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Numerical approximation for

a nonlinear membrane problem

Nabil Kerdid∗ Hervé Le Dret† Abdelkader Saïdi‡

September 12, 2006

Abstract

We present a numerical study of large deformations of nonlinearly elas-

tic membranes. We consider the nonlinear membrane model obtained by

H. Le Dret and A. Raoult using Γ-convergence, in the case of a Saint Venant-

Kirchhoff bulk material. We consider conforming P1 and Q1 finite element

approximations of the membrane problem and use a nonlinear conjugate

gradient algorithm to minimize the discrete energy. We present numerical

tests including membranes submitted to live pressure loads.

1 Introduction

The purpose of this article is to devise numerical approximations of large defor-

mations of a nonlinearly elastic membrane. The nonlinear membrane model used

here was obtained in [6], with refinements in [9]. The relevance of this model

stems from the fact that it was derived from three-dimensional nonlinear elasticity

by means of a rigorous convergence method. Our numerical study of the nonlin-

ear membrane model is made possible due to the explicit formula for the nonlinear

membrane energy given in [6] in the case of the Saint Venant-Kirchhoff bulk ma-

terial. For a general bulk material, an explicit computation of the corresponding

nonlinear membrane energy entails the determination of the quasiconvex envelope
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of a function defined on the space of 3×2 matrices, a hopeless task as a general

rule.

This article is organized as follows: We first briefly present the results of [6]

and [9]. We consider a three-dimensional hyperelastic homogeneous cylinder of

thickness 2ε > 0 made of a given Saint Venant-Kirchhoff material. The body is

submitted to a dead loading body force density and a constant pressure differ-

ential on its upper and lower surfaces, and a boundary condition of place on its

lateral surface. The three-dimensional nonlinear elasticity equilibrium problem is

formulated as a minimization problem for the total energy of the body.

Using Γ-convergence arguments, H. Le Dret and A. Raoult showed that defor-

mations that almost minimize the three-dimensional total energy converge when

the thickness ε of the body goes to zero towards deformations that minimize a

nonlinear membrane energy, see [6]. The convergence takes place in a rescaled

weak W 1,p sense. The limit problem is two-dimensional, with values in R
3.

The limit two-dimensional nonlinear membrane energy is computed in two

steps: First minimize the bulk stored energy function with respect to the third

column vector of the deformation gradient—this step produces a function W0 on

the space of 3× 2 matrices—then take the quasiconvex envelope of W0. In the

special case of a Saint Venant-Kirchhoff material, an explicit formula for this

quasiconvex envelope QW0 is available. This formula is expressed in terms of the

right singular values of the membrane deformation. In [9], in addition to the case

of curved membranes, the zero-thickness limit of a constant live pressure loading

term is also computed.

In section 3, we present a conforming finite element approximation of the

membrane problem. We consider P1 and Q1 discretizations of the three Cartesian

components of the deformation. We prove the weak-W 1,4 convergence of the

approximate solutions toward a solution of the continuous minimization problem.

The choice of available numerical methods to solve our FE problem is rather

limited since the problem under study is highly nonlinear and the membrane stored

energy function is only of class C1. Consequently, a method relying on second

derivatives of the total energy cannot be appropriate. On the contrary, the non-

linear conjugate gradient method with the Polak and Ribière variant seems to be

well adapted to our problem. The convergence of the algorithm is guaranteed by

the convexity of the membrane energy, at least in the case of zero pressure differ-

ential. There is however a difficulty in computing the gradient of the stored en-

ergy function. We adapted Ball’s results concerning the differentiability of frame-

indifferent, isotropic functions on the space of n×n square matrices, see [2].

In section 4, we present various numerical tests. Both P1 and Q1 elements are

alternatively used. The first test is a circular membrane submitted to an upward

pressure differential and clamped on its boundary. It should be noted that in our

formulation, there as absolutely no need to track the deformed normal vector in
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order to take into account the live loading pressure differential. This is exemplified

by the bubble-like deformation computed in this test.

