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Abstract

The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in
GF (2) is found to fully accommodate the algebra of 15 operators — generalized Pauli matrices
— characterizing two-qubit systems. The relevant sub-configuration consists of 15 points each of
which is either simultaneously distant or simultaneously neighbor to (any) two given distant points
of the line. The operators can be identified with the points in such a one-to-one manner that their
commutation relations are exactly reproduced by the underlying geometry of the points, with the
ring geometrical notions of neighbor/distant answering, respectively, to the operational ones of
commuting/non-commuting. This finding opens up rather unexpected vistas for an algebraic ge-
ometrical modelling of finite-dimensional quantum systems and gives their numerous applications
a wholly new perspective.
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Projective lines defined over finite associative rings with unity/identity1−7 have recently been
recognized to be an important novel tool for getting a deeper insight into the underlying algebraic
geometrical structure of finite dimensional quantum systems.8−10 Focusing almost uniquely on
the two-qubit case, i.e., the set of 15 operators/generalized four-by-four Pauli spin matrices, of
particular importance turned out to be the lines defined over the direct product of the simplest
Galois fields, GF (2) × GF (2) × . . . × GF (2). Here, the line defined over GF (2) × GF (2) plays a
prominent role in grasping qualitatively the basic structure of so-called Mermin squares,9,10 i. e.,
three-by-three arrays in certain remarkable 9 + 6 split-ups of the algebra of operators, whereas the
line over GF (2) × GF (2) × GF (2) reflects some of the basic features of a specific 8 + 7 (“cube-
and-kernel”) factorization of the set.10 Motivated by these partial findings, we started our quest
for such a ring line that would provide us with a complete picture of the algebra of all the 15
operators/matrices. After examining a large number of lines defined over commutative rings,6,7 we
gradually realized that a proper candidate is likely to be found in the non-commutative domain and
this, indeed, turned out to be a right move. It is, as we shall demonstrate in sufficient detail, the
projective line defined over the full two-by-two matrix ring with entries in GF (2) — the unique
simple non-commutative ring of order 16 featuring six units (invertible elements) and ten zero-
divisors.11 Having in mind the conceptual rather than formal side of the task, we shall try to
reduce the technicalities of the exposition to a minimum, referring instead the interested reader to
the relevant literature.
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We first recall the concept of a projective ring line.1−7 Given an associative ring R with
unity/identity,12−14 the general linear group of invertible two-by-two matrices with entries in R, a
pair (a, b) ∈ R2 is called admissible over R if there exist c, d ∈ R such that

(
a b
c d

)
∈ GL(2, R). (1)

The projective line over R, usually denoted as P1(R), is the set of equivalence classes of ordered
pairs (̺a, ̺b), where ̺ is a unit of R and (a, b) is admissible. Two points X := (̺a, ̺b) and
Y := (̺c, ̺d) of the line are called distant or neighbor according as

(
a b
c d

)
∈ GL(2, R) or

(
a b
c d

)
/∈ GL(2, R), (2)

respectively. GL(2, R) has an important property of acting transitively on a set of three pairwise
distant points; that is, given any two triples of mutually distant points there exists an element of
GL(2, R) transforming one triple into the other.

The projective line we are exclusively interested in here is the one defined over the full two-by-
two matrix ring with GF(2)-valued coefficients, i. e.,

R = M2(GF (2)) ≡

{(
α β
γ δ

)
| α, β, γ, δ ∈ GF (2)

}
. (3)

Labelling these matrices as follows

1 ≡

(
1 0
0 1

)
, 2 ≡

(
0 1
1 0

)
, 3 ≡

(
1 1
1 1

)
, 4 ≡

(
0 0
1 1

)
,

5 ≡

(
1 0
1 0

)
, 6 ≡

(
0 1
0 1

)
, 7 ≡

(
1 1
0 0

)
, 8 ≡

(
0 1
0 0

)
,

9 ≡

(
1 1
0 1

)
, 10 ≡

(
0 0
1 0

)
, 11 ≡

(
1 0
1 1

)
, 12 ≡

(
0 1
1 1

)
,

13 ≡

(
1 1
1 0

)
, 14 ≡

(
0 0
0 1

)
, 15 ≡

(
1 0
0 0

)
, 0 ≡

(
0 0
0 0

)
, (4)

one can readily verify that addition and multiplication in M2(GF (2)) is carried out as shown in
Table 1.15 Checking first for admissibility (Eq. (1)) and then grouping the admissible pairs left-
proportional by a unit into equivalence classes (of cardinality six each), we find that P1(M2(GF (2)))1

possesses altogether 35 points, with the following representatives of each equivalence class (see
Refs. 6–8 for more details about this methodology and a number of illustrative examples of a
projective ring line):

(1, 1), (1, 2), (1, 9), (1, 11), (1, 12), (1, 13),

(1, 0), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 10), (1, 14), (1, 15),

(0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (10, 1), (14, 1), (15, 1),

(3, 4), (3, 10), (3, 14), (5, 4), (5, 10), (5, 14), (6, 4), (6, 10), (6, 14). (5)

From the multiplication table one can easily recognize that the representatives in the first row of
the last equation have both entries units (1 being, obviously, unity/multiplicative identity), those
of the second and third row have one entry unit(y) and the other a zero-divisor, whilst all pairs in
the last row feature zero-divisors in both the entries. At this point we are ready to shown which
“portion” of P1(M2(GF (2))) is the proper algebraic geometrical setting of two-qubits.

