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Abstract

In this paper we study the asymptotic boundary behavior of large solutions of
the equation ∆u = dαup in a regular bounded domain Ω in IRN , N ≥ 2, where d(x)
denotes the distance from x to ∂Ω, p > 1 and α > 0. We precise the expansion
which depends on the mean curvature of the boundary.

1 Introduction : notations and main results

Let Ω be a regular bounded domain in IRN , N ≥ 2, p > 1 and α > 0. We denote
by d(x) the distance from x to ∂Ω, the boundary of Ω. In this paper we consider the
semilinear degenerate equation

∆u = dαup in Ω (1)

and we are interesting in the large solutions of (1), that is solutions of (1) which blow up
at the boundary :

u(x) → +∞ as d(x) → 0. (2)

Note already that the maximum principle implies that the solutions u ∈ C2(Ω) of (1)-(2)
are positive in Ω.

Equation (1) registers in problems of the form

∆u = p(x)f(u) in Ω. (3)

Those problems were first studied by Bieberbach [4] for the case p(x) = 1, f(u) = eu and
N = 2, in the context of Riemannian surfaces of constant negative curvature, and the
theory of automorphic functions. The case p(x) > 0 for all x ∈ Ω has been, largely dealt
with in the literature ( see [7], [12], [8], [5] for example).
Existence of solutions of (1)-(2) was established by Lair and Wood [9]. The question of
the uniqueness of solutions of (1)-(2) is more delicate. When α = 0 and p > 1, it is well
know that problem (1)-(2) has a unique solution which satisfies
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lim
d(x)→0

u(x)d(x)
2

p−1 =

(

2(p+ 1)

(p− 1)2

)
1

p−1

. (4)

This was first established by Loewner and Nirenberg [10] for the case p = (N+2)/(N−2).
Later we can find many extensions, see for example [1], [2] and [14] and the references
cited there. The case α < 0 and p > 0 is studied in [6]. In the general case α ≥ 0,
Marcus and Véron proved the uniqueness of the solutions of (1)-(2) under the condition
1 < p < (N + 1 + α)/(N − 1). Our first theorem completes this result and gives the rate
of the blow-up.

Theorem 1.1 Let u ∈ C2(Ω) be a solution of (1) − (2) . Then it satisfies

lim
d(x)→0

d(x)
α+2

p−1 u(x) = l (5)

where l is given by

l =

[

(α + 2)(α + p+ 1)

(p− 1)2

]
1

p−1

. (6)

This theorem allows us to establish the uniqueness of solutions of (1)-(2) with no condi-
tions on p and α.

Theorem 1.2 Problem (1) possesses a unique large solution.

In the second time we are interested in the influence of the geometry of Ω in the boundary
behavior. When α = 0, this problem was first studied by Bandle and Marcus [3] for the
radially symetric solutions of (1)-(2) in a ball. Later their result was extended by del
Pino and Letelier [13] for general solutions. They proved that a lower-order term, still
explosive, appears in the expansion of u wich depends linearly of the mean curvature of
the boundary of Ω. More precisely, if 1 < p < 3 and α = 0, then on a sufficiently small
neighborhood of ∂Ω we have the expansion

u(x) =

(

2(p+ 1)

(p− 1)2

)
1

p−1

d(x)−
2

p−1

{

1 +
N + 1

p+ 3
H(x)d(x) + o(d(x))

}

. (7)

Here, for all x in a neighborhood of ∂Ω, x denotes the unique point of the boundary such
that d(x) = |x−x| and H(x) the mean curvature of the boundary at that point. Estimate
(7) generalizes to our case α ≥ 0 in the following way.

Theorem 1.3 Let u ∈ C2(Ω) a large solution of (1). Then, on a sufficiently small
neighborhood of ∂Ω :

u(x) = ld(x)−
2+α
p−1

{

1 +
N − 1

α + p+ 3
H(x)d(x) + o(d(x))

}

. (8)
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This theorem implies that on a sufficiently small neighborhood of ∂Ω :

u(x) − ld(x)−
2+α
p−1 =

N − 1

α + p+ 3
H(x)d(x)−

α+3−p

p−1 + o
(

d(x)−
α+3−p

p−1

)

. (9)

Therefore, we obtain that
- if p > α + 3, then the first member of (9) tends to 0 at the boundary,

- if p = α + 3, then u(x) − ld(x)−
2+α
p−1 = N−1

α+p+3
H(x) + o(1),

- if p < α + 3, then the first member of (9) is not bounded and the blow-up depends
on the mean curvature. Roughly, the ”more curved” or ”sharper” towards the exterior of
Ω is around a given point of ∂Ω, the higher the explosion rate at that point is.
That is a generalization of the results of Bandle and Marcus [3] for the radially symetric
solutions of (1)-(2) in a ball Ω = B(0, R) :

- if p > 3, then u(r) − l(R− r)−
2

p−1 → 0 when r → R,

- if p = 3, then u(r) − l(R − r)−
2

p−1 → C(N)
R

when r → R, which represents the mean
curvature of the ball,

- if p < 3, then u(r) − l(R− r)−
2

p−1 → ∞ when r → R.