Next, we perform a few tests taken from [12]: a rectangular airbag and a

square membrane attached by its four corners and submitted to a vertical point

force applied at its center. As opposed to [12], our model cannot capture wrinkles

in detail, because wrinkles are filtered out in the Γ-limit process, which in turn

leads to a well-posed limit minimization problem. Such is the nature of weak

convergence. However, wrinkled regions are captured. They are the membrane

areas where the deformation gradient lies a region of 3×2 space where relaxation

occurs, i.e., the quasiconvex envelope is such that QW0 < W0. This occurs in

compression when at least one of the singular values is less than 1 and the other

one is not too large, see [6] for details.

The last two tests are in the context of the modeling of fabrics. The first test

is a square piece of fabric attached at its center and submitted to a vertical dead

loading body force and the second is a tablecloth with no displacement allowed

on the table surface.

Part of the results of this article were announced in [5].

2 The continuous problem

Let us briefly outline the results of [6] and [9], to which we refer the reader for

more details. Let ω be an open, bounded subset of R
2 with Lipschitz boundary.

For all ε > 0, we consider a hyperelastic homogeneous body occupying the refer-

ence configuration Ωε = ω × ]−ε,ε[. We assume that the stored energy function

of this body is a function W : M3 → R which is continuous, coercive and satis-

fies growth conditions for an exponent p ∈ ]3,+∞[, where M3 is the space of real

3×3 matrices. We furthermore assume that the body is submitted to a dead load-

ing body force density f and to a constant pressure differential ε∆p on its upper

and lower surfaces, which is a live load, that is to say a spatially constant pressure

p+
ε on the upper surface and another spatially constant pressure p−ε on the lower

surface such that p+
ε − p−ε = ε∆p. The equilibrium problem for this body may be

formulated as a minimization problem for the energy

Jε(φ) =
∫

Ωε

W (∇φ)dx−
∫

Ωε

fε ·φ dx−Pε(φ), (1)

where

Pε(φ) =
∫

Ωε

[

πε det∇φ +
1

3
∇πε · (cof∇φ T φ)

]

dx, (2)

over a set of admissible deformations φ belonging to an appropriate Sobolev space

and satisfying given boundary conditions of place on part of the lateral boundary.
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Here, πε is a C1-function on Ω̄ε that takes the values p±ε on the upper and lower

surfaces. The term Pε appearing in the energy accounts for the pressure load, see

[1]. Note that this term incorporates the fact that a pressure load is a live load that

follows the normal vector to the deformed body, without having to keep track of

this normal vector. Dead loading tractions on the upper, lower and lateral surfaces

can also easily be added as well as boundary conditions of place on part of the

boundary.

In [6] and [9], see the latter for the pressure term, Le Dret and Raoult proved

that a rescaled version of the above three-dimensional energy Γ-converges when

the thickness 2ε of the membrane goes to zero in the sense of the weak topology

of W 1,p(Ω;R3), thereby showing that minimizing deformations converge, in an

appropriate sense, toward solutions of a two-dimensional minimization problem.

The limit, two-dimensional nonlinear membrane problem is described as follows.

Let M3,2 be the space of real 3×2 matrices. If zα ,α = 1,2, are two vectors in

R
3, we note (z1|z2) the matrix of M3,2 whose columns are the vectors zα . For all

F = (z1|z2) ∈ M3,2 and z ∈ R
3, we note (F |z) the matrix whose first two columns

are zα , and third column is z and write (z|F) with a similar convention. We now

define a function W0 : M3,2 → R by

W0(F) = inf
z∈R3

W ((F |z)). (3)

The function W0 is continuous and coercive. Let QW0 be its quasiconvex envelope,

see [3]. We introduce the space of admissible membrane displacements

ΦM =
{

ψ ∈W 1,p(ω;R3);ψ(x1,x2) = (x1,x2,0)T on ∂ω
}

, (4)

(this is for the case of a boundary condition of place on the whole lateral surface

∂ω × ]−ε,ε[ in the 3D problem, other conditions are enforced accordingly).

