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Effect of measurement probes upon the conductance of an interacting nano-system:
Detection of an attached ring by non local many body effects

Axel Freyn and Jean-Louis Pichard
Service de Physique de U’Etat Condensé (CNRS URA 2464),
DSM/DRECAM/SPEC, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

We consider a nano-system connected to measurement probes via leads. When a magnetic flux
is varied through a ring attached to one lead at a distance L. from the nano-system, the effective
nano-system transmission |ts|> exhibits Aharonov-Bohm oscillations if the electrons interact inside
the nano-system. These oscillations can be very large, if L. is small and if the nano-system has
almost degenerate levels which are put near the Fermi energy by a local gate.

PACS numbers: 71.10.-w,72.10.-d,73.23.-b

To map the low temperature behavior of an interacting
system onto that of an effective non interacting system
with renormalized parameters is the basis of the simplest
many body theories (Hartree-Fock (HF) approximation
[ﬂ], Landau theory of dressed quasi-particles). In one di-
mension (1d), this mapping fails to describe the collective
excitations of a macroscopic wire (Luttinger-Tomonaga
limit), but can be used if the electrons interact only inside
a microscopic part of a very long wire. This corresponds
[E] to the set-up used for measuring the quantum conduc-
tance g of a nano-system with two attached probes. The
electrons can strongly interact inside the nano-system
(molecule, quantum dot with a few electrons, atomic
chains created in a break junction) while their interaction
can be neglected outside. If the many body scatterer can
be mapped onto an effective one body scatterer, detect-
ing the presence of interactions from a zero temperature
transport measurement looks difficult. Fortunately, the
interactions give rise to a new phenomenon which does
not exist in a bare one body scatterer: the effective trans-
mission |t,]? ceases [[, ] to be local. We study in this let-
ter a set-up for detecting by a conductance measurement
the non locality of |ts|?> due to nano-system interactions.

The idea can be simply explained using the HF approx-
imation [f] and the Landauer formulation [J] of quantum
transport. Let us assume a nano-system with interac-
tions in contact with two 1d non interacting leads. Using
the HF approximation, one can map the ground state
of this set-up onto that of an effective one body scat-
terer with leads, introducing HF corrections which probe
energy scales much below the Fermi energy and length
scales much larger than the nano-system size. Via the
conduction electrons, one can induce Friedel oscillations
of the electron density inside the nano-system by insert-
ing a second scatterer in one lead at a distance L. from
the nano-system. These oscillations change the Hartree
and Fock terms of the nano-system effective Hamiltonian.
This generates a non local effect upon its effective trans-
mission |¢s]?, and hence upon the Landauer conductance
of a set-up embedding the nano-system. This non local

FIG. 1: Considered set-up made of a many body scatterer
with two semi-infinite 1d leads: Polarized electrons interact
only inside the nano-system (two sites with inter-site repulsion
U, hopping term tq and applied gate voltage V). A ring is
attached at a distance L. from the nano-system.

effect upon |ts|? decays as 1/L. with 7/kr oscillations
(kr being the Fermi momentum), if it is driven by Friedel
oscillations in 1d leads (1/L¢ decay for d-dimensional
leads). This phenomenon is reminiscent of the RKKY
interaction [[] between magnetic moments via conduc-
tion electrons. At a temperature 7" # 0, this non local
effect is exponentially suppressed [H] when L. exceeds L,
the scale on which the electrons propagate at the Fermi
velocity during a time o 1/7.

We use a simple 1d toy model of polarized electrons
(spinless fermions) for which the Hartree-Fock approxi-
mation allows to describe [E] the effect of a repulsion U
acting between two consecutive sites only. To detect how
the nano-system effective transmission |ts|?> depends on
the measurement probes, we put a second (one body)
scatterer in one of the leads at a distance L. from the
nano-system. Hereafter, we refer to this second scatterer
as the AB-detector, since it includes a ring threaded by
an Aharonov-Bohm (AB) flux ®, the combined set-up
being sketched in FIG. . Flux dependent Friedel os-
cillations of the electron density are induced inside the
nano-system by the AB-detector. If the electrons inter-



act inside the nano-system, [ts|? exhibits periodic AB-
oscillations, which vanish if the ring is too far from the
nano-system or if the electrons cease to interact.

