
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Figure 4: The square ring domain and its decomposition
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Figure 5: The values of the discrete solution issued from (5.12)
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The datum g is now given by

g(−2, y) =

{
y2 − 1, −1 ≤ y ≤ 1,
0, 1 ≤ |y| ≤ 2,

, g(±1, y) = 0, −1 ≤ y ≤ 1,

and g(2, y) =

{
−8(1 + y)(2 + y), −2 ≤ y ≤ −1,
0, −1 ≤ y ≤ 2.

(5.12)

Figure 5 presents, from left to right and from top to bottom, the values of the vorticity,
the two components of the velocity and the pressure for the discrete solution obtained with
N = 35.
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