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Abstract

We present and study a homographic best approximation problem, which arises in the analysis of

waveform relaxation algorithms with optimized transmission conditions. Its solution characterizes in

each class of transmission conditions the one with the best performance of the associated waveform

relaxation algorithm. We present the particular class of first order transmission conditions in detail

and show that the new waveform relaxation algorithms are well posed and converge much faster than

the classical one: the number of iterations to reach a certain accuracy can be orders of magnitudes

smaller. We illustrate our analysis with numerical experiments.

Classification Codes 65M12, 65M55, 30E10.

Keywords Schwarz Method. Domain Decomposition. Best Approximation.

1 Introduction

Over the last decade, a new domain decomposition method for evolution problems has been developed,
the so called Schwarz waveform relaxation method, see [7, 15, 17, 16, 18] for linear problems, and [8, 14]
for nonlinear ones. The new method is well suited for solving evolution problems in parallel in space-
time, and it permits not only local adaptation in space, but also in time. A significant drawback of
this new method is its slow convergence on long time intervals. This problem can however be remedied
by more effective transmission conditions, see [12, 6, 13, 9, 10, 22]. These transmission conditions are
of differential type in both time and space, and depend on coefficients which are determined by opti-
mization of the convergence factor. The associated best approximation problem has been studied for the
optimized Schwarz waveform relaxation algorithm with Robin transmission conditions applied to the one-
dimensional advection-diffusion equation in [11]. In higher dimensions, and for higher order transmission
conditions, only numerical procedures have been used so far to solve the associated best approximation
problem, see [22, 6]. We study here this best approximation problem in a more general setting: we search
for a given function f : C → C the polynomial s∗n(z) of degree less than or equal to n, which minimizes
over all s of degree less than or equal to n the quantity

sup
z∈K

∣∣∣∣
s(z) − f(z)

s(z) + f(z)
e−lf(z)

∣∣∣∣ , (1.1)

where K is a compact set in C, and l is a non-negative real parameter.
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The classical best approximation problem is the following: given a real valued continuous function on
a compact interval and a class of functions defined on the same interval, find an element in the class which
realizes the distance of the function to the class. If the class is the linear space of polynomials of degree
less than or equal to n, and the distance is measured in the L∞ norm, then the approximation problem is
called a Chebyshev best approximation problem. This problem was studied in depth by Chebyshev and
De la Vallée Poussin [23]. Its solution is characterized by an equioscillation property, and can be computed
using the Remes algorithm [25, 24]. Later extensions concern rational approximations [5], and functions
of a complex variable [28]. In the latter problem, Rivlin and Shapiro obtained equioscillation properties,
from which they deduced uniqueness. In all cases existence is a matter of compactness. Problem (1.1)
generalizes the complex best approximation problem by polynomials in two directions: first the difference
f − s is replaced by a homographic function in f and s, and second there is an exponential weight which
involves the function f itself.

Our paper is organized as follows: in Section 2, we study the best approximation problem (1.1) and
characterize its solutions. In Section 3, we present our model problem, an advection reaction diffusion
equation, and introduce waveform relaxation algorithms for its space-time parallel solution. In Section 4,
we use the results obtained for the homographic best approximation problem in Section 2 to optimize a
particular class of Schwarz waveform relaxation algorithms for our model problem in one dimension, and
then generalize the results to arbitrary spatial dimensions. We then show in Section 5 that the optimized
algorithms from Section 4 are well posed and convergent in appropriate Sobolev spaces. Section 6 contains
numerical results for the classical and optimized Schwarz waveform relaxation algorithms, which show how
drastically the convergence behavior is improved in the optimized variants. We present our conclusions
in Section 7.

2 A General Best Approximation Result

Let K be a closed set in C, containing at least n + 2 points. Let f : K → C be a continuous function,
such that for every z in K, <f(z) > 0. We denote by Pn the complex vector space of polynomials of
degree less than or equal to n. We define

δn(l) = inf
s∈Pn

sup
z∈K

∣∣∣∣
s(z) − f(z)

s(z) + f(z)
e−lf(z)

∣∣∣∣ , (2.1)

and search for s∗n in Pn such that

sup
z∈K

∣∣∣∣
s∗n(z) − f(z)

s∗n(z) + f(z)
e−lf(z)

∣∣∣∣ = δn(l). (2.2)

2.1 Analysis of the Case l = 0 and K compact

We denote for simplicity by δn the number δn(0). Our analysis of (2.2) has three major steps: we first
prove existence of a solution, then show that the solution must satisfy an equioscillation property, and
finally, using the equioscillation property, we prove uniqueness of the solution. We define for any z0 in
C∗ = C \ 0 and strictly positive δ the sets

C(z0, δ) = {z ∈ C,

∣∣∣∣
z − z0

z + z0

∣∣∣∣ = δ}, D(z0, δ) = {z ∈ C,

∣∣∣∣
z − z0

z + z0

∣∣∣∣ < δ}, D̄(z0, δ) = C(z0, δ) ∪ D(z0, δ). (2.3)

The following geometrical lemma is straightforward, see [1]:

Lemma 2.1 For any δ different from 0 and 1, for any z0 in C∗ = C \ 0, the set C(z0, δ) in (2.3) is a

circle with center at 1+δ2

1−δ2 z0 and radius 2δ
|1−δ2| |z0|. If δ < 1, the set D(z0, δ) is the interior of the circle,

and the exterior otherwise. The set C(z0, 1) is a line orthogonal to the line (0, z0).
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Figure 1: Illustration of the geometric Lemma 2.1: definition of D(z0, δ) in grey.

Theorem 2.1 (Existence) For every n ≥ 0, the number δn is strictly smaller than 1, and there exists
at least one solution to problem (2.2) for l = 0.

Proof Since 1 ∈ Pn, we have δn ≤
∥∥∥ 1−f

1+f

∥∥∥
∞

. Now for any z in K, <f(z) > 0, and therefore
∣∣∣1−f(z)
1+f(z)

∣∣∣ < 1.

Since K is a compact set, we have δn < 1. To prove existence, we take a minimizing sequence
(
sk

n

)
k∈N

in
Pn, such that

lim
k→∞

∥∥∥∥
sk

n − f

sk
n + f

∥∥∥∥
∞

= δn.

There exists a k0 such that, for k ≥ k0, we have
∥∥∥ sk

n−f
sk

n+f

∥∥∥
∞

≤ C < 1 with C = (1 + δn)/2, and therefore

by Lemma 2.1,
sk

n

f (z) lies inside the disk D̄(1, C), C < 1, for all z in K. Hence sk
n is a bounded sequence

in the finite dimensional space Pn and thus there exists a subsequence which converges to some s∗n in
Pn, which attains the infimum.
We now investigate the equioscillation property of the solutions to (2.2). To do so, we need two further
lemmas.

