
HAL Id: hal-00112128
https://hal.science/hal-00112128

Preprint submitted on 8 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharp estimates of bounded solutions to a second order
forced equation with structural damping

Alain Haraux

To cite this version:
Alain Haraux. Sharp estimates of bounded solutions to a second order forced equation with structural
damping. 2006. �hal-00112128�

https://hal.science/hal-00112128
https://hal.archives-ouvertes.fr


Sharp estimates of bounded solutions to
a second order forced equation with structural damping

Alain Haraux

Résumé. A l’aide d’inégalités différentielles, on établit une estimation essen-

tiellement optimale pour la norme dans L∞(R,D(A)) de l’unique solution bornée de

u′′+cAu′+A2u = f(t) lorsque A = A∗ ≥ λI est un opérateur borné ou non sur un es-

pace de Hilbert réel H et λ, c sont des constantes positives, tandis que f ∈ L∞(R,H).

Abstract. By using differential inequalities, an essentially optimal L∞(R,D(A))

bound of the unique bounded solution of u′′+cAu′+A2u = f (t) is obtained whenever

A = A∗ ≥ λI is a bounded or unbounded linear operator on a real Hilbert space H

and λ, c are positive constants, while f ∈ L∞(R,H).
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Introduction

Let H be a real Hilbert space. In the sequel we denote by (u, v) the inner product

of two vectors u, v in H and by |u| the H-norm of u. Let A : D(A) → H a possibly

unbounded self-adjoint linear operator such that

∃λ > 0,∀u ∈ D(A), (Au, u) ≥ λ|u|2

We consider the largest possible number satisfying the above inequality, in other terms

λ1 = inf
u∈D(A),|u|=1

(Au, u)

We also introduce

V = D(A)

endowed with the norm given by

∀u ∈ V, ‖u‖ = |Au|

It is clear that the norm just defined on V is equivalent to the graph norm of A as a

consequence of our coerciveness assumption on A.

Given f ∈ L∞(R, H) the second order evolution equation

u′′ + cAu′ + A2u = f (t) (1)

is well-known to have a unique bounded solution

u ∈ Cb(R, V ) ∩ C1
b (R,H) (2)

Indeed, putting (1) in the equivalent form

u′ = v; v′ + cAv + A2u = f

and introducing the contraction semi-group S(t) generated on V ×H by the system

u′ − v = v′ + cAv + A2u = 0

since S is exponentially damped on V ×H, we have (cf.eg. [3])

∀t ∈ R, [u(t), u′(t)] =

∫ ∞

0

S(τ)[0, f (t− τ)]dτ =

∫ t

−∞
S(t− s)[0, f(s)]ds (3)
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Assuming

‖S(t)‖ ≤ Me−δt

we also get the estimate

∀t ∈ R, ‖u(t)‖ ≤ {‖u(t)‖2 + |u′(t)|2}1/2 ≤ M

δ
‖f‖L∞(R,H)

In the previous work [6] we obtained a a close-to-optimal L∞(R,D(A1/2) bound of

the unique bounded solution of u′′+cu′+Au = f (t) by extending in the Hilbert space

setting some methods devised for the second order scalar ODE u′′+cu′+ω2u = f(t)

for which the optimal bound is known, cf [5]. However in [6] we do not recover what

would be an exact generalization of the scalar case, we lose a factor 2 or a factor
√

2

depending on the position of c compared to 2
√

λ1. In the case of equation (1) where

the constant damping is replaced by the so-called structural damping (cf. [2]), the

equation looks more comparable to the scalar case in the sense that the ratio of the

square of the dissipation over the eigenvalue is the same for all elementary modes.

It turns out that an essentially optimal bound can then be obtained by a suitable

modification of the methods from [5, 6].

The plan of the paper is the following: Section 1 contains the statement of the

main result. Sections and 2 and 3 are devoted to the proofs. In Section 4 we give an

example of application to the size of attractors of some nonlinear plate equations in

a bounded domain.

1- Main result.

Our main result is the following

Theorem 1.1. The bounded solution u of (1) satisfies the estimate

∀t ∈ R, ‖u(t)‖ ≤
max{1, 2

c
}

λ1
‖f‖L∞(R,H) (1.1)

Moreover if c ≤ 2 we have

∀t ∈ R, |u′(t)| ≤ (1 +
2

c
)

1

λ1
‖f‖L∞(R,H) (1.2)

and if c ≥ 2

∀t ∈ R, |u′(t)| ≤ 4

λ1(c +
√

c2 − 4)
‖f‖L∞(R,H) (1.3)
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2- The case of a small damping.

