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HEIGHT PROCESS FOR SUPER-CRITICAL CONTINUOUS STATE

BRANCHING PROCESS

JEAN-FRANÇOIS DELMAS

Abstract. We define the height process for super-critical continuous state branching pro-
cesses with quadratic branching mechanism. It appears as a projective limit of Brownian
motions with positive drift reflected at 0 and a > 0 as a goes to infinity. Then we extend
the pruning procedure of branching processes to the super-critical case. This give a complete
duality picture between pruning and size proportional immigration for quadratic continuous
state branching processes.

1. Introduction

Continuous state branching process (CB) appears as the limit of Galton-Watson processes,
see [8] for the quadratic branching mechanism and [11] in the general case. We shall be
interested in a CB, Zθ = (Zθ

r , r ≥ 0), with quadratic branching mechanism, ψθ,

(1) ψθ(u) = 2u2 + 4θu, u ≥ 0,

for a given parameter θ ∈ R. The process Zθ is a continuous Markov process taking values in
R+ such that for all r ≥ 0, λ ≥ 0, x ≥ 0,

(2) E[e−λZθ
r |Zθ

0 = x] = e−xuθ(λ,r),

where uθ is the only non-negative solution of the differential equation

(3) u′(r) + ψθ(u(r)) = 0, r ≥ 0, and u(0) = λ.

(In fact the general quadratic branching is of the form ψ(u) = 2αu2 + 4αθu, with α > 0. The

corresponding CB is distributed as (Zθ
αr, r ≥ 0). Up to this time scaling, we see it is enough

to consider the case α = 1.)
The quantity Zθ

r can be thought as the “size” at time r of a population of individual with
infinitesimal mass and whose reproduction mechanism is characterized by ψθ. The process Zθ

is called critical (i.e. constant in mean) if θ = 0, sub-critical (i.e. with exponential decay for
the mean) if θ > 0 and super-critical (i.e. with exponential growth for the mean) if θ < 0. In
the critical or sub-critical case, one can code the genealogy associated to Zθ using the so-called
height process, Hθ = (Hθ

t , t ≥ 0), see [12] for θ = 0 and [7] in a more general setting. The
height process is the limit of the contour processes associated to sequence of Galton-Watson
trees which converge to Zθ. Intuitively Hθ

t is the genealogy of individual with label t in a
continuous branching process. The “size” of the population of individuals with label less than
t and which are alive at “generation” r is given by the local time of Hθ at level r up to time t:
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Lθ
r(t). To consider an initial population with “size” x > 0, it is enough to look at the height

process up to T θ = inf{t > 0;Lθ
0(t) = x}. Intuitively Lθ

r(T
θ) gives the “size” of the population

at generation r coming from an initial population with “size” x. In particular, one expect the
height process Lθ = (Lθ

r(T
θ), r ≥ 0) to be a CB started at x with branching mechanism ψθ.

For θ = 0, Hθ is distributed as the absolute value of a Brownian motion and the second
Ray-Knight theorem gives the process L0 is indeed a CB with branching mechanism ψ0 started
from x. For θ > 0, Hθ is distributed as the Brownian motion with drift −2θ and reflected
above 0. Using Girsanov theorem or the more general framework developed in [7], it is easy
to check that for θ ≥ 0, the process Lθ is indeed a CB with branching mechanism ψθ started
from x.

Our aim is to extend those results to the case θ < 0. One would like to consider a reflected
Brownian motion with positive drift −2θ. However, in this case T θ might be infinite. In fact
we have that P(T θ <∞) is equal to the probability that a CB with branching mechanism ψθ

become extinct that is 1 if θ ≥ 0 or e2xθ if θ < 0, see [9]. Intuitively, if T θ = ∞ it means
there are individuals alive at generation r = ∞, and the height process Hθ describes only
(part of) the lineage of one of the individuals alive at time ∞. To circumvent this problem,
we chose to consider the height process associated not to the whole CB process but only up
to a generation a. In a discrete setting, we would consider a (super-critical) Galton-Watson
process and its corresponding discrete tree, and would cut the tree above a given genealogy,
and would look at the discrete height process of this finite tree. Following the procedure in
[7], one would expect the height process of the discrete tree to converge to a Brownian motion
(with drift) reflected at 0 and a.

This intuition lead us to consider for a > 0 a Brownian motion with drift −2θ and reflected
above 0 and below a, Hθ,a = (Hθ,a

t , t ≥ 0). In section 2, we first check that the family
(Hθ,a, a > 0) can be built in a consistent way. Let Cc be the set of continuous function defined
on R+ taking values in [0, c]. We define the projection from Ca to Cb, πa,b, by πa,b(ϕ)(t) =
ϕ(Cϕ(t)) for t ≥ 0, where ϕ ∈ Ca and Cϕ(t) = inf{r ≥ 0;

∫ r

0 1{ϕ(s)≤b} ds > t} is the inverse of
the time spent by ϕ below b. By construction, we have for a > b > c that πa,c = πa,b ◦ πb,c.