Lemma 2.2 For a given vector w = (w1, . . . , wm), m ≤ n + 1, such that wj is in K for every j, let Uw

be the open set in Pn of polynomials s such that s(wi) + f(wi) 6= 0 for all i = 1, 2, . . . , m. If wi 6= wj for
i 6= j, the mapping

Aw : Uw → C
m, s 7→

(
s(wi) − f(wi)

s(wi) + f(wi)

)

1≤i≤m

is a submersion: for any s in Uw, the derivative A′
w(s) is onto. Furthermore, its derivative is continuous

with respect to s and w.

Proof The derivative of the mapping Aw is given by

A′
w(s) · s̃ =

(
2s̃(wi)f(wi)

(s(wi) + f(wi))2

)

1≤i≤m

, ∀s̃ ∈ Pn. (2.4)

Now for any z in C
m, there exists a unique polynomial s̃ in Pm−1, namely the Lagrange interpolation

polynomial, such that

∀i, 1 ≤ i ≤ m, s̃(wi) =
(s(wi) + f(wi))

2

2f(wi)
zi,

and since m−1 ≤ n, s̃ is in Pn and A′
w(s) · s̃ = z. The continuity of A′

w with respect to s and w follows
directly from (2.4).

Lemma 2.3 Let s∗n be a solution of (2.2) for l = 0. Let z = (z1, . . . , zm) be a vector of m distinct points
in K, m ≤ n + 1. We have:
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1. s∗n is in Uz,

2. let s be such that A′
z(s∗n) s = −Az(s∗n). Then for any ε, 0 < ε < 1, there exist positive (ε1, . . . , εm),

and t0 ∈ (0, 1), such that for any t ∈ [εt0, t0] and for any z in K with |z − zi| < εi for some i,
∣∣∣∣
s∗n(z) + ts(z) − f(z)

s∗n(z) + ts(z) + f(z)

∣∣∣∣ ≤ (1 − ε
t0
2

)δn.

Proof

1. s∗n is in Uz since otherwise δn would be infinite.

2. There exist strictly positive numbers t′0, ε
′
1, . . . , ε

′
m such that, for any t in [0, t′0], and any w =

(w1, w2, . . . , wm) with wj ∈ K and |wj − zj | < εj for all j, s∗n + ts is in Uw. We now define
fi(t, w) = (Aw(s∗n + ts))i, and we apply to fi the first order Taylor-Lagrange formula in the first
variable, about t = 0. There exists τi in (0, t) such that

fi(t, w) = fi(0, w) + t∂1fi(τi, w),

and by adding and subtracting t∂1fi(0, z), we obtain

fi(t, w) = fi(0, w) + t∂1fi(0, z) + t(∂1fi(τi, w) − ∂1fi(0, z)).

Using now that s satisfies the equation A′
z(s∗n)s = −Az(s∗n), which reads componentwise ∂1fi(0, z) =

−fi(0, z), we get

fi(t, w) = fi(0, w) − tfi(0, z) + t(∂1fi(τi, w) − ∂1fi(0, z))
= (1 − t)fi(0, w) + t(fi(0, w) − fi(0, z)) + t(∂1fi(τi, w) − ∂1fi(0, z)).

Since the functions fi and ∂1fi are continuous in a neighbourhood of (0, z), we obtain

fi(t, w) = (1 − t)fi(0, w) + tηi(w, w − z),

with some function ηi(w, w − z) continuous in w, which tends to zero with w − z. Thus, for any
positive ε, there exist positive ε1, . . . , εm, and 0 < t0 < 1, such that for any t in [0, t0] and any
w = (w1, . . . , wm) with |wi − zi| < εi for all i,

∣∣∣∣
s∗n(wi) + ts(wi) − f(wi)

s∗n(wi) + ts(wi) + f(wi)

∣∣∣∣ ≤ (1 − t)δn + εδn
t0
2

= (1 − t + ε
t0
2

)δn.

Thus for t in [εt0, t0] the result follows.

Theorem 2.2 (Equioscillation) With the same assumptions as in Theorem 2.1, if the polynomial s∗n,
n ≥ 0 is a solution of (2.2) for l = 0, then there exist at least n + 2 points z1, · · · , zn+2 in K such that

∣∣∣∣
s∗n(zi) − f(zi)

s∗n(zi) + f(zi)

∣∣∣∣ =
∥∥∥∥

s∗n − f

s∗n + f

∥∥∥∥
∞

. (2.5)

Proof Let z1, · · · , zm be all distinct points of equioscillation, i.e satisfying (2.5). We know that m ≥ 1,
since we maximize over a compact set. Now suppose that m ≤ n + 1 to reach a contradiction. First,
we have f(zi) 6= 0, since otherwise δn = 1, which contradicts the result δn < 1 from Theorem 2.1. We
now use Lemma 2.3: we denote by Di the disc with center zi and radius εi defined in the lemma. By
compactness, we have

sup
z∈K−(∪Di)∩K

∣∣∣∣
s∗n(z) − f(z)

s∗n(z) + f(z)

∣∣∣∣ < δn.

Then there exists a neighbourhood U of s∗n such that for any s in U

sup
z∈K−(∪Di)∩K

∣∣∣∣
s(z) − f(z)

s(z) + f(z)

∣∣∣∣ < δn,
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and in addition, because s is in the neighborhood U of s∗n, we have by continuity

sup
z∈K

∣∣∣∣
s(z) − f(z)

s(z) + f(z)

∣∣∣∣ = sup
z∈(∪Di)∩K

∣∣∣∣
s(z) − f(z)

s(z) + f(z)

∣∣∣∣ .

For sufficiently small ε, by Lemma 2.3 there exists t ∈ [εt0, t0] such that s∗n + ts is in U , and we have
∥∥∥∥

s∗n + ts − f

s∗n + ts + f

∥∥∥∥
∞

< δn,

which is a contradiction, since we found a polynomial s∗n + ts which is a better approximation than s∗n
to f .

Theorem 2.3 (Uniqueness) With the same assumptions as in Theorem 2.1, the solution s∗n of (2.2)
for l = 0 is unique for all n ≥ 0.

Proof We first show that the set of best approximations is convex: let s∗n and s̃∗n be two polynomials
of best approximation, θ a real number between 0 and 1, and let s = θs∗n + (1 − θ)s̃∗n. Then for any

z in K,
s∗

n

f (z) and
s̃∗

n

f (z) are contained in D̄(1, δn), which is a disc since δn < 1, and hence convex.

Thus for any z in K, s
f (z) is also in D̄(1, δn), which means that

∥∥ s−f
s+f

∥∥
∞ ≤ δn. Since δn is the infimum

over all polynomials of degree n, we must have
∥∥ s−f

s+f

∥∥
∞ = δn and s is therefore also a polynomial of

best approximation. Therefore the set of best approximations is convex. Now we choose n + 2 points
z1, . . . , zn+2 among the points of equioscillation of s. By definition s

f (zj) is on the boundary C(1, δn)

for all j = 1, 2, . . . , n + 2. But at the same time,
s∗

n

f (zj) and
s̃∗

n

f (zj) are in D̄(1, δn). The set D̄(1, δn) is
however strictly convex, and thus a barycenter of two points can only be on the boundary, if the points
coincide,

s∗n(zj)

f(zj)
=

s̃∗n(zj)

f(zj)
=

s(zj)

f(zj)
, j = 1, 2, . . . , n + 2.