Our paper is organized as follows :
1. Introduction
2. Asymptotic behavior and uniqueness
3. Boundary influence in the explosion rate.

2 Asymptotic behavior and uniqueness.

We begin this section by proving a classical estimate for all solution u of (1). ( see [12]).

Proposition 2.1 : (Osserman estimate): There exist two positive constants a = a(∂Ω)
and C = C(Ω, α, p) such that for all solution u ∈ C2(Ω) of equation (1), we have :

u(x) ≤ Cd(x)−
2+α
p−1 (10)

for all x ∈ Ω such that d(x) < a.

Proof : Since Ω is regular there exist ã = ã(Ω) > 0 and M = M(Ω) > 0 such that

|∆d(x)| ≤M, |∇d(x)| = 1 (11)

for all x ∈ Ω such that d(x) < ã. Set a = min(1, ã
2
). Let x0 ∈ Ω such that d(x0) < a

and r0 = d(x0)/2. We denote by B0 the ball centered at x0 of radius r0 and we define the
function w in B0 as follows :

w(x) = λd(x)−
α

p−1 (r2
0 − |x− x0|

2)−
2

p−1 (12)

with λ > 0 to determine such that

−∆w + dαwp ≥ 0 in B0. (13)
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A straightforward computation gives :

−∆w + dαwp = λd−
α

p−1 (r2
0 − |x− x0|

2)−
2p

p−1×

[

−
α(α+ p− 1)

(p− 1)2
(r2

0 − |x− x0|
2)2d−2 +

α

p− 1
(r2

0 − |x− x0|
2)2d−1∆d

+
8α

(p− 1)2
(r2

0 − |x− x0|
2)d−1∇d.(x− x0) −

8(p+ 1)

(p− 1)2
|x− x0|

2

−
4N

p− 1
(r2

0 − |x− x0|
2) + λp−1

]

.

Since |x − x0| < d(x0) ≤ 1, d(x) ≥ d(x0)/2 and r3
0 < r2

0, there exists a constant L =
L(α, p,M) > 0 such that

−∆w + dαwp ≥ λd−
α

p−1 (r2
0 − |x− x0|

2)−
2p

p−1 (−Lr2
0 + λp−1)

in B0. Therefore, we choose λ = L
1

p−1 r
2

p−1

0 and we obtain (13). Note that w(x) = +∞ if
x ∈ ∂B0 because −2/(p− 1) < 0. The comparison principle implies u ≤ w in B0 and in
particular

u(x0) ≤ w(x0) = L
1

p−1

(

d(x0)

2

)
2

p−1

(d(x0))
− α

p−1

(

d(x0)

2

)− 4

p−1

which gives inequality (10).

We now establish an estimate from below for the solutions of (1)-(2). The results of [1]
and [2] can’t be used because the distance function d is not positive in Ω. Nevertheless
we can adapt them as follows.

Proposition 2.2 Let u ∈ C2(Ω) be a solution of (1) − (2). Then

lim inf
d(x)→0

d(x)
α+2

p−1 u(x) ≥ l (14)

where l is defined in (6).

Proof : Let ε > 0, ã be as the proof of proposition 2.1 and β ∈ (0, 1). We define

u(x) = βl((d(x) + ε)−
α+2

p−1 − (a + ε)−
α+2

p−1 )

where a will be determined such that a < ã. We have u > 0 on ∂Ω and u(x) = 0 for all
x such that d(x) = a. Moreover a straighforward computation yields

−∆u + dαup = β

[

∆d

(

α + 2

p− 1

)

l(d+ ε)−
α+p+1

p−1 − lp(d+ ε)−
α+2p

p−1
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+dαβp−1lp((d+ ε)−
α+2

p−1 − (a+ ε)−
α+2

p−1 )p
]

in 0 < d(x) < a. Using inequality (11), we obtain

−∆u + dαup ≤ βlp(d+ ε)−
α+2p

p−1

[

M

(

α + 2

p− 1

)

l1−p(d+ ε)

−1 + βp−1

(

d

d+ ε

)α]

which implies

−∆u+ dαup ≤ βlp(d+ ε)−
α+2p

p−1 [M(d+ ε) − (1 − βp−1)]

with M = M(α+2
p−1

)l1−p. We now choose a = 1
2
min(ã, 1−βp−1

M
) and impose ε < 1

2
(1−βp−1

M
).