As the process πa,b(H
θ,a) is distributed as Hθ,b (Lemma (2.1)), this compatibility relation

implies the existence of a projective limit Hθ = (Hθ,a, a ≥ 0) such that Hθ,a is distributed as

Hθ,a and πa,b(Hθ,a) = Hθ,b. We shall call Hθ the height process of the quadratic branching

process. It is defined for θ ∈ R. We can consider Zθ
r the local time of Hθ,a at level r up to the

hitting time of x for the local time of Hθ,a at level 0. Because of the compatibility relation,
we shall see that Zθ

r does not depend on a, as soon as a ≥ r. We prove a Ray-Knight theorem
for Hθ: (Zθ

r , r ≥ 0) is a CB with branching mechanism ψθ (see Theorem 3.1). Of course we
recover the critical cases and sub-critical cases, see comments of Remark 3.2. The proof relies
on Girsanov theorem and the Ray-Knight theorem for θ = 0.

Following [14], we can add a spatial motion to the individuals to get a super-critical Brow-
nian snake. Taking a Poisson process as a spatial motion, this allows to adapt the pruning
procedure developed in [4, 3] (see also [1] for more general critical or sub-critical branching
mechanism) for the critical case to the super-critical case. This procedure gives a nice path

transformation to get Hθ from Hθ′ when θ > θ′ belong to R, see Proposition 5.3. Using
this pruning transformation and the Ray-Knight theorem, we can get Zθ from Zθ′ for any
θ > θ′ (this result is new for θ′ < 0). Notice that a size proportional immigration procedure,

introduced in [2] in a more general setting, allows to reconstruct Zθ′ from Zθ. Our result
complete the description of the duality between size proportional immigration and pruning
for quadratic branching mechanisms.
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The paper is organized as follows. In Section 2, we check the compatibility relation in order
to define the height process in the super-critical case. Section 3 is devoted to the proof of
the Ray-Knight theorem. In Section 4, following [14, 13] we define the Brownian snake for
super-critical branching mechanism. The pruning procedure is developed is Section 5.

2. Height process for quadratic branching process

We assume that θ ∈ R. Let Hθ,a = (Hθ,a
t , t ≥ 0) be a Brownian motion with drift

−2θ reflected in [0, a] and started at 0. This process can be constructed using a version
of Skorohod’s equation (see [18]). This is the unique solution of the stochastic differential
equation:

(4) dYt = dβt − 2θdt+
1

2
dL0(t) −

1

2
dLa(t), Y0 = 0,

where Ly(t) is the local time of Y at level y up to time t and (βt, t ≥ 0) is a standard Brownian
motion.

We first check that the family (Hθ,a, a > 0) can be built in a consistent way. Let Cc be
the set of continuous function defined on R+ taking values in [0, c]. Let a > b > 0. For

ϕ ∈ Ca, we consider the time spent below level b up to time t: At =
∫ t

0 1{ϕ(s)≤b} ds and its
right continuous inverse Cϕ(t) = inf{r ≥ 0;Ar > t}, with the convention that inf ∅ = ∞ and

ϕ(∞) = b. We define the projection from Ca to Cb, πa,b, by πa,b(ϕ) = ϕ ◦ Cϕ.

Lemma 2.1. Let a > b > 0. The process πa,b(H
θ,a) is distributed as Hθ,b.

Proof. For convenience we shall write H instead of Hθ,a. Notice that H solves (4). Let
(Gt, t ≥ 0) be the filtration generated by the Brownian motion β, completed the usual way.

Let At =

∫ t

0
1{Hs≤b} ds and C(t) = inf{r ≥ 0;Ar > t}. Notice that a.s. the stopping time

C(t) is finite. Let Lr(t) be the local time of H at level r up to time t. We set H̃t = HC(t).

Using (4), we get

H̃t =

∫ C(t)

0
(dβs − 2θds) +

1

2
L0(C(t)) − 1

2
La(C(t))

=

∫ C(t)

0
1{Hs≤b}(dβs − 2θds) +

1

2
L0(C(t)) − 1

2
La(C(t)) +

∫ C(t)

0
1{Hs>b}(dβs − 2θds).

Since A is continuous, , by construction we have

∫ C(t)

0
1{Hs≤b}ds =

∫ C(t)

0
dAs = AC(t) = t.

Notice that β′ = (β′t, t ≥ 0), where β′t =

∫ C(t)

0
1{Hs≤b}dβs, is a continuous martingale (with

respect to the filtration (FC(t), t ≥ 0)). Its bracket is given by 〈β′〉t =

∫ C(t)

0
1{Hs≤b}ds = t.