The difference s∗n − s̃∗n therefore has at least n + 2 roots, and since the polynomials are of degree at most
n, they must coincide.

We next study local best approximations. We define a map on Pn by

h(s) =

∥∥∥∥
s − f

s + f

∥∥∥∥
∞

, s ∈ Pn,

and we search for local minima of h.

Theorem 2.4 (Local Minima) Let s∗ be a strict local minimum for h. Then s∗ is the global minimum
of h on Pn.

Proof We introduce a family of closed subsets of Pn for any δ > 0 by

D̃δ = {s ∈ Pn, h(s) ≤ δ}.

These sets fulfills several properties:

(i) For any δ < 1, D̃δ is a convex set. To see this, let s and s̃ be in D̃δ , and θ in [0, 1]. For any z in
K, s

f (z) and s̃
f (z) are in D(1, δ) which is convex by Lemma 2.1. Hence θ s

f (z) + (1 − θ) s̃
f (z) is in

D(1, δ), which implies that θ s
f + (1 − θ) s̃

f is in D̃δ.

(ii) The map δ 7→ D̃δ is increasing, as one can infer directly from its definition.

We now conclude the proof of the theorem: let (s∗, δ∗) be a strict local minimum for h, and (s∗∗, δ∗∗)
be another local minimum, with δ∗ ≥ δ∗∗, and s∗ 6= s∗∗. Then there exists a convex neighbourhood U
of s∗, such that for any s in U different from s∗, h(s) > δ∗. Since s∗∗ ∈ D̃δ∗∗ ⊂ D̃δ∗ , by the convexity of

D̃δ∗ , we have [s∗, s∗∗] ⊂ D̃δ∗ . For ε small enough, we thus have sε = s∗ + ε(s∗∗ − s∗) in D̃δ∗ and at the
same time in U . This implies that h(sε) ≤ δ∗ and at the same time h(sε) > δ∗, which is a contradiction.
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2.2 Analysis of the Case l > 0

We now consider the best approximation problem (2.2) with a parameter l > 0.

Theorem 2.5 (Existence) Let K be a closed set in C, containing at least n + 2 points. Let f : K → C

be a continuous function such that for every z in K, <f(z) > 0 and

<f(z) −→ +∞ as z −→ ∞ in K. (2.6)

Then δn(l) < 1 for all n ≥ 0, and for l small enough, there exists a polynomial s∗n solution to (2.2).

Proof By a standard compactness argument, property (2.6) implies that there exists α > 0, such that

for all z ∈ K, we have <f(z) ≥ α > 0. Now,
∣∣1−f(z)
1+f(z)e

−lf(z)
∣∣ ≤

∣∣ 1−f(z)
1+f(z)

∣∣e−lα, and since <f(z) > 0, we

have
∣∣ 1−f(z)
1+f(z)

∣∣ < 1. Furthermore 1 ∈ Pn for all n ≥ 0, which implies that

δn(l) ≤
∥∥∥

1 − f

1 + f
e−lf

∥∥∥
∞

≤ e−lα < 1,

which proves the first part of the theorem.
For the second part, let (sk

n)k∈N be a minimizing sequence. Then for all ε, there exists a k0, such that
for all k ≥ k0 we have

δn(l) ≤
∥∥∥

sk
n − f

sk
n + f

e−lf
∥∥∥
∞

≤ δn(l) + ε, (2.7)

and if we choose ε = 1−δn(l)
2 , we have

∥∥∥
sk

n − f

sk
n + f

e−lf
∥∥∥
∞

≤ 1 + δn(l)

2
< 1.

Let β > α and Kβ = K ∩ {z, α ≤ <f(z) ≤ β}. By property (2.6), Kβ is a compact set, and for β large
enough, contains at least n + 2 points. On this compact set, we obtain the estimate

∥∥∥
sk

n − f

sk
n + f

∥∥∥
L∞(Kβ)

=
∥∥∥

sk
n − f

sk
n + f

e−lfelf
∥∥∥

L∞(Kβ)
≤
∥∥∥

sk
n − f

sk
n + f

e−lf
∥∥∥

L∞(Kβ)
elβ ≤ 1 + δn(l)

2
elβ ,

and since 1+δn(l)
2 < 1, if l is such that 1+δn(l)

2 elβ < 1, we get

∥∥∥
sk

n − f

sk
n + f

∥∥∥
L∞(Kβ)

< 1,

which shows that the numerical sequence ‖sk
n‖L∞(Kβ) is bounded. Since Kβ contains at least n + 2

points , ‖·‖L∞(Kβ) induces a norm on the finite dimensional vector space Pn. Since on Pn all norms are

equivalent, the minimizing sequence sk
n is bounded in Pn for the norm L∞(K). Hence sk

n converges to a
s∗n in L∞(K), which proves the existence by using (2.7).
The equioscillation property is shown like in the case l = 0: we first have the analogons of Lemmas 2.2
and 2.3 (the proofs are identical):

Lemma 2.4 Let the assumptions of Theorem 2.5 be verified. Then for a given vector w = (w1, . . . , wm),
m ≤ n + 1, such that any wi is in K and wi 6= wj for i 6= j, the mapping

Aw : Uw → C
m, s 7→

(
s(wi) − f(wi)

s(wi) + f(wi)
e−lf(wi)

)

1≤i≤m

is a submersion. Furthermore its derivative is continuous with respect to s and w.

Lemma 2.5 Let s∗n be a solution of (2.2) for l > 0, and let z = (z1, . . . , zm) be a vector of m distinct
points in K, m ≤ n + 1. We have

1. s∗n is in Uz,
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2. let s̃ in Pn such that A′
z(s∗n) s̃ = −Az(s∗n). Then for any ε > 0, there exist positive (ε1, . . . , εm),

and t0 ∈]0, 1[, such that for any t ∈ [εt0, t0] and for any z such that |z − zi| < εi for some i,
∣∣∣∣
s∗n(z) + ts̃(z) − f(z)

s∗n(z) + ts̃(z) + f(z)
e−lf(z)

∣∣∣∣ ≤ (1 − ε
t0
2

)δn.

Theorem 2.6 (Equioscillation) With the assumptions of Theorem 2.5, if s∗n is a solution of problem
(2.2) for l > 0, then there exist at least n + 2 points z1, · · · , zn+2 in K such that

∣∣∣∣
s∗n(zi) − f(zi)

s∗n(zi) + f(zi)
e−lf(zi)

∣∣∣∣ =
∥∥∥∥

s∗n − f

s∗n + f
e−lf

∥∥∥∥
∞

.