The limit nonlinear membrane energy is then defined by

J(ψ)= 2

∫

ω
QW0(∇ψ)dx1dx2−

∫

ω
f ·ψ dx1dx2−

∆p

3

∫

ω
det(∂1ψ|∂2ψ|ψ)dx1dx2,

(5)

for all ψ ∈ ΦM, where f is a 2D-body force resultant density obtained from fε .

The limit minimization problem now reads: Find ϕ ∈ ΦM such that

J(ϕ) = inf
ψ∈ΦM

J(ψ). (6)

The energy functional J is obtained via a Γ-limit process and existence of a

solution to problem (6) is guaranteed under reasonable technical assumptions, see

[6] and [9].

In general, it is not possible to compute explicitly the quasiconvex envelope

of a given function W0. Hence, generically with respect to the bulk material, it
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is not possible to perform numerical computations using this model. However, in

the special case of a Saint Venant-Kirchhoff material, the quasiconvex envelope

QW0 was computed in [6]. Let us recall that the stored energy function of a Saint

Venant-Kirchhoff material assumes the form

W (F) =
µ

4
tr((FT F − I3)

2)+
λ

8
(tr(FT F − I3))

2,

where µ > 0 and λ ≥ 0 are the Lamé constants of the material (here F is a 3×3

matrix and In is the n×n identity matrix). The intermediate function W0 is given

by

W0(F) =
µ

4
tr((FT F − I2)

2)+
λ µ

4(λ +2µ)
h(F)2

+
1

8(λ +2µ)

(

[λh(F)− (λ +2µ)]+
)2

,

with h(F) = tr(FT F − I2) (here F is a 3× 2 matrix, thus FT F is 2× 2) and t+
denotes the positive part of t. Finally, the quasiconvex envelope QW0 is expressed

in terms of the right singular values 0 ≤ v1(F) ≤ v2(F) of F (i.e. the eigenvalues

of
√

FT F) as

QW0(F) = Φ(v1(F),v2(F))

= E
8

(

[v2(F)2 −1]+
)2

+ E
8(1−ν2)

(

[v1(F)2 +νv2(F)2 − (1+ν)]+
)2

+ E
8(1−ν2)(1−2ν)

(

[ν(v1(F)2 + v2(F)2)− (1+ν)]+
)2

,

(7)

where E = µ(3λ+2µ)
λ+µ

is the Young modulus and ν = λ
2(µ+λ ) the Poisson ratio of

the Saint Venant-Kirchhoff material under consideration, see [6] and [8]. It turns

out that the function QW0 is convex on M3,2, therefore the quasiconvex envelope

of W0 is also its convex envelope in this case.

In the case of the Saint Venant-Kirchhoff material, we thus have a completely

explicit expression of the membrane energy that is rigorously derived from three-

dimensional nonlinear elasticity by means of a convergence result. The pressure

term

P(ψ) =
∆p

3

∫

ω
det(∂1ψ|∂2ψ|ψ)dx1dx2

also incorporates the fact that we are dealing with a live load that follows the

normal to the deformed surface, see [9]. This feature is be very advantageous for

numerical simulations since the deformed normal vector does not explicitly enter

this formula. There thus is no need to recalculate this vector at each step of the

approximation procedure, as opposed to [12] for example.
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3 The discrete problem

3.1 Finite element discretization

We use P1 and Q1 discretizations. Let us describe the P1 case since the Q1 case is

entirely similar at this stage. Let τh be a regular affine family of triangulations

covering the domain ω . We discretize the three Cartesian components of the

deformation using continuous P1 finite elements. The discrete space of admissible

displacements is given by

Φ
h
M =

{

ψh ∈C0(ω̄;R3),ψh(x1,x2) = (x1,x2,0)T on ∂ω,ψh|K ∈ (P1)
3;∀K ∈ τh

}

.
(8)

We clearly have Φ
h
M ⊂ ΦM and the approximation is conforming.