Therefore, β′ is a Brownian motion. On the other hand, by Tanaka formula, we have a.s. for
r ≥ 0,

(Hr − b)+ = (H0 − b)+ +

∫ r

0
1{Hs>b}dHs +

1

2
Lb(r),

where x+ = max(x, 0). Since H0 = 0 and H
C(t) ∈ [0, b], we get with r = C(t) that

∫ C(t)

0
1{Hs>b}dHs +

1

2
Lb(C(t)) = 0.
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Use
∫ r

0
1{Hs>b}dHs =

∫ r

0
1{Hs>b}(dβs − 2θds) − 1

2
La(r)

to get

− 1

2
La(C(t)) +

∫ C(t)

0
1{Hs>b}(dβs − 2θds) = − 1

2
Lb(C(t)).

Therefore, we have

H̃t = β′t − 2θt+
1

2
L0(C(t)) − 1

2
Lb(C(t)),

where β′ is a Brownian motion. Notice the function K defined for t ∈ R+ by K(t) =
1
2 L0(C(t))−1

2 Lb(C(t)) is continuous with bounded variation such thatK(0) = 0. Furthermore
we have

∫ ∞

0
1{H̃s 6∈{0,b}}d|K|(t) = 0

and

dK(t) = 1{H̃t=0}d|K|(t) − 1{H̃t=b}d|K|(t).

Since H̃ is a continuous function taking values in [0, b], we deduce from theorem 2.1 in [18],

that H̃ is a Brownian motion with drift −2θ reflected in [0, b] started at 0. Henceforth, it is
distributed as Hθ,b.

�

Notice that by construction we have for a > b > c that πa,c = πa,b ◦πb,c. Let µr denotes the

law of Hθ,r for r ≥ 0. Lemma 2.1 entails that µa ◦ (πa,b)
−1 = µb. This compatibility relation

implies the existence of a projective limit Hθ = (Hθ,a, a ≥ 0) such that Hθ,a is distributed as
Hθ,a and

(5) πa,b(Hθ,a) = Hθ,b.

We will call Hθ the height process of the quadratic branching process.

Remark 2.2. If there exists a ≥ b > 0 s.t. Hθ,a does not reach b on [0, t], then we have that
a.s. Hθ,c coincide on [0, t] for all c ≥ b.

3. Ray-Knight theorem for reflected Brownian motion with drift

Let Lθ,a
r (t) be the local time of Hθ,a at level r up to time t. For x > 0 we define

(6) T θ,a
x = inf{t ≥ 0;Lθ,a

0 (t) > x},
with the convention inf ∅ = ∞. Let r ≥ 0. Notice that equation (5) implies that for all
a ≥ b ≥ r,

Lθ,a
r (T θ,a

x ) = Lθ,b
r (T θ,b

x ).

We shall denote this common value by Zθ
r . We write Hθ,a,(x) = (Hθ,a

t , t ∈ [0, T θ,a
x ]) and we

call Hθ,(x) = (Hθ,a,(x), a ≥ 0) the height process associated to Zθ = (Zθ
r , r ≥ 0).

We can now formulate the Ray-Knight theorem.

Theorem 3.1. The process Zθ is a CB with branching mechanism ψθ.
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Remark 3.2. On the event that Zθ become extinct, there exists a level r s.t. Zθ
r = 0, that

is Lθ,b
r (T θ,b

x ) = 0 for b ≥ r. From Remark 2.2, we deduce that (Hθ,a
t , t ∈ [0, T θ,a

x ]) does not
depend on a > r. In the sub-critical or critical case (i.e. θ ≥ 0), the extinction is almost

sure. Thus the process (Hθ,a
t , t ∈ [0, T θ,a

x ]) is constant for a large enough. It is distributed
as a Brownian motion with drift −2θ reflected above 0 stopped when its local time at level 0
reaches x. In this case, Theorem 3.1 correspond to the usual Ray-Knight theorem (see [16],
chap. XI.2 for θ = 0 and [19] for θ > 0).

Proof. Let a > 0 and x > 0 be fixed. To be concise, we write Hθ for Hθ,a and T θ = inf{t ≥
0;Lθ

0(t) > x}, where Lθ
r(t) is the local time of Hθ at level r up to time t. Notice T θ is finite

a.s. Let g be a continuous function taking values in R+. By monotone convergence, we have

E

[

e−
∫ Tθ

0
g(Hθ

s )ds

]

= lim
n→∞

E

[

e−
∫ Tθ∧n

0
g(Hθ

s )ds

]

.

Using Girsanov theorem and the fact that Hθ solves (4), where L0 and La are continuous
adapted functionals of (βt − 2θt, t ≥ 0) (this is a consequence of Theorem 2.1 in [18]), we get
that

E

[

e−
∫ Tθ∧n

0
g(Hθ

s )ds

]

= E

[

e−2θβ
T0∧n

−2θ2(T 0∧n) e−
∫ T0∧n

0
g(H0

s )ds

]

.

Since H0 solves equation (4) with θ = 0, we deduce that

(7) βT 0∧n = H0
T 0∧n − 1

2
L0

0(T
0 ∧ n) +

1

2
L0

a(T
0 ∧ n).

Since L0
0(T

0) = x, we have βT 0∧n ≥ − 1

2
L0

0(T
0 ∧ n) ≥ − 1

2
L0

0(T
0) = −x

2
. By monotone

convergence, we get

lim
n→∞

E

[

e−2θβ
T0∧n

−2θ2(T 0∧n) e−
∫ T0∧n

0
g(H0

s )ds

]

= E

[

e−2θβ
T0−2θ2T 0

e−
∫ T0

0
g(H0

s )ds

]

.