Proof Using that

δn(l) ≤
∥∥∥∥

s∗n − f

s∗n + f
e−lf

∥∥∥∥
∞

≤ δne−l infK <f < 1,

the proof of the Theorem follows like in the case where l = 0.
To prove uniqueness in the general case, we need to assume compactness of K:

Theorem 2.7 (Uniqueness) With the assumptions of Theorem 2.5, if K is a compact set, and l satis-
fies

δn(l)e l supz∈K <f(z) < 1, (2.8)

then problem (2.2) has a unique solution s∗n for all n ≥ 0.

Proof We first prove that the set of best approximations is convex: let s∗n and s̃∗n be two polynomials

of best approximation, θ in [0, 1] and let s = θs∗n + (1 − θ)s̃∗n. For any z in D,
s∗

n

f (z) and
s̃∗

n

f (z) are in

D̄(1, δn(l)el<f(z)), which is convex since

δnel<f(z) ≤ δnel supK <f(z) < 1

by condition (2.8). Thus for any z in K, s
f (z) is in D̄(1, δn(l)el<f(z)), which means that

∥∥∥ s−f
s+f e−lf

∥∥∥
∞

≤

δn(l). Since δn(l) is the infimum, we have
∥∥∥ s−f

s+f e−lf
∥∥∥
∞

= δn(l) and s is also a best approximation. The

conclusion follows now as in the proof of Theorem 2.3.

2.3 The Symmetric Case

We derive now specific results for the best approximation problems we are interested in in the context of
waveform relaxation methods:

Definition 2.1 The symmetric case of the homographic best approximation problem (2.2) satisfies
{

K is a closed set, symmetric with respect to the real axis, containing at least n + 2 points,

and for any z in K, f(z̄) = f(z) .
(2.9)

Theorem 2.8 In the symmetric case (2.9), if K is a compact set, if l is zero or is sufficiently small to
satisfy (2.8), then the polynomial of best approximation s∗n of f in K has real coefficients.

Proof If s∗n is the polynomial of best approximation for f , we have

supK

∣∣∣ s
∗

n(z)−f(z)
s∗

n(z)+f(z)e
−lf(z)

∣∣∣ = supK

∣∣∣ s
∗

n(z̄)−f(z̄)
s∗

n(z̄)+f(z̄)e
−lf(z̄)

∣∣∣ = supK

∣∣∣ s
∗

n(z̄)−f(z)

s∗
n(z̄)+f(z)

e−lf(z)
∣∣∣ = supK

∣∣∣ s
∗
n(z̄)−f(z)

s∗
n(z̄)+f(z)

e−lf(z)
∣∣∣ ,

which shows that s∗n(z̄) = s∗n(z) for every z in K by uniqueness, and hence proves that s∗n has real
coefficients.
We denote by τ the complex involution z 7→ z̄. From now on, K1 is a closed set in the upper half-plane
=z ≥ 0, and K = K1 ∪ τ(K1). We consider the minimization problem restricted to the space Pr

n of
polynomials with real coefficients on K1, with the functional

hr
l (s) =

∥∥∥∥
s − f

s + f
e−lf

∥∥∥∥
L∞(K1)

, (2.10)
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and the real best approximation problem

sup
z∈K1

∣∣∣∣
sr,∗

n (z) − f(z)

sr,∗
n (z) + f(z)

e−lf(z)

∣∣∣∣ = inf
s∈Pr

n

sup
z∈K1

∣∣∣∣
s(z) − f(z)

s(z) + f(z)
e−lf(z)

∣∣∣∣ . (2.11)

Theorem 2.9 In the symmetric case described in (2.9), suppose that K1 is compact, l is zero or is
sufficiently small to satisfy (2.8). Then any strict local minimum of hr

l in Pr
n is a global minimum in

Pr
n, and is unique.

Proof With condition (2.8), the proof is the same as in Theorem 2.4.

Corollary 2.10 Under the assumptions in Theorem 2.9, any strict local minimum of hr
l in Pr

n is the
global minimum for the complex best approximation problem (2.2).

Proof By Theorem 2.8, the solution of the complex problem (2.2) is real, and therefore is a global
minimum for hr

l . But if there is a strict local minimum for hr
l , it is the only global minimum of hr

l , and
therefore coincides with the solution of the complex problem (2.2).

In the non compact case, there is no such result available, but we will only need to solve a particular
problem. We introduce the notations P+

1 = {s = p+ qz, p ≥ 0, q ≥ 0} and C+ = {z,<z ≥ 0,=z ≥ 0} and
consider the problem of finding s+

1 in P+
1 such that:

sup
z∈K1

∣∣∣∣∣
s+,∗
1 (z) − f(z)

s+,∗
1 (z) + f(z)

e−lf(z)

∣∣∣∣∣ = inf
s∈P

+
1

sup
z∈K1

∣∣∣∣
s(z) − f(z)

s(z) + f(z)
e−lf(z)

∣∣∣∣ . (2.12)

Theorem 2.11 Suppose K1 ⊂ C
+, then any strict local minimum of hr

l in P+
1 is a global minimum.

Proof The proof is an extension of the proof of Theorem 2.4. We introduce a family of subsets of P+
1

for any δ > 0 by
D̃l

δ = {s ∈ P+
1 , hl(s) ≤ δ}.

The only difference compared to the proof of Theorem 2.4 is the proof of property (i), which states that

for any δ < 1, D̃l
δ is a convex set. To show this, let s and s̃ be in D̃l

δ . For any z in K1, s(z) and
s̃(z) are in D(f(z), δel<f(z)) ∩ C+. If δel<f(z) < 1, D(f(z), δel<f(z)) is convex by Lemma 2.1, whereas if
δel<f(z) ≥ 1, since f(z) ∈ C+, C+ ⊂ D(f(z), δel<f(z)), and C+ ∩ D(f(z), δel<f(z)) = C+. In any case
D(f(z), δel<f(z)) ∩ C+ is convex. Then, for any z in K1, such that =z > 0, we have 1

2 (s(z) + s̃(z)) is

in D(f(z), δel<f(z)) ∩ C+. Thus 1
2 (s + s̃) is in D̃l

δ which proves the convexity, since D̃l
δ is a closed set.

Having established convexity, the result follows as in Theorem 2.4.

Remark 2.1 It is tempting at this stage to believe that the number of equioscillation points for the real
problem (2.11) or (2.12) is also ≥ n + 2. We will prove in Section 4 that this is true for our special
problem, when n = 1 and the size of K1 is sufficiently large in C+. However, it is not true in general,
and we will show a counterexample at the end of Section 4.1.1.

3 Model Problem and Schwarz Waveform Relaxation Algorithms

The homographic best approximation problem (2.1), (2.2) we studied in Section 2 is important for solving
evolution problems in parallel. To define a parallel algorithm in space-time, Schwarz waveform relaxation
algorithms use a decomposition of the spatial domain into subdomains, and then compute iteratively
subdomain solutions in space-time, which like in the case of classical Schwarz methods are becoming
better and better approximations to the entire solution, see [16]. Our guiding example here is the
advection reaction diffusion equation in RN ,

∂tu + (a · ∇)u − ν∆u + bu = f.