This section is devoted to the proof of Theorem 1.1 when c ≤ 2. Under this

condition we can use following variant of the energy functional already used in [4, 5,

6]:

Φ(t) = |A 1
2 u′(t)|2 + |A 3

2 u(t)|2 + c(Au(t), Au′(t)) (2.1)

which is well-defined at least when f ∈ L∞(R,D(A)) for instance since then

u ∈ L∞(R,D(A2)) ∩W 1,∞(R, D(A)) ∩W 2,∞(R, H)

Assuming moreover f ∈ L∞(R,D(A2)) we can differentiate Φ in the classical sense

and we find

Φ′ = (u′′ + A2u, 2Au′) + c|Au′|2 + c(A2u, u′′)

= (2Au′, f − cAu′) + c|Au′|2 + c(A2u, f − A2u− cAu′)

= −c[|Au′(t)|2 + |A2u(t)|2 + c(A2u(t), Au′(t))] + (f, 2Au′ + cA2u)

hence

Φ′ = −cΨ + (f, 2Au′ + cA2u) (2.2)

with

Ψ(t) := |Au′(t)|2 + |A2u(t)|2 + c(A2u(t), Au′(t)) (2.3)

We claim

∀t ∈ R, Ψ(t) ≥ λ1Φ(t) (2.4)

Indeed setting for t fixed w = A
1
2 u′(t), z = A

3
2 u(t) we have

Ψ(t) := |Au′(t)|2 + |A2u(t)|2 + c(A2u(t), Au′(t)) = |A 1
2 w|2 + |A 1

2 w|2 + c(Aw, z)

= |A 1
2 (w +

c

2
z)|2 + (1− c2

4
)|A 1

2 w|2 ≥ λ1(|w +
c

2
z|2 + (1− c2

4
)|w|2 = λ1Φ(t)

On the other hand

|2Au′ + cA2u|2 = 4|Au′|2 + 4c(A2u, Au′) + c2|A2u|2 ≤ 4Ψ

hence, using

(f, 2Au′ + cA2u) ≤ 2

c
|f |2 +

c

8
|2Au′ + cA2u|2 ≤ 2

c
|f |2 +

c

2
Ψ
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we deduce from (2.3) and (2.4) the inequality

Φ′ ≤ − c

2
Ψ +

2

c
|f |2 ≤ − c

2
λ1Φ +

2

c
|f |2

In particular, since Φ is bounded we find

∀t ∈ R, Φ(t) ≤ 4

λ1c2
‖f‖2∞

which means

∀t ∈ R, |A 1
2 u′(t)|2 + |A 3

2 u(t)|2 + c(Au(t), Au′(t)) ≤ 4

λ1c2
‖f‖2∞ (2.5)

In particular

∀t ∈ R, λ1|Au(t)|2 + c(Au(t), Au′(t)) ≤ 4

c2
‖f‖2∞

and this means
c

2
(|Au(t)|2)′ + λ1|Au(t)|2 ≤ 4

λ1c2
‖f‖2∞

Along with boundedness of Au(t) in H on R this implies

∀t ∈ R, |Au(t)|2 ≤ 4

c2λ2
1

‖f‖2∞

therefore (1.1) is proved when f is smooth. The general case follows at once by

density. Finally from (2.5) we deduce

|A 1
2 u′(t) +

c

2
A

3
2 u(t)|2 ≤ |A 1

2 u′(t)|2 + |A 3
2 u(t)|2 + c(Au(t), Au′(t)) ≤ 4

λ1c2
‖f‖2∞

hence

|A 1
2 u′(t) +

c

2
A

3
2 u(t)| ≤ 2

c
√

λ1

‖f‖∞

therefore

|u′(t) +
c

2
Au(t)| ≤ 2

cλ1
‖f‖∞

and finally

|u′(t)| ≤ (1 +
2

c
)

1

λ1
‖f‖∞

as claimed.

Remark 2.1. If c < 2, inequality (2.5) implies in fact u ∈ L∞(R, D(A3/2)) ∩
W 1,∞(R,D(A1/2)) for any f ∈ L∞(R, H). Actually, for any c > 0 it follows from [7]

that S(t) is analytic on V ×H and then for all η > 0

u ∈ Cb(R,D(A2−η)) ∩C1
b (R, D(A1−η))
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3- The case of a large damping

This section is devoted to the proof of Theorem 1.1 for c ≥ 2. We shall use the

following simple lemma.