We write Zr = L0
r(T

0) for r ∈ [0, a]. Notice that (7) implies

βT 0 =
1

2
Za −

x

2
.

This and the occupation time formula for H0 implies that T 0 =
∫ a

0 Zr dr and

E

[

e−2θβ
T0−2θ2T 0

e−
∫ T0

0
g(H0

s )ds

]

= E

[

eθx−θZa−2θ2
∫ a

0
Zr dr e−

∫ a

0
g(r)Zr dr

]

.

This leads to

(8) E

[

e−
∫ Tθ

0
g(Hθ

s )ds

]

= E

[

eθx−θZa−2θ2
∫ a

0
Zr dr e−

∫ a

0
g(r)Zr dr

]

.

Use the time occupation formula for Hθ,a,(x) (which is distributed as (Hθ
s , s ∈ [0, T θ])) to get

(9) E

[

e−
∫ a

0
g(r)Zθ

r dr
]

= E

[

eθx−θZa−2θ2
∫ a

0
Zr dr e−

∫ a

0
g(r)Zr dr

]

.

The Ray-Knight theorem implies that Z = (Zr = L0
r(T

0), r ∈ [0, a]) is distributed as the
square of 0-dimensional Bessel process started at x up to time a. In particular it is the unique
strong solution of

dŶt = 2

√

Ŷt dWt t ∈ [0, a], Ŷ0 = x,
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where (Wt, t ≥ 0) is a standard Brownian motion in R. We deduce

E

[

eθx−θZa−2θ2
∫ a

0
Zr dr e−

∫ a

0
g(r)Zr dr

]

= E

[

e−2θ
∫ a

0

√
ŶtdWt−2θ2

∫ a

0
Ŷr dr e−

∫ a

0
g(r)Ŷr dr

]

.

Notice that M = (Mt, t ≥ 0), where Mt = e−2θ
∫ t

0

√
ŶrdWr−2θ2

∫ t

0
Ŷr dr, define a local martingale.

It is in fact a martingale (see section 6 in [15]). Using Girsanov theorem again, we get that

E

[

e−2θ
∫ a

0

√
ŶtdWt−2θ2

∫ a

0
Ŷr dr e−

∫ a

0
g(r)Ŷr dr

]

= E

[

e−
∫ a

0
g(r)Ŷ θ

r dr
]

,

where Ŷ θ is the unique strong solution of the stochastic differential equation

dŶ θ
t = 2

√

Ŷt dW
θ
t − 4θŶ θ

t dt t ∈ [0, a], Ŷ θ
0 = x,

where W θ is a standard Brownian motion. In conclusion we get

E

[

e−
∫ a

0
g(r)Zθ

r dr
]

= E

[

e−
∫ a

0
g(r)Ŷ θ

r dr
]

.

We deduce that (Zθ
r , r ∈ [0, a]) is distributed as (Ŷ θ

r , r ∈ [0, a]) for all a > 0. In particular,
Zθ is a continuous Markov process. Recall uθ defined by (3). We have u0(λ, s) = λ/(1 + 2λs)
and for θ 6= 0

(10) uθ(λ, s) =
λ e−4θt

1 + λ(2θ)−1(1 − e−4θt)
.

From (9) we deduce that for λ ≥ 0

E

[

e−λZθ
a

]

= E

[

eθx−(θ+λ)Za−2θ2
∫ a

0
Zr dr

]

.

Thanks to formula (2.k) in [15], we check the right hand side is equal to e−xuθ(λ,a). This
implies that Zθ is a CB with branching mechanism ψθ. �

4. The Brownian snake

4.1. Definition. We refer to [7], section 4.1.1, for the construction of the snake with a fixed
lifetime process. Let ξ a Markov process with càdlàg paths and values in a Polish space E,
whose topology is defined by a metric δ. We assume ξ has no fixed discontinuities. Let Py

denote the law of ξ started at y ∈ E. The law of ξ is called the spatial motion. For y ∈ E,
let Wy be the space of all E-valued killed paths started at y. An element of Wy is a càdlàg
mapping w : [0, ζ) → E s.t. w(0) = y. ζ ∈ (0,∞) is called the lifetime of w. By convention
the point y is considered as the path with zero lifetime, and is added to Wy. The space
W = ∪y∈EWy, equipped with the distance defined in [7], section 4.1.1, is Polish. For w ∈ W,
we define ŵ = w(ζ−) if the limit exists and ŵ = ∆ otherwise, where ∆ is a cemetery point
added to E.

Mimicking the proof of proposition 4.1.1 in [7], for a > 0, θ ∈ R, there exists a càdlàg

Markov process W θ,a = (W θ,a
s , s ≥ 0) taking values in Wy s.t.

• If ζθ,a
s denotes the lifetime of W θ,a

s , then ζθ,a = (ζθ,a
s , s ≥ 0) is distributed as Hθ,a.