We consider here for the analysis only the decomposition into two half-spaces, since we improve the local
coupling between neighboring subdomains. Our numerical experiments in Section 6 show however that
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our theoretical results are also relevant for more than two subdomains. We define Ω = R × RN−1 with
coordinate (x, y) = (x, y1, · · · , yN−1), and use for the advection vector the notation a = (a, c), which
leads to

Lu = ∂tu + a∂xu + (c · ∇y)u − ν∆u + bu = f, in Ω × (0, T ). (3.1)

The diffusion coefficient ν is strictly positive, and we assume that a and b are constants which do not
both vanish simultaneously. The case of the heat equation needs special treatment and can be found
in [9]. Without loss of generality, we can assume that the advection coefficient a in the x direction
is non-negative, since a < 0 amounts to changing x into −x. We can also assume that the reaction
coefficient b is non-negative. If not, a change of variables v = ue−ζt, with ζ + b > 0 will lead to (3.1)
with a positive reaction coefficient. We split Ω = RN into two subdomains Ω1 = (−∞, L) × RN−1

and Ω2 = (0,∞) × RN−1, L ≥ 0. A Schwarz waveform relaxation algorithm consists then of solving
iteratively subproblems on Ω1 × (0, T ) and Ω2 × (0, T ) using general transmission conditions at the
interfaces Γ0 = {0}×RN−1 and ΓL = {L}×RN−1, i.e. defining a sequence (uk

1 , uk
2), for k ∈ N, such that

Luk
1 = f in Ω1 × (0, T ), Luk

2 = f in Ω2 × (0, T ),
uk

1(·, ·, 0) = u0 in Ω1, uk
2(·, ·, 0) = u0 in Ω2,

B1u
k
1 = B1u

k−1
2 on ΓL × (0, T ), B2u

k
2 = B2u

k−1
1 on Γ0 × (0, T ),

(3.2)

where B1 and B2 are linear operators in space and time, possibly pseudo-differential, and an initial guess
B2u

0
1(0, ·, ·) and B1u

0
2(L, ·, ·), t ∈ (0, T ), needs to be provided.

The classical Schwarz waveform relaxation algorithm is obtained by choosing B1 and B2 equal to the
identity, like in the case of the Schwarz domain decomposition methods for elliptic problems [27, 21].
With this choice, the algorithm is convergent only with overlap. This algorithm has been studied in [11]
and [22] for the present model problem; for earlier studies, see [15, 17, 16]

A better choice, which leads to faster algorithms, which can be convergent even without overlap, is

Bj = ∂x + Sj(∇y, ∂t), j = 1, 2, (3.3)

where the Sj are ordinary linear pseudo differential operators in (y, t), related to their total symbols
σj(η, ω) by [19]

Sj(∇y , ∂t)u(y, t) = (2π)−n/2

∫
σj(η, ω)û(η, ω)ei(η · y+ωt) dη dω.

The best operators Sj are related to transparent boundary operators, which have first been exploited in
[4] for stationary problems, and in [12] for time dependent problems. They can be found by the following
analysis. Let ek

i be the error in Ωi, i.e. ek
i = uk

i − u. Using Fourier transform in time with parameter ω
and in y with parameter η, the Fourier transforms êk

j in time and y of ek
j are solution of the ordinary

differential equation in the x variable

−ν
∂2ê

∂x2
+ a

∂ê

∂x
+
(
i(ω + c · η) + ν|η|2 + b

)
ê = 0.

The characteristic roots are

r+ =
a +

√
d

2ν
, r− =

a −
√

d

2ν
, d = a2 + 4ν(i(ω + c · η) + ν|η|2 + b).

The complex square root in this text is always with strictly positive real part. In order to work with at least
square integrable functions in time and space, we seek for solutions which do not increase exponentially
in x. Since <r+ > 0 and <r− < 0, we obtain

êk
1(x, η, ω) = αk

1(η, ω)er+(x−L), êk
2(x, η, ω) = αk

2(η, ω)er−x. (3.4)

Inserting (3.4) into the transmission conditions (3.3), we find that for any k ≥ 2,

αk+1
j = ρ αk−1

j , j = 1, 2,

with the convergence factor

ρ =
r− + σ1

r+ + σ1
· r+ + σ2

r− + σ2
e(r−−r+)L, ∀ω ∈ R, η ∈ R

N−1. (3.5)
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Hence, if the symbols σj are chosen to be

σ1 = −r−, σ2 = −r+, (3.6)

then algorithm (3.2) converges in 2 steps, independently of the initial guess. This is an optimal result,
since the solution on one subdomain necessarily depends on the right hand side function f on the other
subdomain, and hence at least one communication is necessary for convergence. The choice in (3.6)
however leads to non-local operators Sj , since r+ and r− are not polynomials in the dual variables, and
non-local operators are less convenient to implement and more costly to use than local ones. It is therefore
of interest to approximate the optimal choice σj in (3.6) corresponding to the optimal transmission
operators by polynomials in (ω, η), which leads to differential operators Sj . We suppose in the sequel
that the Sj , j = 1, 2, are chosen in a symmetric way, i.e. their symbols are of the form

σ1 =
−a + s

2ν
, σ2 =

−a − s

2ν
,

where s is a polynomial in the dual variables. Defining the complex function z of (ω, η) by

z = 4ν
(
i(ω + c · η) + ν|η|2

)
, (3.7)

we obtain for the convergence factor (3.5)

ρ(z, s) =

(
s(z) −

√
a2 + 4νb + z

s(z) +
√

a2 + 4νb + z

)2

e−
L
ν

√
a2+4νb+z . (3.8)

In numerical computations, the frequencies ω and η are bounded, i.e. |ω| ≤ ωmax and |ηj | ≤ ηj,max

where ωmax is a discrete frequency which can be estimated by ωmax = π/∆t, where ∆t is the time step,
and similarly ηj,max = π/∆yj . In the nonoverlapping case, we define the compact set

K = {z ∈ C, |ω| ≤ ωmax, |ηj | ≤ ηj,max, j = 1, · · · , n − 1}.

In the overlapping case,we shall also consider ωmax = ∞ and ηj,max = ∞, which leads to a non compact
set K.

For any integer n we search for s∗n in Pn, the complex space of polynomials of degree less than or
equal to n with complex coefficients, such that

sup
z∈K

|ρ(z, s∗n)| = inf
s∈Pn

sup
z∈K

|ρ(z, s)|. (3.9)

Problem (3.9) is a special case of (2.2) with

f(z) =
√

ξ2
0 + z, l =

L

2ν
, ξ0 =

√
a2 + 4νb, (3.10)

and the assumptions on f in Section 2 are verified with <f(z) ≥ ξ0 > 0.
We focus in the sequel on first order approximations, i.e. s = p + qz, which leads to first order

optimized Schwarz waveform relaxation algorithms (3.2) with transmission conditions

S = p + 4qν(∂t + (c · ∇y) − ν∆y), B1 = ∂x − a

2ν
+

1

2ν
S, B2 = ∂x − a

2ν
− 1

2ν
S. (3.11)

The case of zeroth order transmission conditions, q = 0, was studied in [11] for one dimensional problems,
and existence and convergence proofs together with numerical experiments were shown in [22] for two
dimensional problems. Using the general results from Section 2, we now solve the best approximation
problem with first degree polynomials in one dimension.