We approximate the continuous problem as follows: Find φh ∈ Φ
h
M such that

J(φh) = inf
ψh∈Φ

h
M

J(ψh). (9)

This is a convergent approximation scheme in the following sense.

Proposition 3.1 The weak limit points of the sequence φh in W 1,4 are minimizers

of problem (6).

Proof. We first show that the functional J is sequentially weakly lower semicon-

tinuous on W 1,4(ω;R3). The first two terms

J(ψ)−P(ψ) = 2

∫

ω
QW0(∇ψ)dx1dx2 −

∫

ω
f ·ψ dx1dx2

combine to form a convex, strongly continuous functional, hence weakly lower

semicontinuous functional on W 1,4(ω;R3). For the pressure term, we observe

that the components of the vector ∂1ψ ∧ ∂2ψ are null Lagrangians. Since we are

in dimension 2, it is well-known that the mapping ψ 7→ ∂1ψ ∧∂2ψ is sequentially

weakly continuous from W 1,4(ω;R3) into L2(ω;R3)), see e.g. [1]. Let us take

a weakly convergent sequence ψk ⇀ ψ in W 1,4(ω;R3). By Rellich’s theorem,

we have that ψk → ψ in L2(ω;R3) and since det((u|v|w)) = (u∧ v) ·w, it clearly

follows that

P(ψk) =
∆p

3

∫

ω
(∂1ψk ∧∂2ψk) ·ψk dx1dx2 → P(ψ),

when k → +∞.

Since the functional J is coercive over ΦM, it follows that the sequence φh is

bounded. Let h′ be a subsequence such that φh′ converges weakly in W 1,4(ω;R3)
to a limit point φ .
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Let us now take ψ ∈ ΦM. Since the triangulation family is regular, there exists

a sequence ψh′ ∈ Φ
h′
M such that ψh′ → ψ strongly in W 1,4(ω;R3). Therefore

J(φ) ≤ liminf
h′→0

J(φh′) ≤ lim
h′→0

J(ψh′) = J(ψ),

hence the result. �

Remark 1 By the Rellich-Sobolev embeddings, we also have strong convergence

in C0,α(ω̄;R3) for all α < 1/2. However, even if ∆p = 0 and the functional J

is convex, it is not strictly convex. Therefore, we cannot deduce strong W 1,4

convergence in general.

Note also that the above weak convergence holds true in W 1,p, not only for

the Saint Venant-Kirchhoff material, but for a general material satisfying the hy-

potheses of [6] with p > 3, since quasiconvexity is sufficient to ensure the weak

lower semicontinuity of the elastic term in the energy. Besides, the weak lower

semicontinuity result can also essentially be viewed as a consequence of the Γ-

convergence result. �

3.2 The Polak-Ribière nonlinear conjugate gradient algorithm

The boundary value problem underlying problem (6) is highly nonlinear and so

is its finite element counterpart. In order to perform numerical computations, we

thus need a nonlinear method. The Newton method requires the Hessian of J

on Φ
h
M, but the function QW0 is not of class C2. Therefore, this method, or any

method relying on second derivatives of J, is not appropriate. Furthermore, the

problem is naturally set as an energy minimization problem. We thus use the

nonlinear conjugate gradient method with the Polak and Ribière variant, see [10],

which gives the best results. The conjugate gradient algorithm at the kth iteration

is given by:

ψk+1
h = ψk

h −ρkdk,
dk = ∇J(ψk

h)−β k−1dk−1,

β k = − [∇J(ψk+1
h

)−∇J(ψk
h)]·∇J(ψk+1

h
)

‖∇J(ψk
h
)‖ ,

ρk =
dk·∇J(ψk

h)

‖dk‖2 .