• Let s ≥ 0. Conditionally on ζθ,a, W θ,a
s is distributed as ξ under Py on [0, ζθ,a

s ). Notice

that a.s. Ŵ θ,a
s = W θ,a

s (ζθ,a
s −) exists (i.e. is not equal to the cemetery point).

• Let r > s ≥ 0. Conditionally on ζθ,a and W θ,a
s , we have W θ,a

r is equal to W θ,a
s on

[0,m), where m = min(ζθ,a
s , ζθ,a

r ) and is distributed as ξ under P
Ŵ

θ,a
s

on [m, ζθ,a
r ).
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We recall the snake property: a.s. for all s, s′, we have W θ,a
s (r) = W θ,a

s′ (r), for all r <

min(ζθ,a
s , ζθ,a

s′ ).

We first check that the family (W θ,a, a > 0) can be built in a consistent way. Let C̄c

be the set of càdlàg function defined on R+ taking values in Wy and where the life time
process is continuous and lies in [0, c]. Let a > b > 0. For ϕ̄ ∈ C̄a, with lifetime process ϕ.
Recall the function Cϕ defined in Section 2. We define the projection, Πa,b, from C̄a to C̄b by
Πa,b(ϕ̄) = ϕ̄ ◦ Cϕ.

Recall (6) and define W θ,a,(x) = (W θ,a
s , s ∈ [0, T θ,a

x ]).

Lemma 4.1. Let a > b > 0. The process Πa,b(W
θ,a) (resp. Πa,b(W

θ,a,(x))) is distributed as

W θ,b (resp. W θ,b,(x)).

The proof is similar to the proof of Lemma 2.1, see also Remark 3.2. Notice that by
construction we have for a > b > c, Πa,c = Πa,b ◦ Πb,c. The compatibility relation of Lemma

4.1 implies the existence of a projective limit Wθ = (Wθ,a, a ≥ 0) such that Wθ,a is distributed
as W θ,a and

(11) Πa,b(Wθ,a) = Wθ,b.

Similarly, we can define a projective limit Wθ,(x) = (Wθ,a,(x), a ≥ 0) s.t. Wθ,a,(x) is distributed

as W θ,a,(x) and (11) holds with Wθ,(x) instead of Wθ. The family of lifetime processes of
(Wθ,a, a ≥ 0) is distributed as Hθ. Therefore, we shall denote Hθ (resp. Hθ,a) the lifetime
process of Wθ (resp. Wθ,a). This notation is consistent with Section 3. We call the process

Wθ the Brownian snake. From Remark 3.2, notice that for θ ≥ 0, the process Wθ,a,(x) is
independent of a for a large enough. We shall identify the projective limit Wθ,(x) to this
common value. It correspond to the usual Brownian snake in [14] when θ = 0 (stopped when
the local time at 0 of its lifetime reaches x).

4.2. Excursion and special Markov property. We denote by N
θ,a
y the excursion measure

of Wθ,a away from the trivial path y, with lifetime 0. We assume N
θ,a
y is normalized so that

the corresponding local time at y (as defined in [5] Chap. 3) is the local time at 0 of the

lifetime process: Lθ,a
0 . Let σθ,a = inf{s > 0;Hθ,a

s = 0}. Under N
θ,a
y , σθ,a is the length of the

lifetime excursion.

Lemma 4.2. We have the first moment formula: for F any non-negative measurable function
defined on the space of càdlàg E-valued function

(12) N
θ,a
y

[

∫ σθ,a

0
ds F (Wθ,a

s )

]

=

∫ a

0
dr e−4θr Py [F ((ξt, t ∈ [0, r]))] .

This result is known for θ ≥ 0 (see [7] proposition 1.2.5).

Proof. Let a > 0 and x > 0 be fixed. Notice it is enough to prove establish (12) with W θ,a

instead of Wθ,a. To be concise, we shall omit a and x, so that we write for example Hθ for

Hθ,a or T θ for T θ,a
x .

Note that {s;Hθ
s > 0, s ∈ [0, T θ]} is open, and consider (αi, βi), i ∈ I, its connected

component. Let G be any non-negative measurable function defined on the space of càdlàg
Wy-valued function and set Gi = G(W θ

t , t ∈ (αi, βi)).
Similar arguments used for the proof of (8) relying on Girsanov theorem implies that

Ey

[

e−
∑

i∈I Gi

]

= Ey

[

eθx−θL0
a(T 0)−2θ2T 0

e−
∑

i∈I Gi

]

.
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Excursion theory gives that

Ey

[

e−
∑

i∈I Gi

]

= exp
{

−xN
θ
y[1 − e−G(W θ)]

}

and since T 0 =
∑

i∈I βi − αi and L0
a(T

0) =
∑

i∈I L
0
a(βi) − L0

a(αi),

Ey

[

eθx−θL0
a(T 0)−2θ2T 0

e−
∑

i∈I Gi

]

= exp
{

θx− xN
0
y[1 − e−θL0

a(σ0)−2θ2σ0−G(W 0)]
}

.

Thus, we get

N
θ
y[1 − e−G(W θ)] = −θ + N

0
y[1 − e−θL0

a(σ0)−2θ2σ0−G(W 0)].