4 Study and Optimization of the Convergence Factor

We start with the one-dimensional case, for which the conditions of Section 2.3 hold, with K1 = i[0, ωmax].
We proved in Theorem 2.8 that the polynomial of best approximation in the complex domain K has real
coefficients, and we established in Corollary 2.10 the connection between the complex problem and the
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real problem, for ωmax < +∞. In this section, we give now more precise results on equioscillation
properties for the real problem, in both the overlapping and nonoverlapping cases, which allows us to
compute the optimal choice for the coefficients p and q in the optimized Schwarz waveform relaxation
algorithm (3.2) with transmission conditions (3.11).

If p, q ∈ R, then the modulus of the convergence factor (3.8) is

R(ξ, p, q, ξ0, L) =
(ξ − p)2 + (ξ2 − ξ2

0)(2qξ − 1)2

(ξ + p)2 + (ξ2 − ξ2
0)(2qξ + 1)2

e−
L
ν

ξ. (4.1)

where we used the change of variables

ξ = <(
√

a2 + 4ν(b + iω)), (4.2)

and ξ0 =
√

a2 + 4νb from (3.10). We first propose and analyze a low frequency approximation for the
first order transmission conditions, and then solve the best approximation problem, to derive optimized
parameters p and q. In both cases, we analyze the performance of the overlapping (L > 0) and non-
overlapping case (L = 0).

4.1 Low Frequency Approximation

As a simple approach, a low frequency approximation of the optimal transmission conditions (3.6) can
be used to determine the two parameters p and q. We call this case T1 for Taylor of order one in the
sequel. Using a Taylor expansion of the square root

√
a2 + 4ν(b + iω) in (3.6) about ω = 0, we find

√
a2 + 4ν(b + iω) =

√
a2 + 4νb +

2ν√
a2 + 4νb

iω + O(ω2),

and hence for the parameters p and q the values

p = pT =
√

a2 + 4νb and q = qT =
1

2
√

a2 + 4νb
. (4.3)

4.1.1 The Non-Overlapping Case

For L = 0, p = pT and q = qT , the convergence factor (4.1) becomes

R(ξ, pT , qT , ξ0, 0) =

(
ξ − ξ0

ξ + ξ0

)2

. (4.4)

The bound on the frequency parameter ω given before, |ω| ≤ ωmax = π/∆t, gives a bounded range
ξ0 ≤ ξ ≤ ξmax, where

ξmax =

√√
ξ4
0 + 16ν2ω2

max + ξ2
0

2
. (4.5)

Proposition 4.1 (T1 Convergence Factor Estimate without Overlap) The convergence factor in
(4.4) is for ξ0 ≤ ξ < ξmax uniformly bounded by

RT1(ξ0, ξmax) =

(
ξmax − ξ0

ξmax + ξ0

)2

. (4.6)

For ∆t small, this maximum can be expanded as 1 − 2ξ0

√
2

νπ

√
∆t + O(∆t).

Proof Since R(ξ, pT , qT , ξ0, 0) is a monotonically increasing function for ξ ≥ ξ0, the bound for ξ0 ≤ ξ ≤
ξmax is attained at ξ = ξmax, which leads, using the variable transform (4.2) and ωmax = π

∆t to the bound
given in (4.6).

Remark 4.1 The convergence factor estimate (4.6) for the first order Taylor transmission conditions
is the square of the convergence factor estimate found in [11] for the zeroth order Taylor transmission
conditions.
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4.1.2 The Overlapping Case

With L > 0, p = pT and q = qT , and the change of variables (4.2), the convergence factor (4.1) becomes

R(ξ, pT , qT , ξ0, L) =

(
ξ − ξ0

ξ + ξ0

)2

e−
ξL
ν . (4.7)

We first present a convergence factor estimate for ω in R.

Proposition 4.2 (T1 Convergence Factor Estimate with Overlap) The convergence factor in (4.7)
satisfies

R
∞

T1(ξ0, L) = max
ξ0≤ξ<+∞

R(ξ, pT , qT , ξ0, L) =

(
ξ̄ − ξ0

ξ̄ + ξ0

)2

e−
Lξ̄
ν , with ξ̄ =

√
ξ2
0 +

4νξ0

L
. (4.8)

For L small, this maximum can be expanded as 1 − 4
√

ξ0

ν

√
L + O(L).

Proof Taking a derivative of the convergence factor R(ξ, pT , qT , ξ0, L) defined in (4.7) with respect to
ξ shows that there is a unique maximum for ξ ≥ ξ0 at ξ = ξ̄ given in (4.8). Evaluating R for ξ = ξ̄ and
expanding for L small leads to the asymptotic result.

In a numerical computation, the overlap L is in general not a fixed quantity, one can only afford a
few grid cells overlap, L = C1∆x. In addition, there is also often a relation between the time and space
step, of the form ∆t = C2∆xβ , β > 0, due to accuracy or stability constraints. There exists a limiting
value of the overlap, namely

L1 =
8νξ0√

ξ4
0 + 16νωmax − ξ2

0

, (4.9)

such that for L > L1, ξmax > ξ̄, and hence the contraction factor in (4.8) is relevant. On the other
hand, if L ≤ L1, then ξmax ≤ ξ̄ and hence numerically the contraction factor in (4.8) becomes irrelevant.
Numerically, the relevant bound is therefore by monotonicity

RT1(ξ0, ξmax, L) = max
ξ0≤ξ≤ξmax

R(ξ, pT , qT , ξ0, L) =





R
∞

T1(ξ0, L), if L > L1,(
ξmax − ξ0

ξmax + ξ0

)2

e−
Lξmax

ν , if L ≤ L1.
(4.10)

Proposition 4.3 (T1 Discrete Convergence Factor Estimate with Overlap) If L = C1∆x and
∆t = C2∆xβ, then the bound in (4.10) on the convergence factor has for ∆x small the expansion

RT1(ξ0, ξmax, L) =





1 − 4

√
C1ξ0

ν

√
∆x + O(∆x), if β > 1, or β = 1 and C1

C2
> 2ξ0

π ,

1 −
√

2(2C2ξ0 + C1π)√
C2πν

√
∆x + O(∆x), if β = 1 and C1

C2
≤ 2ξ0

π ,

1 − 2ξ0

√
2C2

πν
∆x

β
2 + o(∆x

β
2 ), if 0 < β < 1.

(4.11)

Proof Expanding (4.9) for ∆t small, we obtain

L1 =
2ξ0

π
∆t + O(∆t2),

and comparing with L = C1∆x, using that ∆t = C2∆xβ , we obtain the first case in (4.11). For the
second case, one can set β = 1 and directly expand the second case of (4.10) to find the result given. For
the last case, the expansion of the exponential term gives

e−
Lξmax

ν = 1 − C1

√
2π

C2ν
∆x1− β

2 + O(∆x2−β),

and the coefficient in front of the exponential in (4.10) has the expansion

ξmax − ξ0

ξmax + ξ0
= 1 − ξ0

√
2C2

πν
∆x

β
2 + O(∆xβ).