Our toy model is a tight-binding model on an infinite
1d lattice, where spinless fermions do not interact, unless
they occupy the nano-system (two central sites 0 and 1),
which costs an energy U. A potential Vi can be varied
inside the nano-system by a local gate. The Hamiltonian
of the nano-system with the leads reads:

H =Vg (n1+no)+ Uning— Z tpm—l(ci)cp—l +h.c.).

p=—00

1)
Outside the nano-system, the energy scale is set by a
uniform hopping amplitude ¢, ,_1 = 1. Inside the nano-
system, the hopping amplitude ¢, o = tq is one of the
nano-system parameters. ¢, (c}) is the annihilation (cre-
ation) operator at site p, and n, = c;cp. In the HF ap-
proximation, the ground state is assumed to be a Slater
determinant of one-body wave-functions 1), (p) of energy
E, < Er, Er = —2coskr being the Fermi energy. The
effective HF Hamiltonian corresponds to two central sites
without nearest neighbor repulsion, with renormalized
potentials Vo and Vi (instead of V) and hopping am-
plitude v (instead of ¢4), coupled to two semi-infinite
leads. Denoting (clc,,) = Y5 . ¥i(n)iha(m), the HF
parameters v, Vy and V; are given by the three coupled
equations

v="ta+U{ches(0,%0, V) @)
Vo= Vo+U(ce VW) (3)
Vl = VG +U <C(JSCO(U, V07 ‘/1)> ) (4)

which have to be solved self-consistently.

Let us first consider the case without the AB-detector.
The same set-up has been studied [H] using the DMRG
algorithm, which is valid even if U is large (Coulomb
blockade without potential barriers). There is reflection
symmetry, (cle,) = (cgco>, Eqs. () and () are identical,
and Vo = V3 = V. Once the self-consistent values of v
and V are obtained, the effective transmission coefficient
ts reads:

v (1 — exp(—2ikp))

ts = - - . 5
v2 — exp(—2ikp) — 2V exp(—ikp) — V2 (5)

For this toy model, the analytical form of (c};cp,> of
Eqgs. @,E,E) can be given as a function of v, V and kg,
as in Ref. [E] The self-consistent values of v and V' can
be obtained analytically if U is small or numerically oth-
erwise, solving the coupled Eqs. (E,E) Alternatively, one
can diagonalize the HF Hamiltonian numerically for leads
of finite size Ny, make the extrapolation to the limit
Ny — 0o, and numerically determine the self consistent
solution of Egs. (Bf).

Moreover, the HF-equations have a simple solution, if
one makes an approximation which becomes valid when
tqg > 1. We only explain the idea in this letter, the
detailed calculations will be given in a forthcoming paper.
The nano-system without leads and interaction has only
two states of energy Vi +t4, separated by an energy gap
2t4. Let us define the operators d; = (¢, + ¢;)/v/2 and
d, = (cy — ¢;)/V2, ns = did, and n, = did,. When
tq is large and for the values of Vi where |ts]? # 0, the
symmetric state of energy Vg —t4 is below Er, while the
anti-symmetric state of energy Vi + t4 is above Ep. In
that case, the symmetric state is occupied ((ns) & 1), the
anti-symmetric one is empty ({n,) = 0), and the solution
of the HF-equations becomes straightforward. One finds
vateg+U/2, V&= Ve+U/2, and

Its]? ~ A (

2 I?

A e )

(6)
where A = (2t + U)/(2Vg + U + 2coskp), I’ = sinkp,
Vi =ty —coskp and Vg = —tg — coskr — U. In FIG.
B (B), the nano-system transmission [ts|> without the
AB-detector (ts obtained from Eq. (f])), is shown as a
function of Vg, for 4 values of U, t; = 1, and a Fermi
momentum kr = 7/8 (filling 1/8). The corresponding
number of electrons inside the nano-system Ny = (ns +
ng) is shown above (FIG. B (A)). One can see that |t,|2
exhibits two peaks when Vi decreases, separated by an
interval ~ 2ty 4 U, as predicted by Eq. (§). When tq =
1, Eq. (H) does not give an accurate description of the
effect of Vi, this description becoming accurate when t4
is larger (see FIG. ] (Q)). |ts|* ~ 0 when the nano-system
is either empty (large positive Viz) or full (large negative
V). Decreasing Vi, one has a first transmission peak
when the symmetric state becomes occupied (Vg & Vy),
followed by a second peak when the anti-symmetric state
is filled (Vg = V). When t4 < 1, the two states become
almost degenerate, they are occupied at almost the same
gate voltage and the two peaks merge to form a single
peak structure which is not described by Eq. (), as
shown in FIG. E (C).

