Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations
Résumé
In this paper we propose the analysis of the incompressible non-homogeneous Navier-Stokes equations with nonlinear outflow boundary condition. This kind of boundary condition appears to be, in some situations, a useful way to perform numerical computations of the solution to the unsteady Navier-Stokes equations when the Dirichlet data are not given explicitly by the physical context on a part of the boundary of the computational domain. The boundary condition we propose, following previous works in the homogeneous case, is a relationship between the normal component of the stress and the outflow momentum flux taking into account inertial effects. We prove the global existence of a weak solution to this model both in 2D and 3D. In particular, we show that the nonlinear boundary condition under study holds for such a solution in a weak sense, even though the normal component of the stress and the density may not have traces in the usual sense.
Loading...