Hence the result follows.
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4.2 Optimization of the Convergence Factor

We now use the general results from Section 2 on the homographic best approximation problem to
optimize the waveform relaxation algorithm with transmission conditions (3.11) for the overlapping and
non-overlapping case. We call this case O1 for optimized of order one in the sequel.

4.2.1 The Non-Overlapping Case

The domain of definition for f(z) =
√

ξ2
0 + 4νz with z = iω is K = i[0, ωmax]∪−i[0, ωmax]. By Theorems

2.1 and 2.3, the problem (3.9) in P1 has a unique solution s∗1 = p∗ + 4νiωq∗. By Theorem 2.8, s∗1 has
real coefficients. Therefore, (p∗, q∗) is the unique pair of real numbers such that

inf
p,q∈R

sup
ξ0≤ξ≤ξmax

R(ξ, p, q, ξ0, 0) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗, q∗, ξ0, 0), (4.12)

and we denote by RO1 the maximum of the convergence factor,

RO1(ξ0, ξmax) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗, q∗, ξ0, 0).

RO1(ξ0, ξmax) is equal to δ2
1 with the notation from Section 2.

Lemma 4.1 The solution (p∗, q∗) of the min-max problem (4.12) satisfies p∗ > 0 and q∗ ≥ 0.

Proof Knowing from Theorem 2.1 that δ1 < 1, and taking ξ = ξ0 in (4.1), we first see that p∗ > 0. Now
for positive p and q, we see in (4.1) that R(ξ, p, q, ξ0, 0) ≤ R(ξ, p,−q, ξ0, 0), which proves that q∗ ≥ 0.

Because of the symmetry of the domain K,
∥∥∥ s∗

1−f
s∗

1+f

∥∥∥ equioscillates at least twice in [0, ωmax]. We show

now that for sufficiently large ωmax, the solution actually equioscillates three times on [0, ωmax], and we
give implicit formulas for the solution p∗ and q∗.

Theorem 4.1 (O1 Convergence Factor Estimate without Overlap) For ξmax sufficiently large,
the solution of (4.12) equioscillates three times, i.e. p∗ and q∗ are the unique solution of the system
of equations

R(ξ0, p, q, ξ0, 0) = R(ξ̄(p, q), p, q, ξ0, 0) = R(ξmax, p, q, ξ0, 0) (4.13)

where ξ̄(p, q) is the second of the three distinct ordered positive roots (for p > (1 +
√

2)ξ0) of the bi-cubic
polynomial

P (ξ) = 32q3ξ6 − 16q(−3qp + 4q2ξ2
0 + 1)ξ4

+(8qξ2
0 + 32q3ξ4

0 − 24qp2 − 16q2ξ2
0p + 8p)ξ2 − 4(ξ0 − p)(ξ0 + p)(2qξ2

0 − p).
(4.14)

The optimal parameters and the bound on the convergence factor, which is the common value RO1(ξ, ξ0, ξmax)
in (4.13) at point (p, q) = (p∗, q∗), have the expansions

p∗ ∼ ξ
3
4
0 ξ

1
4
max, q̂∗ ∼ 1

2ξ
1
4
0

ξ
− 3

4
max, RO1(ξ0, ξmax) ∼ 1 − 4ξ

1
4
0 ξ

− 1
4

max. (4.15)

Proof We start this proof by studying the variation of R for fixed p and q: the polynomial P given
in (4.14) is the numerator of the partial derivative of R with respect to ξ. Therefore its roots determine
the extrema of R. Since P is a bi-cubic polynomial with real coefficients, it has one, two or three positive
distinct real roots. In the first two cases, since R(0, p, q, ξ0, 0) = 1, R ≤ 1 for ξ ≥ ξ0 and R −→ 1 as
ξ −→ ∞, R reaches a unique minimum in [ξ0, ξmax], and therefore if p = p∗ and q = q∗, R equioscillates
at points ξ0 and ξmax only. If there are three ordered distinct positive real roots, then the second one,
ξ̄, must correspond to a maximum of R and the other ones to minima. The maximum of R can thus be
attained at the local maximum at ξ̄, or at the end-points ξ0 and ξmax.

We now focus on the condition for these three points to give equioscillations for R, i.e. on solving
(4.13). We first prove that the equation R(ξ0, p, q, ξ0, 0) = R(ξmax, p, q, ξ0, 0) has, for any p > (1+

√
2)ξ0,

two positive solutions, and we define a function q̂ by q̂(p) = q, the largest positive one. Then we prove in
Lemma 4.2 that for ξmax large and q = q̂(p), the polynomial P has precisely three distinct positive roots,
and we estimate ξ̄(p, q̂(p)). After this step, we deduce in Lemma 4.3 that for ξmax sufficiently large there
is at least one solution p∗ to

R(ξ0, p, q̂(p), ξ0) = R(ξ̄(p, q̂(p)), p, q̂(p), ξ0). (4.16)
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We then expand (p∗, q∗ = q̂(p∗)) asymptotically as ξmax tends to infinity, and finally show that s1 =
p∗ + 4iωνq∗ is a strict local minimum for hr

l defined in (2.10), with l = 0, K1 = i[0, ωmax], and n = 1.
Corollary 2.10 then states that (p∗, q∗) = (p∗, q∗), which concludes the proof.

The equation R(ξ0, p, q, ξ0, 0) = R(ξmax, p, q, ξ0, 0) can be rewritten as an equation for the q variable,

−4pξ0(ξmax + ξ0)ξ
2
maxq

2 + 2(ξmax + ξ0)(p
2 + ξ2

0)ξmaxq + p(p2 − 2ξ0ξmax − ξ2
0) = 0. (4.17)

The discriminant of (4.17) is

∆ = ξ2
max(ξmax + ξ0)

[
ξmax(p

4 − 6ξ2
0p2 + ξ4

0) + ξ0

(
(p2 − ξ2

0)2 + 4p4
)]

, (4.18)

and is positive for large ξmax under the assumption p > (1 +
√

2)ξ0. Since the sum and the product of
the roots in (4.17) is positive, there are two positive roots, and we choose q = q̂(p) as the larger one, i.e.
1

q̂(p) =
(ξ2

0 + p2)
√

ξ0 + ξmax +
√

(5ξ0 + ξmax)p4 − 2ξ2
0(ξ0 + 3ξmax)p2 + ξ4

0(ξ0 + ξmax)

4pξ0ξmax

√
ξ0 + ξmax

. (4.19)

Lemma 4.2 Let p be any positive real number with p > (1 +
√

2)ξ0, and q = q̂(p) defined in (4.19).
Then for sufficiently large ξmax, the polynomial P in (4.14) has exactly three distinct real roots. As
ξmax tends to infinity, the first one has a limit equal to

√
(p2 − ξ2

0)/2, the second one, ξ̄(p, q̂(p)), is

equivalent to
√

pξmax/2q0, and the third one tends to infinity like ξmax/
√

2q0, where q0 depends on p and

ξ0, q0 =
(
ξ2
0 + p2 +

√
p4 − 6ξ2

0p2 + ξ4
0

)
/4pξ0.