Lemma 3.1 Let B = B∗ ≥ 0 be a possibly unbounded linear operator on H such

that B ≥ ηI with η > 0. Then for each f ∈ L∞(R,H) the unique mild solution u

bounded on R with values in H of

u′ + Bu = f (3.1)

takes its values in D(B
1
2 ) and we have

∀t ∈ R, |B 1
2 u(t)| ≤ 1√

η
‖f‖L∞(R,H) (3.2)

Proof. Assume first that f is smooth and let u be the (smooth) bounded solution

u of (3.1) on R We have for almost all t ∈ J

d

dt
|B 1

2 u|2 + 2(Bu,Bu) = 2(f, Bu) ≤ |f |2 + (Bu, Bu)

hence
d

dt
|B 1

2 u|2 + η|B1/2u|2 ≤ d

dt
|B 1

2 u|2 + |Bu|2 ≤ |f |2

from which (3.2) follows immediately. The result follows by density for any f ∈
L∞(R,H).

Proof of Theorem 1.1.continued. We introduce

α =
c +

√
c2 − 4

2
; β =

c−
√

c2 − 4

2
=

1

α

For each f ∈ L∞(R,H) there is a unique bounded solution v of

v′ + αAv = f

As a consequence of Lemma 3.1, we have v ∈ L∞(R,D(A
1
2 ) with

∀t ∈ R, |A 1
2 v(t)| ≤ 1

α
√

λ1

‖f‖L∞(R,H) (3.3)

Since v is bounded there is a unique bounded solution u ∈ L∞(R,D(A
1
2 ) of

u′ + βAu = v
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As a consequence of Lemma 3.1 applied with f replaced by A
1
2 v, we have u ∈

L∞(R,D(A) with

∀t ∈ R, |Au(t)| ≤ 1

β
√

λ1

‖A 1
2 v‖L∞(R,H)) ≤

1

λ1
‖f‖L∞(R,H) (3.4)

Now when f ∈ L∞(R,D(A))) we have

u′′ = v′ − βAu′ = f − αAv − βAu′ = f − βAu′ − αA(u′ + βAu) = f −Au′ −A2u

Finally, u is the bounded solution of

u′′ + Au′ + A2u = f

The result extends by density to the general case. To estimate the norm of u′ it is

now sufficient to write

|u′| = |v − βAu| ≤ 1√
λ1

|A 1
2 v|+ β|Au| ≤ 2β

λ1
‖f‖∞ =

4

λ1(c +
√

c2 − 4)
‖f‖L∞(R,H)

The proof of Theorem 1.1 is now complete.

4- Application.

Let (Ω, µ) be a finitely measured space and A a positive definite self-adjoint

linear operator as in the introduction on H = L2(Ω, dµ) . Assuming µ(Ω) < ∞, let

us consider a bounded function F : R → [−a, +a] with a > 0 and let u ∈ Cb(R, V ) ∩
C1

b (R,H) ∩W 2,∞(R, V ′) be a solution of

u′′ + cAu′ + A2u = F (u) (4.1)

Then if c ≥ 2 we have

∀t ∈ R, ‖u(t)‖ ≤ a

λ1
µ(Ω)

1/2
(4.2)

and if c ≤ 2 we have

∀t ∈ R, ‖u(t)‖ ≤ 2a

cλ1
µ(Ω)

1/2
(4.3)

For instance, let Ω be a bounded open domain in RN and b ≥ 0, c > 0, α ∈ R. We

consider the problem

u′′ + ∆2u− c∆u′ = α sin u (4.4)
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with the boundary conditions

u = ∆u = 0 on ∂Ω (4.5)

It is well known that problem (4.4)-(4.5) has a compact attractor A. Our result gives

an upper bound of the size of the u−projection of A since the attractor is just the

union of the ranges of bounded solutions. More precisely we have

A ⊂
{

(u, v) ∈ (H2(Ω) ∩H1
0 (Ω))× L2(Ω), |∆u|L2(Ω) ≤

max{1, 2
c}|α|

λ1
|Ω|1/2

}
(4.6)

We conjecture that for c = 2 this result is optimal.
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