The effect of the nano-system parameters U and Vg
upon the leads decays as <c;ﬁ,cp/> (p =porp+1) towards
their asymptotic values when p — oo. One finds the
usual decay

b(U, V) cos (2kpp + (U, Vg))
p

Fupe(p) =a+ (7)
of Friedel oscillations inside a 1d non interacting electron
gas. This is shown in FIG. ] (D) for p’ = p+ 1. As
for p’ = p, these decays are characterized by an asymp-
totic value a, an amplitude b(U, V) and a phase shift
c(U, V). If one puts a one body scatterer in series with
the nano-system, one can induce Friedel oscillations in-
side the nano-system. This will give values for the HF
parameters v, Vo, Vi # V4 different from their values
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FIG. 2: Nano-system without AB-detector for kr = 7/8

(filling 1/8). A: Number N, of electrons inside the nano-
system for t4 = 1 as a function of Vg for U = 0 (solid),
0.5 (dashed), 1 (dot-dashed) and 1.5 (dot-dot-dashed). B:
Corresponding transmission |t5|>. C: Transmission |ts|* as a
function of Vi for U = 1 and values (2, 1 and 0.1) of t4 given
in the figure: exact HF behaviors (solid lines) compared to
the behaviors given by Eq. (H) (dashed lines). D: (chcps1)
as a function of p for U = 1 and Vo = 0. The solid line
is an asymptotic fit Fyp..(p) (Eq. (ﬂ)) of the HF values (x),
with a = 0.1218, b = 0.00245 and ¢ = —0.38. (c}c,) (not
shown) can be fitted by F,,.(p) with a = 1/8, b = 0.0025
and ¢ = —0.45.

v, Vo = Vi = V without the second scatterer. Using
as second scatterer an AB-detector with a ring, periodic
AB-oscillations of v, Vy and V; will be induced when a
flux is varied through the ring.

The AB-detector sketched in FIG. [l includes two 3-
lead contacts (3LC), the first for attaching the vertical
lead to the horizontal lead, the second for attaching the
ring to the vertical lead. A 3LC is made of 4 sites indi-
cated by black circles. Its Hamiltonian is given by Hp =
— 22:1 tpyp(CLCp +h.c.), where tp, = 1, P denoting the
central site and p its 3 neighbors. L. (L,) is the number
of sites between the upper 3LC and the nano-system (the
lower 3LC). L is the number of sites of the ring, without
those of the lower 3LC. A 3 x 3 matrix Sp(k) describes
the scattering by a 3LC at F = —2cosk. Sp(k) has
identical diagonal elements s,, = —e™*/d(k) and iden-
tical off-diagonal elements s,, = (2isink)/d(k) = spyp
where d(k) = 3e’* — 2 cosk.

The reflection amplitude of the ring (vertical lead)
threaded by a flux ® (¢ = 27®/Py, Py being the flux
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FIG. 3: Nano-system with AB-detector for L, = 4. A: Trans-
mission |ts|2 as a function of L. for t4 =1, U =1, kr = /8,
Lr =7,Vg=—28and ® = 0. HF values (x) and fit F, 5 .(p)
(Eq. ([{) - solid line) with a = 0.9999, b = 0.00092, ¢ = 1.678.
B: |ts|* as a function of Vg for t4 = 0.1, krp = /8, Lr = 7
and L. = 2. The dashed (solid) curves correspond to ® = 0
(®0/2). The grey areas underline the effect of ®. C: Conduc-
tance gr of the nano-system and the AB-detector in series, as
a function of ®/®q for t4 = 0.1 and kp = 7/2. Lc =2, Lr =7
Vg = —0.8. U =1 (solid line) and U = 0 (dashed). D: gr as
a function of ®/®q for L. = 2 and Lr = 4 (sinkrpLr = 0).
ta=0.1, kr =7/2 and V; = —0.7. U =1 (solid) and U = 0
(dashed).

quantum) reads

TR(cp) - hk(cp) — Sin(kLR)

= Thi(p) + PEsin(kLr)’ ()

where hy(¢) = 2e*(cos(kLg) — cosp)sink. The reflec-
tion and transmission amplitudes of the AB-detector (in
the horizontal lead) read

2ik _ p2ikL

—e TR (p) (9)

rap(k) = 262k — 1 + 1y ()2 (LAD)

2isink ik 1 2ik L,
Fan (k) = isin ke (1+e .nggo)). (10)
2621k — 1+ TR((p)esz(Lchl)

We now study the nano-system in series with the AB-
detector, solving numerically the Egs. (E—) for having
the values v(y, L), Vo(p, L.) and Vi(g, Le) character-
izing the nano-system. FIG. | (A) shows the effect
of the AB-detector upon the nano-system transmission
[ts(Lc)|?, as a function of L. ts(L.) is given by extend-
ing formula (f]) to the case where V # V4. The transmis-
sion |ts(L.)|? exhibits decaying oscillations towards the



asymptotic value characterizing the nano-system without
AB-detector. The decay is given by a function Fy, p (Lc).