To this end, we consider two distant points of the line. Taking into account the above-mentioned
three-distant-transitivity of GL(2, R), we can take these, without any loss of generality, to be the
points U := (1, 0) and V := (0, 1). Next we pick up all those points of the line which are either
simultaneously distant or simultaneously neighbor to U and V . Employing the left part of Eq. (2),
we find the following six points

C1 = (1, 1), C2 = (1, 2), C3 = (1, 9),

C4 = (1, 11), C5 = (1, 12), C6 = (1, 13), (6)
1This line has been found to have a distinguished footing among non-commutative ring lines for it fundamentally

differs from its two commutative counterparts.11
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Table 1: Addition (top) and multiplication (bottom) in M2(GF (2)).

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 1 3 7 5 6 4 14 12 15 13 9 11 8 10
3 0 3 3 0 3 0 0 3 6 5 5 6 5 6 6 5
4 0 4 4 0 4 0 0 4 14 10 10 14 10 14 14 10
5 0 5 6 3 0 5 6 3 6 3 0 5 6 3 0 5
6 0 6 5 3 3 5 6 0 0 6 5 3 3 5 6 0
7 0 7 7 0 7 0 0 7 8 15 15 8 15 8 8 15
8 0 8 15 7 7 15 8 0 0 8 15 7 7 15 8 0
9 0 9 13 4 3 10 14 7 8 1 5 12 11 2 6 15
10 0 10 14 4 0 10 14 4 14 4 0 10 14 4 0 10
11 0 11 12 7 4 15 8 3 6 13 10 1 2 9 14 5
12 0 12 11 7 3 15 8 4 14 2 5 9 13 1 6 10
13 0 13 9 4 7 10 14 3 6 11 15 2 1 12 8 5
14 0 14 10 4 4 10 14 0 0 14 10 4 4 10 14 0
15 0 15 8 7 0 15 8 7 8 7 0 15 8 7 0 15

to belong to the first family, whereas the right part of Eq. (2) tells us that the second family
comprises the following nine points

C7 = (3, 4), C8 = (3, 10), C9 = (3, 14),

C10 = (5, 4), C11 = (5, 10), C12 = (5, 14),

C13 = (6, 4), C14 = (6, 10), C15 = (6, 14). (7)

Making again use of Eq. (2), one finds that the points of our special subset of P1(M2(GF (2)))
are related with each other as shown in Table 2; from this table it can readily be discerned that
to every point of the configuration there are six neighbor and eight distant points, and that the
maximum number of pairwise neighbor points is three. The final step is to identify these 15 points
with the 15 generalized Pauli matrices/operators of two-qubits (see, e. g., Ref. 10, Eq. (1)) in the
following way

C1 = σz ⊗ σx, C2 = σy ⊗ σy, C3 = 12 ⊗ σx,

C4 = σy ⊗ σz, C5 = σy ⊗ 12, C6 = σx ⊗ σx,

C7 = σx ⊗ σz, C8 = σy ⊗ σx, C9 = σz ⊗ σy ,
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Table 2: The distant and neighbor (“+” and “−”, respectively) relation between the points of
the configuration. The points are arranged in such a way that the last nine of them (i. e., C7 to
C15) form the projective line over GF (2) × GF (2),8 which is, as it indeed must in order for this
generalization to dovetail with our earlier findings,9,10 a subline of P1(M2(GF (2))).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 − − − − + + − + + + − + + + −
C2 − − + + − − − + + + + − + − +
C3 − + − + − − + − + − + + + + −
C4 − + + − − − + + − + − + − + +
C5 + − − − − + + − + + + − − + +
C6 + − − − + − + + − − + + + − +
C7 − − + + + + − − − − + + − + +
C8 + + − + − + − − − + − + + − +
C9 + + + − + − − − − + + − + + −
C10 + + − + + − − + + − − − − + +
C11 − + + − + + + − + − − − + − +
C12 + − + + − + + + − − − − + + −
C13 + + + − − + − + + − + + − − −
C14 + − + + + − + − + + − + − − −
C15 − + − + + + + + − + + − − − −

C10 = σx ⊗ 12, C11 = σx ⊗ σy , C12 = 12 ⊗ σy,

C13 = 12 ⊗ σz , C14 = σz ⊗ σz , C15 = σz ⊗ 12, (8)

where 12 is the 2 × 2 unit matrix, σx, σy and σz are the classical Pauli matrices and the symbol
“⊗” stands for the tensorial product of matrices, in order to readily verify that Table 2 gives the
correct commutation relations between these operators with the symbols “+” and “−” now having
the meaning of “non-commuting” and “commuting”, respectively. Slightly rephrased, one and the

same “incidence matrix”, Table 2, pertains to two distinct configurations of a completely different

origin: a set of points of the projective line over a particular finite ring, with the symbols “+”/“−”
having the algebraic geometrical meaning of distant/neighbor, as well as a set of operators of
four-dimensional Hilbert space, with the same symbols acquiring the operational meaning of non-
commuting/commuting, respectively.

We have demonstrated that the basic properties of a system of two interacting spin-1/2 particles
are uniquely embodied in the (sub)geometry of a particular projective line. As such systems are
the simplest ones exhibiting phenomena like quantum entanglement and quantum non-locality
and play, therefore, a crucial role in numerous applications like quantum cryptography, quantum
coding, quantum cloning/teleportation and/or quantum computing to mention the most salient
ones, our discovery thus not only offers a principally new geometrically-underlined insight into their
intrinsic nature, but also gives their applications a wholly new perspective and opens up rather
unexpected vistas for an algebraic geometrical modelling of their higher-dimensional counterparts.
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