(10)

Note that the limit membrane energy J is convex for ∆p = 0 in which case the

conjugate gradient iterations converge to a global minimum. It is not necessarily

convex for ∆p 6= 0, and the nonlinear conjugate gradient may conceivably get

trapped at a local minimum.
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Even though the method itself is easy to use, the computation of ∇J(ψh) en-

tails some difficulties. Indeed, since QW0 is a frame-indifferent, isotropic func-

tion defined on M3,2 via the singular values of its argument, viz. formula (7), the

computation of
∂ (QW0)

∂F
, which is a 3×2 matrix, requires an adaptation of known

results on the differentiation of frame-indifferent, isotropic functions on the space

of square matrices Mn, see [2].

3.3 Computation of the gradient of J

Let (λ j) j=1,...,Nh
be the components of ψh in the shape function basis (Θ j) j=1,...,Nh

of our P1 or Q1 finite element space. We clearly have

∂J

∂λ j
(ψh) =

∫

ω

∂ (QW0)

∂F
(∇ψh) : ∇Θ j dx1dx2 −

∫

ω
f ·Θ j dx1dx2

− ∆p

3

∫

ω

[

λkλl det((∂1Θ j|∂2Θk|Θl))+λiλl det((∂1Θi|∂2Θ j|Θl))

+λiλk det((∂1Θi|∂2Θk|Θ j))
]

dx1dx2, j = 1, . . . ,Nh, (11)

where A : B = tr(AT B) denotes the standard dot product on M3,2.

We compute the 3×2 matrix
∂ (QW0)

∂F
(∇ψh) via the following lemma.

Lemma 3.2 The matrix
∂ (QW0)

∂F
(F) has the following explicit form:

∂ (QW0)

∂F
(F) = R





0 0

∂1Φ(v1(F),v2(F)) 0

0 ∂2Φ(v1(F),v2(F))



S, (12)

where (v1(F),v2(F)) are the right singular values of the matrix F, R ∈ O(3) and

S ∈ O(2) are orthogonal matrices that RT diagonalizes FFT ∈ M3 and S diago-

nalizes FT F ∈ M2 both with eigenvalues in increasing order, and Φ is given by

formula (7).

Proof. Let us first recall the differentiation result of [2]. Let Z : Mn → R be a

function such that Z(RFS) = Z(F) for all R,S ∈ O(n). It is known that there

exists a symmetric function Ψ : R
n
+ → R such that Z(F) = Ψ(v1(F), . . . ,vn(F))

where (vi(F))i=1,...,n are the singular values of F . In [2], Ball showed that Z is of

class C1 if and only if Ψ is of class C1. It is an easy consequence of Ball’s results

that in this case,

∂Z

∂F
(F) = Rdiag

(

∂1Ψ(v1(F), . . . ,vn(F)), . . . ,∂nΨ(v1(F), . . . ,vn(F))
)

S,
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where R,S ∈ O(n) are orthogonal matrices occurring in the singular value decom-

position of F = Rdiag(v1(F), . . . ,vn(F))S with 0 ≤ v1(F) ≤ ·· · ≤ vn(F). Indeed,

for any couple of orthogonal matrices R and S, if we let ZR,S(F) = Z(RFS) and

differentiate, we obtain that

∂ZR,S

∂F
(F) = R

∂Z

∂F
(RFS)S =

∂Z

∂F
(F),

hence the result by choosing the right orthogonal matrices.