First moment computation implies that

(13) N
θ
y[G(W θ)] = N

0
y[G(W 0) e−θL0

a(σ0)−2θ2σ0

].

Now we specialize to the case G(W θ) =
∫ σθ

0 F (W θ
s ) ds, where F is a non-negative measurable

function defined on the space of càdlàg E-valued function. We have

N
θ
y

[

∫ σθ

0
F (W θ

s ) ds

]

= N
0
y

[

∫ σ0

0
F (W 0

s ) e−θL0
a(σ0)−2θ2σ0

ds

]

.

We can replace e−θL0
a(σ0)−2θ2σ0

in the right side member by its predictable projection

e−θL0
a(s)−2θ2s

E

[

e−θL0
a(σ0)−2θ2σ0 | H0

0 = r
]

|r=H0
s

.

Using time reversibility (see Corollary 3.1.6 of [7] in a more general case) for the first equality
and predictable projection for the second equality, we get that

N
0
y

[

∫ σ0

0
F (W 0

s ) e−θL0
a(s)−2θ2s

E

[

e−θL0
a(σ0)−2θ2σ0 | H0

0 = r
]

|r=H0
s

ds

]

= N
0
y

[

∫ σ0

0
F (W 0

s ) e−θ(L0
a(σ)−L0

a(s))−2θ2(σ−s)
E

[

e−θL0
a(σ0)−2θ2σ0 | H0

0 = r
]

|r=H0
s

ds

]

= N
0
y

[

∫ σ0

0
F (W 0

s )E
[

e−θL0
a(σ0)−2θ2σ0 | H0

0 = r
]2

|r=H0
s

ds

]

.

Notice from (4) that

1

2
L0

a(σ
0) = Hσ0 − βσ0 − 1

2
L0

0(σ
0) −H0 = −βσ0 −H0.

Stopping time theorem for exponential martingale implies that

E

[

e−θL0
a(σ0)−2θ2σ0 | H0

0 = r
]

= E

[

e−2θβ
σ0−2θH0

0
−2θ2σ0 | H0

0 = r
]

= e−2θr .

We deduce that

N
θ
y

[

∫ σθ

0
F (W θ

s ) ds

]

= N
0
y

[

∫ σ0

0
F (W 0

s ) e−4θH0
s ds

]

.

The result is then a consequence of the first moment formula for the Brownian snake (see
formula (4.2) in [7]).

�
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We can define the exit local time of an open subset of D of E. For w ∈ W, let τ(w) =
inf{t > 0;w(t) 6∈ D}. Let y ∈ D. We assume that Py(τ < ∞) > 0. Following [14, 13], the
limit

LD
s = lim

ε↓0

1

ε

∫ t

0
1
{τ(Wθ,a

u )<ζu<τ(Wθ,a
u )+ε}

du

exists for all s > 0 P
θ
y-a.s. and N

θ,a
y -a.e. and defines a continuous non-decreasing additive

functional. We deduce the first moment formula from (12) and proposition 4.3.2 in [7]:

(14) N
θ,a
y

[

∫ σθ,a

0
dLD

s F (Wθ,a
s )

]

= Py

[

e−4θτ 1{τ≤a}F ((ξt, t ∈ [0, τ ]))
]

.

We consider the following hypothesis:
(A) For every y ∈ D, w is continuous at s = τ , Py-a.s. on {τ <∞}.

We recall the description of the excursions of Wθ,a out of D. We consider

(15) At =

∫ t

0
1
{Hθ,a

s ≤τ(Wθ,a
s )}

ds,

and ηs = inf{t;At > s} its right continuous inverse. We define the càdlàg process W̃a
s = Wθ,a

ηs .

Let F̃ = (F̃t, t ≥ 0) be the filtration generated by W̃a. Note the snake property implies that

{s ∈ [0, σθ,a];Hθ,a
s > τ(Wθ,a

s )} is open and consider (αi, βi), i ∈ I, its connected component.
The excursions of Wθ,a out of D, W{i}, i ∈ I, are defined by

W{i}(r) = Wθ,a
(αi+t)∧βi

(r + Hθ,a
αi

), r ∈ [0,H{i}
t = Hθ,a

(αi+t)∧βi
].

We denote by σ{i} = αi − βi the duration of the excursion W{i}. Following the proof of
theorem 2.4 of [13], one can check the next result.

Let D the space of càdlàg function defined on R+ taking values in W and let δz denote the
Dirac mass at point z.

Proposition 4.3. The random measure
∫ σθ,a

0 dLD
s δ

(LD
s ,Hθ,a

s )
is measurable w.r.t. F̃∞. Let φ

a non-negative measurable function defined on R+ × R+ × D, we have

N
θ,a
y

[

e−
∑

i∈I φ(LD
αi

,Hθ,a
αi

,W{i}) | F̃∞

]

= exp

{

−
∫ σθ,a

0
dLD

s N
θ,a−h

Ŵθ,a
s

[1 − e−φ(ℓ,h,·)]
|ℓ=LD

s ,h=Hθ,a
s

}

.