Then u is a subsolution of (1) in 0 < d(x) < a. By the maximum principle we derive
u ≤ u in 0 < d(x) < a. Letting ε tend to 0, this implies for all β ∈ (0, 1) and x such that
d(x) < a:

βl



1 −

(

d(x)

a

)
α+2

p−1



 ≤ d(x)
α+2

p−1 u(x).

Therefore for all β ∈ (0, 1):

βl ≤ lim inf
d(x)→0

d(x)
α+2

p−1 u(x)

which ends the proof.

Because of proposition 2.2, we can describe the asymptotic behavior of radially sy-
metric solutions of (1)-(2).

Proposition 2.3 Let R > 0 and v ∈ C2(0, R) a solution of

−v′′ −
N − 1

r
v′ + (R − r)αvp = 0 (15)

in (0, R) such that

lim
r→R

v(r) = +∞.

Then
lim
r→R

(R− r)
α+2

p−1 v(r) = l (16)

where l is defined in (6).
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We omit the proof of this proposition because it follows the idea of [14]: the function

w(t) = (R−r)
α+2

p−1 v(r) with R−r = e−t is bounded and satisfies a second order differentiel
equation in a neighborhood of infinity and the ω-limit set of a trajectory of that equation
is {0} or {l}. Therefore proposition 2.2 implies proposition 2.3. Those results allows us
to prove theorem 1.1.

Proof of theorem 1.1 : In view of (14) we must only prove that

lim sup
d(x)→0

d(x)
α+2

p−1 u(x) ≤ l. (17)

Still the results of [1], [2] or [14] don’t apply directly but we can adapt them. Let y ∈ ∂Ω.
Since ∂Ω is smooth, there exists a ball By centered at a point Y of radius Ry such that
By ⊂ Ω and By ∩ ∂Ω = {y}. We introduce the function V defined by V (x) = v(|x|) for
all x ∈ BRy

where v is a function as in proposition 2.3 with R = Ry. The function v
exists because it is the radial solution of (1)-(2) for Ω = B (see [9]). Let k > 1. Finally

we introduce the function Vk defined by Vk(x) = k
2

p−1V (k(x − Y )) for all x ∈ B(Y, Ry

k
).

Note that B(Y, Ry

k
) ⊂ By and Vk is solution of

−∆Vk + (Ry − k|x− Y |)αV p
k = 0

in B(y, Ry

k
) and satisfies

lim
|x−Y |→

Ry

k

Vk(x) = +∞.

Since x ∈ B(Y, Ry

k
) implies d(x) ≥ Ry −|x−Y | ≥ Ry −k|x−Y |, the comparison principle

involves u ≤ Vk in B(Y, Ry

k
). Letting k tend to 1, we obtain

u(x) ≤ v(|x− Y |) in By. (18)

Because of proposition 2.3, for all ε > 0 there exists η > 0 such that

|s
α+2

p−1 v(Ry − s) − l| < ε ∀s ∈ (0, η). (19)

Let η̃ > 0 be sufficiently small so that for all x ∈ Ω with d(x) < η̃ there exists a unique
y ∈ ∂Ω such that |x − y| = d(x). Then for all x ∈ Ω such that d(x) < min(η, η̃), both
inequalities (18) and (19) imply

d(x)
α+2

p−1 u(x) ≤ d(x)
α+2

p−1 v(Ry − d(x)) < l + ε

and inequality (17) holds.

Proof of theorem 1.2 : Large solutions of (1) satisfy (5). Then two large solutions u1 and
u2 of (1) are such that

lim
d(x)→0

u1(x)

u2(x)
= 1.

and the result follows as in [1] or [11].
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3 Boundary influence in the explosion rate.

In this section we prove theorem 1.3. As in [13] we construct suitable sub- and supersolu-
tions of (1) in a neighborhood of ∂Ω which are inspired of the radial study that we omit
here.

Since Ω is regular there exists b > 0 such that d is a function of class C2 in {x ∈ Ω / d(x) <
b}, |∇d(x)| = 1 and

∆d(x) = −(N − 1)H(x) + o(1) as d(x) → 0. (20)

Let b0 ∈ (0, b), b ∈ (0, b0) and ε > 0. We introduce the function Ψ defined in Eb,b0 = {x ∈
Ω / b < d(x) < b0} by

Ψ(x) = l(d(x) − b)−
α+2

p−1 +
l

α + p+ 3
((N − 1)H(x) + ε)(d(x) − b)−

α+3−p

p−1 .