For t; = 1, the effect of the AB-detector upon |t|?
remains negligible (~ 107%), even for small values of L..
This effect can be made 103 times larger if ¢4 is reduced
by a factor 10. We have shown that |ts]? is given by
Eq. (@) when ¢4 > 1, in the limit where (n,) ~ 1 and
(ng) = 0. In this limit, one cannot strongly vary (ns) and
(nq) by the Friedel oscillations of the AB-detector, and
the HF parameters are almost independent of ¢. But
much larger AB-oscillations of the HF parameters be-
come possible if t; < 1, when two almost degenerate
levels are near Er for the same value of V. This is
shown in FIG. fi (B) for t4 = 0.1. The two transmission
peaks shrink to form a single peak structure which de-
pends on the flux ¢ threading the ring. In FIG. B (B),
putting ®¢/2 through the ring increases |ts|? by a visi-
ble amount (grey areas), an effect 100 times larger than
when t; = 1. To make the effect even larger, one can
adjust the wave-length of the Friedel oscillations to the
size of the nano-system. Increasing kr from /8 to m/2
(half-filling), the size of the AB-oscillations of |ts|? can
be increased by another factor ~ 10.

Having reduced the many-body scatterer to an effective
one body scatterer, the conductance is given by the Lan-
dauer formula valid for a bare one body scatterer. Let us
consider the two probe geometry of FIG. El, and study the
conductance g7 of the nano-system and the AB-detector
in series. gr = |t7|? (in units of €?/h), where t7 is given
by the combination law:

eikp L.

= e T e AP (1)

rl (rap) is the reflection amplitude of the nano-system

S
(of the AB-detector). Because rap and tap depend on
©, gr exhibits AB-oscillations even without interaction,
when t; and 7%, are independent of ¢ (U = 0 or L, too
large). However, when the electrons interact inside the
nano-system and L. is not too large, ts and r. exhibit
also AB-oscillations around certain values of Vg, which
can strongly modify the AB-oscillations of gr. In FIG.
B (C), one can see how the shapes of the AB-oscillations
are modified by the interaction, while their amplitudes
are increased. FIG. B (D) corresponds to a case where
the ring is perfectly reflecting at Er (Eq. (E), rg = —1
when sin(kpLgr) = 0). In that special case, t4p and
rap are independent of ¢ at Er. But gr does have AB-
oscillations when the electrons interact inside the nano-
system, the HF corrections depending on HF states below
Ep for which sin(ko,Lgr) # 0. In this special case, the
very large AB-oscillations of gr are a pure many body
effect.

The effect of the flux upon the HF parameters can
be also detected if one uses 4 probes instead of 2. The
idea [ is to weakly contact 2 additional probes near the

nano-system, for measuring directly the voltage drop at
its extremities, and not on a larger scale including the
AB-detector. However, since our effect requires to have
the nano-system and the AB-detector inside the same
quantum coherent region, the obtained conductance is
no longer given by the 2 probe formula gs = |ts|?, but
by the multi-terminal formula E] derived by Biittiker.
In a 4 probe set-up, this formula yields also non local
effects without interaction, which have been observed in
mesoscopic conductors, using metallic wires [H] or semi-
conductor nanostructures [E], where the interaction is
too weak for making our many body effect important.
But the non local effect seen in Refs. [E, E] should be
strongly enhanced, if a region where the electrons interact
is included between the 2 voltage probes.

We have studied spinless fermions (polarized electrons)
and 1d leads, and shown that an attached ring can con-
siderably modify the nano-system transmission for well
chosen values of U, Vg, tq when L. is not too large. The
HF approximation could be easily extended to higher di-
mensions. To include the spins could be more difficult.
The double occupancy of each site becoming possible, a
Hubbard repulsion must be added, making our double
site model slightly more complicated than the Anderson
model used for the Kondo problem []E] The study of
the effect of flux dependent Friedel oscillations upon the
Kondo problem is left for future investigations.
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