5. Pruning of the height process

We present a pruning of the genealogical tree described by the height process Hθ using a
method introduced in [3] in the case θ = 0. The pruning gives a natural way to recover Zθ+γ

from Zθ for γ > 0. This gives a dual procedure to [2], where the authors used immigration to
reconstruct Zθ from Zθ+γ. This pruning procedure goes back to [6], where the authors used
an intensity of the killing rate which was dependent of the underlying motion.

5.1. Poisson process as underlying motion. We keep notations of the previous Section.
Let γ > 0, and following [4, 3] consider for the spatial motion (i.e. the law of ξ) the Poisson

process distribution with intensity 4γ. We denote by LD the exit local time out of D = {0}.
The additive functional A defined in (15) can be written in the following way:

At =

∫ t

0
1
{Wθ,a

s =0}
ds
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Let H̃a be the lifetime process of W̃a. Notice that (H̃a, a ≥ 0) is a consistent family in the

sense that πa,b(H̃a) = H̃b for all a ≥ b ≥ 0. We shall denote by H̃ its projective limit and call
it the pruned height process.

Lemma 5.1. We have a.s. P
θ,a
0 -a.s. and N

θ,a
0 -a.e. for all s ≥ 0, LD

s = 4γAs.

Proof. We shall first prove the result for θ = 0. We drop the notation a and θ = 0 in the first
part of the proof. We have

N0[(L
D
σ − LD

t − 4γAσ + 4γAt)
2] = 2N0

[
∫ σ

t

(LD
σ − LD

s − 4γAσ + 4γAs)d(L
D
s − 4γAs)

]

= 2N0

[
∫ σ

t

2HsN[LD
σ − 4γAσ]d(LD

s − 4γAs)

]

,

where we used the previsible projection of (LD
σ −LD

s −4γAσ +4γAs) and proposition 2.1 in [13]
to compute it for the second equality. Now (12) and (14) implies that N0[L

D
σ ] = 4γN0[Aσ].

This implies that N0[(L
D
σ − LD

t − 4γAσ + 4γAt)
2] = 0 for all t ≥ 0. Since LD and A are

continuous and equal to 0 at 0, this implies that N0-a.e. for all s ≥ 0, LD
s = 4γAs. Since P0-

a.s.
∫ σ

0 1{Hs=0}dL
D
s =

∫ σ

0 1{Hs=0}dAs = 0, we deduce from excursion theory that the result
holds also P0-a.s.

Using Girsanov theorem (see (13)), since LD = 4γA holds N
0,a
0 -a.e, we deduce that the

equality also holds N
θ,a
0 -a.e. (and also P

θ,a
0 -a.s.).

�

Using Lemma 5.1 notice that N
θ,a
0 -a.e.

∫ σθ,a

0
dLD

s δ
(LD

s ,Hθ,a
s )

= 4γ

∫ σ̃a

0
du δ(u,H̃a

u),

where σ̃a = inf{s > 0; H̃a
s = 0} = Aσθ,a is the length of the excursion of W̃a. Let us also

notice that Ŵa
s = 0 dAs-a.e.

The Poisson process does not satisfy condition (A) with D = {0}. However Proposition 4.3
can be extended to this particular case. (See [1] for a similar formulation in slightly different
context. In [1], there is no Brownian part, and the Poisson process is only increasing at the
nodes of the height process.) Using the previous remarks, Proposition 4.3 can be written as
follows.

Proposition 5.2. Let φ a non-negative measurable function defined on R+ × R+ × D, we
have

N
θ,a
0

[

e−
∑

i∈I φ(Aαi
,Hθ,a

αi
,W{i}) | F̃∞

]

= exp

{

−4γ

∫ σ̃a

0
dr N

θ,a−h
0 [1 − e−φ(r,h,·)]|h=H̃a

r

}

.

5.2. The main result.

Proposition 5.3. The pruned height process H̃ is distributed as Hθ+γ.

Recall that the height process Hθ allows to code for the genealogy of continuous state
branching process with branching mechanism ψθ. In fact, using the Poisson process with
intensity 4γ as a spatial motion provides a way to remove individuals of continuous state
branching process associated to the height process Hθ in such a way as to preserve the ge-
nealogical structure. The height process corresponding to the remaining individuals is a height
process associated to the branching mechanism ψθ+γ . This Proposition is an extension to the
super-critical case of [3].
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Proof. Because of the consistency, it is enough to prove that H̃a is distributed as Hθ+γ,a. Let
θ ∈ R, a ≥ 0 be fixed. We shall omit θ and a in what follows and for example write Ws for

Wθ,a
s .