We now recall a few simple facts about the singular value decomposition. By

the polar factorization lemma, any F ∈Mn can be written as F = QU =V Q, where

U =
√

FT F and V =
√

FFT are symmetric, positive and Q ∈ O(n). The symmet-

ric matrices U and V are unique, the orthogonal matrix Q is unique if detF 6= 0, it

is nonunique otherwise. Let S ∈ O(n) be such that U = ST diag(vi(F))S. Then we

have F = (QST )diag(vi(F))S, hence a characterization of the orthogonal matrix

S to the right of the singular value decomposition of F as a matrix that diago-

nalizes FT F . Similarly, the orthogonal matrix R to the left of the singular value

decomposition of F is a matrix whose transpose diagonalizes FFT , and we have

the relation R = QST . Furthermore, we can always choose these matrices in such

a way that the singular values are arranged in increasing order.

Let us go back to the case at hand. Let F be a 3×2 matrix. It was established

in [7] that QW0(F) = QW ((F |0)), where QW is the quasiconvex envelope of the

Saint Venant-Kirchhoff energy density itself. Since this energy is left and right

invariant by O(3), we also have

QW0(F) = QW ((0|F)), (13)

Therefore, it follows that the column vectors satisfy

[∂ (QW0)

∂F
(F)

]

α
=

[∂ (QW )

∂G
((0|F))

]

(1+α)
, (14)

for α = 1,2.

By [7], we have an explicit representation of the quasiconvex envelope of the

Saint Venant-Kirchhoff density of the form QW (z|F) = Ψ(v(z|F)) with Ψ : R
3
+ →

R. Now, by the general result of [2], it follows that

∂ (QW )

∂G
((0|F)) = Rdiag

(

∂1Ψ(0,v1(F),v2(F)), . . . ,∂3Ψ(0,v1(F),v2(F))
)

S̄,

(15)

where RT , S̄ ∈ O(3) respectively diagonalize (0|F)(0|F)T and (0|F)T (0|F), with

the requisite order for the singular values. Now we clearly have

(0|F)(0|F)T = FFT and (0|F)T (0|F) =

(

0 0

0 FT F

)

.
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Therefore, if S ∈ O(2) diagonalizes FT F with the eigenvalues in increasing order,

it follows that

S̄ =

(

1 0
0 S

)

,

since 0 is an eigenvalue of the 3×3 matrix (0|F)T (0|F).
Now, we just have to identify the last two column vectors in formula (15).

This is easy since

∂ (QW )

∂G
= R





∂1Ψ 0 0

0 ∂2Ψ 0

0 0 ∂3Ψ





(

1 0
0 S

)

= R







∂1Ψ 0

0

(

∂2Ψ 0

0 ∂3Ψ

)

S







= R





∂1Ψ

0

0





0 0

∂2Ψ 0

0 ∂3Ψ



S



 .

The conclusion follows from the fact that Ψ(0,v1,v2) = Φ(v1,v2) for all 0 ≤ v1 ≤
v2, see [7]. �

Remark 2 The expressions of ∂1Φ(v1,v2) and ∂2Φ(v1,v2) are given by

∂1Φ(v1,v2) =
E

2(1−ν2)
v1[v

2
1 +νv2

2 − (1+ν)]+

+
Eν

2(1−ν2)(1−2ν)
v1[ν(v2

1 + v2
2)− (1+ν)]+

and

∂2Φ(v1,v2) =
E

2
v2[v

2
2 −1]+ +

Eν

2(1−ν2)
v2[v

2
1 +νv2

2 − (1+ν)]+

+
Eν

2(1−ν2)(1−2ν)
v2[ν(v2

1 + v2
2)− (1+ν)]+

for all 0 ≤ v1 ≤ v2, in view of formula (7). Consequently, to compute the part of

the gradient pertaining to QW0, we only need to compute the two singular values,

which entails solving a second degree equation, and a couple of corresponding

orthogonal matrices. �
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4 Numerical tests

Note that in the P1 case, deformation gradients are constant element-wise. Hence

the contributions of QW0 to the energy and its gradient are computed exactly.

However, both dead loading and pressure terms require numerical integration in

the P1 as well as Q1 cases. In particular, in the Q1 case, the singular values and

orthogonal matrices must be evaluated at Gauss points in each element.