We claim that if b0 is chosen sufficiently small, independently of ε and b, then Ψ is a
supersolution in Eb,b0 . Indeed, a straightforward computation using (20) gives :

∆Ψ = lp(d(x) − b)−
α+2p

p−1 + l(d(x) − b)−
α+p+1

p−1

[

α + 2

p− 1
(N − 1)H(x)

+
(α + 3 − p)(α+ 2)

(α+ p+ 3)(p− 1)2
((N − 1)H(x) + ε) + o(1)

+
α + 3 − p

(p− 1)(α+ p+ 3)
((N − 1)H(x) + ε)((N − 1)H(x) + o(1))(d(x) − b)

]

.

On the other hand, we have

d(x)αΨp ≥ (d(x) − b)αΨp

≥ lp(d(x) − b)−
α+2p

p−1

[

1 + p

α+p+3
((N − 1)H(x) + ε)(d(x) − b) + o(d(x) − b)

]

.
.

Then

−∆Ψ + dαΨp ≥ l(d(x) − b)−
α+p+1

p−1 ×

[

−
α + 2

p− 1
(N − 1)H(x) −

(α + 3 − p)(α+ 2)

(α + p+ 3)(p− 1)2
((N − 1)H(x) + ε)

−
α + 3 − p

(p− 1)(α+ p+ 3)
((N − 1)H(x) + ε)((N − 1)H(x) + o(1))(d(x) − b)

+
lp−1p

α+ p+ 3
((N − 1)H(x) + ε) + o(1)

]

Since
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−
α + 2

p− 1
−

(α+ 3 − p)(α + 2)

(α + p+ 3)(p− 1)2
+

lp−1p

α + p+ 3
= 0 ,

and since the coefficient of ε is (α+2)/(p−1), it implies that there exists b0 = b0(ε) ∈ (0, b)
such that for all 0 < b < b0 :

−∆Ψ + dαΨp ≥ 0 in Eb,b0 .

Consider the solution u of (1)-(2). We claim that there exists a positive number K
independent of b ∈ (0, b0) such that :

Ψ(x) +K ≥ u(x) (21)

for all x ∈ Ω with d(x) = b0. In fact, if we define

M0 = max
d(x)=b0

u(x) ,

we can compute for all x such that d(x) = b0 :

Ψ(x) = l(b0 − b)−
α+2

p−1 +
l

α + p+ 3
((N − 1)H(x) + ε)(b0 − b)−

α+3−p

p−1 .

Since ∂Ω is regular, there exists a real b1 ∈ (0, b0) such that

∣

∣

∣

∣

∣

1

α + p+ 3
((N − 1)H(x) + ε)(b0 − b)

∣

∣

∣

∣

∣

≤
1

2

for all b ∈ (b1, b0), where x is such that d(x) = |x− x|. Therefore

1 +
1

α + p+ 3
((N − 1)H(x) + ε)(b0 − b) ≥

1

2

and then

Ψ(x) ≥
l

2
(b0 − b)−

α+2

p−1 ≥
l

2
(b0 − b1)

−α+2

p−1

for all b ∈ (b1, b0), where x is such that d(x) = |x−x|. On the other hand, for all b ∈ (0, b1]
and d(x) = b0 :

Ψ(x) = l(b0 − b)−
α+2

p−1 + l
α+p+3

((N − 1)H(x) + ε)(b0 − b)−
α+3−p

p−1

≥ lb
−α+2

p−1

0 − C(b0 − b1)
−α+3−p

p−1

with C > 0 and because the assumption if we assume α + 3 − p > 0 (we omit the proof
in the case α + 3 − p ≤ 0 which is simplier). Finally we obtain for all b ∈ (0, b0) :

Ψ(x) ≥ L = min

(

l

2
(b0 − b1)

−α+2

p−1 , lb
−α+2

p−1

0 − C(b0 − b1)
−α+3−p

p−1

)

,

then, for all x such that d(x) = b0, u ≤M0 ≤ max(1,M0 − L) +L ≤ max(1,M0 −L) + ψ
which implies (21).
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On the other hand the function Ψ + K is itself a supersolution of equation (1) in Eb,b0 .
Therefore the comparison principle implies (21) in Eb,b0 . Letting b tend to 0, we obtain

u(x) ≤ ld(x)−
α+2

p−1 +
l

α + p+ 3
((N − 1)H(x) + ε)d(x)−

α+3−p

p−1 +K

for all x ∈ Ω such that 0 < d(x) < b0. In the same way, by considering subsolutions in
the form

φ(x) = l(d(x) + b)−
2+α
p−1 +

l

α + p+ 3
((N − 1)H(x) − ε)(d(x) + b)−

α+3−p

p−1 −K

we obtain expansion (8).
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[6] M. Chuaqui, C. Cortázar, M. Elgueta, C. Flores, R. Letelier and J. Garćı-Melián, On
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