Recall η is the right continuous inverse of A, where At =

∫ t

0
1
{Wθ,a

s =0}
ds. We shall use a

sub-martingale problem, see [17], to give the law of H̃. Recall that H solves (4):

Ht = βt − 2θt+
1

2
L0(t) −

1

2
La(t),

where β = (βt, t ≥ 0) is a Brownian motion. Let g be defined on [0,∞) × R with compact
support with first derivative in the first variable and second derivative in the second variable
continuous (in both variables). We shall write g′(t, x) = ∂xg(t, x), g

′′(t, x) = ∂2
xxg(t, x). We

shall assume that g′(t, 0) ≥ 0 and g′(t, a) ≤ 0 for all t ≥ 0. We define for t ≥ 0

Mt = g(0, 0) +

∫ t

0
g′(As,Hs) dβs +

1

2

∫ t

0
g′(As, 0)dL0(s) −

1

2

∫ t

0
g′(As, a)1{Ŵs=0}dLa(s).

Notice that (Mt, t ≥ 0) is a sub-martingale with respect to F = (Ft, t ≥ 0), the filtration
generated by H. We also have

Mt = g(At,Ht) −
∫ t

0

(

1

2
g′′(As,Hs) − 2θg′(As,Hs)

)

ds−
∫ t

0
∂tg(As,Hs)dAs

+
1

2

∫ t

0
g′(As, a)1{Ŵs 6=0}dLa(s).

Since ηt is an F-stopping time, the stopping time Theorem implies the processN = (Nt, t ≥ 0),

where Nt = E[Mηt |F̃t], is an F̃ -sub-martingale. We set

M̃t =

∫ ηt

0

(

1

2
g′′(As,Hs) − 2θg′(As,Hs)

)

1{Ŵs 6=0} ds−
1

2

∫ θt

0
g′(As, a)1{Ŵs 6=0} dLa(s).

Recall that a.s. Aηt = t to get

Mηt = g(t, H̃t) −
∫ ηt

0

(

1

2
g′′(As,Hs) − 2θg′(As,Hs) + ∂tg(As,Hs)

)

1{Ŵs=0} ds− M̃t

= g(t, H̃t) −
∫ t

0

(

1

2
g′′(s, H̃s) − 2θg′(s, H̃s) + ∂tg(s,Hs)

)

ds− M̃t.

We have, using notations of Proposition 5.2,

M̃t =

∫ ηt

0

(

1

2
g′′(As,Hs) − 2θg′(As,Hs)

)

1{Ŵs 6=0} ds−
1

2

∫ ηt

0
g′(As, a)1{Ŵs 6=0} dLa(s)

=
∑

i∈I

1{Aαi
≤t}

∫ σi

0

(

1

2
g′′(Aαi

,Hi
s + Hαi

) − 2θg′(Aαi
,Hi

s + Hαi
)

)

ds

− 1

2

∑

i∈I

1{Aαi
≤t}g

′(Aαi
, a)(La(βi) − La(αi)).
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We get

E

[

M̃t|F̃∞

]

= 4γ

∫ t

0
du N

a−h
0

[
∫ σ

0

(

1

2
g′′(u,Hs + h) − 2θg′(u,Hs + h)

)

ds− g′(u, a)

2
La(σ)

]

|h=H̃u

= 4γ

∫ t

0
du

[

∫ a−H̃u

0
e−4θs

(

1

2
g′′(u, s + H̃u) − 2θg′(u, s + H̃u)

)

ds − g′(u, a)

2
e−4θ(a−H̃u)

]

= 4γ

∫ t

0
du

[

[

1

2
g′(u, s + H̃u) e−4θs

]a−H̃u

0

− g′(u, a)

2
e−4θ(a−H̃u)

]

= −2γ

∫ t

0
du g′(u, H̃u),

where we used Proposition 5.2 for the first equality and (12) and (14) for the second. This
implies

E

[

M̃t|F̃t

]

= −2γ

∫ t

0
du g′(u, H̃u),

and we deduce that

Nt = E[Mηt |F̃t]

= g(t, H̃t) −
∫ t

0

(

1

2
g′′(s, H̃s) − 2θg′(s, H̃s) + ∂tg(s, H̃s)

)

ds− E

[

M̃t|F̃t

]

= g(t, H̃t) −
∫ t

0

(

1

2
g′′(s, H̃s) − 2(θ + γ)g′(s, H̃s) + ∂tg(s, H̃s)

)

ds.

Notice that a.s. H̃t ∈ [0, a]. Recall N is a F̃ -sub-martingale for any smooth function g such
that g′(t, 0) ≥ 0 and g′(t, a) ≤ 0 for all t ≥ 0. We deduce from uniqueness of solution to the

sub-martingale problem, see [17] theorem 5.5, that H̃ is distributed as a Brownian motion in
[0, a] with drift −2(θ + γ) and reflected at 0 and a. This and the consistency property end
the proof. �
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CERMICS, 2005.
[2] R. ABRAHAM and J.-F. DELMAS. Changing the branching mechanism of a continuous state branching

process using immigration. Preprint CERMICS, 2006.
[3] R. ABRAHAM and L. SERLET. Poisson snake and fragmentation. Elect. J. of Probab., 7, 2002.
[4] R. ABRAHAM and L. SERLET. Representations of the Brownian snake with drift. Stoch. Stoch. Rep.,

73(3-4):287–308, 2002.
[5] R. BLUMENTHAL. Excursions of Markov processes. Birkhäuser, Boston, 1992.
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