In order to understand the limit model (5) in terms of actual membrane param-

eters, it should be emphasized that (5) is a rescaled, zero-thickness limit model.

In particular, it does not involve the actual nonzero thickness of a given mem-

brane of interest. For instance, the pressure differential ∆p stands for the limit of

ε−1
∆pε when ε goes to zero, where ∆pε is the actual pressure differential and ε

the half-thickness of the membrane. Likewise, body force resultants are rescaled

limits.

Now there are infinitely many different ways of embedding an actual nonzero

thickness membrane into a family of membranes with vanishing thickness. We can

however agree that such a sequence should be made of the same bulk material,

hence have material coefficients that are independent of ε , as we have done in

the asymptotic analysis. In this context, the computed results for a limit pressure

differential ∆p of 1.0e+9 as in the first test below, correspond to an actual pressure

differential of 50kPa for a 0.1mm thick membrane, and so forth. We will only

give the rescaled values below, unless otherwise specified.

Let us first present P1 tests. The first test (Figure 1) is a circular membrane

submitted to an upward pressure differential and clamped on its boundary. A

bubble-like deformation is thus created and it is apparent that the live loading

character of the pressure is well taken into account, without having to explicitly

track the deformed normal vectors.
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Figure 1. Circular membrane with Young modulus E = 2.7e+2 MPa and Poisson

ratio ν = 0.4, corresponding to an elastomer, (rescaled) pressure differential

∆p = 1.0 GPa, zero dead loading body force.

Our second P1 test is an airbag: a pillow-like structure submitted to an outward

pressure differential that inflates it. To compute it, we use two equal square refer-

ence domains corresponding to the upper and lower parts of the airbag, with the

condition that horizontal displacements agree and vertical displacements vanish

on their common boundary.
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Figure 2. P1 airbag, same values except pressure differential ∆p = 1.0e+7.

It is instructive to compare this test with the corresponding one in [12]. Be-

cause of the relaxed nature of the membrane energy we use, there is no need for

a special treatment of the areas located near the middle of the airbag sides, where

wrinkling occurs. Such wrinkling is smoothed out by the Γ-limit process, as a

result of weak convergence. On the other hand, we do not capture wrinkle de-

tails. However, our model can predict wrinkled areas which correspond to areas

where the deformation gradient lies in the subset of M3,2 in which the energy is

relaxed. See [6] for a description of this subset in terms of the singular values of

the deformation gradient.

Let us now show the results of a few Q1 tests. First is the same airbag as

before.
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Figure 3. Q1 airbag.

We next compute again the same airbag, with an added point force f1 = f2 = 0

and f3 = −1.0e+9, slightly off-center on the top surface.
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Figure 4. Q1 airbag with point force.

Back to P1-tests, a square membrane attached by its four corners and submitted

to a vertical point force applied at the center.
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Figure 5. Square membrane, with E = 2.1e+8, ν = 0.25 and central point force

f1 = f2 = 0 and f3 = −1.0e+10.

Our next tests are in the context of the modeling of fabrics. We take values for

the Young modulus E = 2,500 Pa and Poisson ratio ν = 0.01 that are characteristic

of cotton fabric, see [4]. These values are rescaled with respect to the thickness

since the bulk Young modulus of cotton is of the order of 8 GPa.

In Figure 6, we consider a square piece of fabric attached at its center and

submitted to a vertical dead loading body force f3 = −1,000, slightly counterbal-

anced by an upward pressure differential ∆p = 100. The lateral sides are hanging

free.
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Figure 6. Q1 square piece of fabric.

Our last test is a tablecloth. The material constants and applied forces are

the same as above, and the displacement is set to zero on the center square that

represents the table, i.e., the fabric is not allowed to slide across the table like an

actual tablecloth.
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Figure 7. Q1 tablecloth.
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