Proof From the formula for q in (4.19), we obtain that for fixed p, we have q ∼ q0

ξmax
as ξmax → +∞.

We perform the change of variables χ = ξ2/ξ0ξmax, which transforms the equation P (ξ) = 0 into P̃ (χ) = 0
with

P̃ (χ) ∼ 32ξ3
0q

3
0χ3 − 16q0ξ

2
0(ξmax − 3q0p)χ2 + 8ξ0(pξmax + q0ξ

2
0 − 3q0p

2)χ + 4p(ξ2
0 − p2).

P̃ has three real roots. Using the sum of the roots, we see that the largest one tends to infinity like ξmax

2ξ0q2
0
,

then by the second symmetric function of the roots, the middle one tends to p
2ξ0q0

, and finally using the

product of the roots, the smallest one tends to zero like
p2−ξ2

0

2ξ0ξmax
. From these expressions the result follows

by inverting the change of variable.

Lemma 4.3 For ξmax sufficiently large, there exists at least one solution p∗ > (1 +
√

2)ξ0 to (4.16).
Moreover, for any fixed p0, if ξmax is large, there is no solution in [0, p0].

Proof For any fixed p, R(ξ0, p, q̂(p), ξ0, 0) < 1 independently of ξmax, and R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) tends
to 1 as ξmax tends to infinity. Therefore, for ξmax large, R(ξ0, p, q̂(p), ξ0, 0)−R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) is
negative for any fixed p. If p tends to infinity, we have

R(ξ0, p, q̂(p), ξ0, 0) =

(
p − ξ0

p + ξ0

)2

∼ 1 − 4ξ0/p independently of ξmax. (4.20)

On the other hand, for ξmax large and fixed, if p tends to infinity, we have

R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) ∼
(

p − ξ̄

p + ξ̄

)2

∼ 1 − 4
ξ̄

p
. (4.21)

Since ξ̄ > ξ0, R(ξ0, p, q̂(p), ξ0, 0) − R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) becomes positive for large p. By continuity,
there exist a p∗ for which this expression vanishes.

We now expand p∗ and q̂(p∗) asymptotically: by Lemma 4.3, p∗ tends to infinity with ξmax. Hence
we can use (4.20, 4.21). Using the formula for q = q̂(p) in (4.19), we have that for ξmax, as p tends to
infinity, q̂(p) ∼ p/2ξ0ξmax and ξ̄(p, q̂(p)) ∼ √

ξ0ξmax. Therefore, in order to match the two expansions in

1Formula (4.19) together with (4.16) can be useful to compute the optimal parameters, since it reduces the problem to
finding a root of a scalar equation.
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(4.20, 4.21), p has to tend to infinity slowlier than
√

ξ0ξmax, which gives p∗ ∼ ξ
3/4
0 ξ

1/4
max. Inserting this into

(4.19) leads to q∗ = q̂(p∗) ∼ 1

2ξ
1
4
0

ξ
− 3

4
max. Finally inserting p∗ and q∗ into R(ξ0, p∗, q∗, ξ0, 0) and expanding

for ξmax we obtain

R(ξ0, p∗, q∗, ξ0, 0) ∼ 1 − 4
ξ0

p
∼ 1 − 4ξ

1
4
0 ξ

− 1
4

max. (4.22)

Lemma 4.4 s1 = p∗ + 4νiωq∗ is a strict local minimum for hr
0 in Pr

1, with K1 = i[0, ωmax].

Proof For any (p, q), we define r = 1
q and µ(p, q, ξ0, ξmax) = sup

ξ∈[ξ0,ξmax]

1 + R(ξ, p, q, ξ0, 0)

1 − R(ξ, p, q, ξ0, 0)
, and write

R(ξ, p, q, ξ0, 0) − sup
ξ∈[ξ0,ξmax]

R(ξ, p, q, ξ0, 0) = 4q2 Q(ξ, p, r, µ)

(ξ + p)2 + (ξ2 − ξ2
0)(2ξq + 1)2

,

with

Q(ξ, p, r, µ) = ξ4 − µrξ3 + (
r2

2
− ξ2

0)ξ2 + µr(ξ2
0 − pr

2
)ξ + r2 p2 − ξ2

0

4
.

In the sequel, we will consider Q as a polynomial in the independent variables ξ, p, r and µ. (p∗, r∗, µ∗ =
µ(p∗, q∗, ξ0, ξmax)) is a solution of the system of equations

Q(ξ0, p∗, r∗, µ∗) = 0, Q(ξmax, p∗, r∗, µ∗) = 0, Q(ξ̄, p∗, r∗, µ∗) = ∂ξQ(ξ̄, p∗, r∗, µ∗) = 0.

Now for s1 to be a strict local minimum for hr
0, it is sufficient that there exists no variation (δp, δr, δµ) with

δµ < 0, such that Q(ξ, p∗ + δp, r∗ + δr, µ∗ + δµ) < 0 for ξ = ξ0, ξ̄, ξmax. By the Taylor formula, it suffices
to prove this for δp ∂Q

∂p (ξ, p∗, r∗, µ∗) + δr ∂Q
∂r (ξ, p∗, r∗, µ∗) + δµ∂Q

∂µ (ξ, p∗, r∗, µ∗). Expanding the arguments
of Q for ξmax large, we have from the asymptotic results 4.22 the leading order terms. Including the next
higher order terms, we obtain

ξ̄(p∗, q∗) = ξ
1
2
0 ξ

1
2
max(1 + 1

2ξ
1
2
0 ξ

− 1
2

max + o(ξ
− 1

2
max)),

p∗ = ξ
3
4
0 ξ

1
4
max(1 + 1

4ξ
1
2
0 ξ

− 1
2

max + o(ξ
− 1

2
max)),

r∗ = 2ξ
1
4
0 ξ

3
4
max(1 + 3

4ξ
1
2
0 ξ

− 1
2

max + o(ξ
− 1

2
max)),

µ∗ = 1
2 ξ

− 1
4

0 ξ
1
4
max(1 + 5

4ξ
1
2
0 ξ

− 1
2

max + o(ξ
− 1

2
max)),

(4.23)

where the expansion is best obtained using the elementary symmetric functions of the roots, and then
identifying terms in the expansions. The partial derivatives of Q are

∂Q
∂p = r2

2 (p − µξ),
∂Q
∂r = −µξ3 + rξ2 + µ(ξ2

0 − pr)ξ + rp2

2 ,
∂Q
∂µ = −rξ3 + r(ξ2

0 − pr
2 )ξ.

(4.24)

Inserting the expansions (4.23) into (4.24), we obtain for the expansions of the partial derivatives

∂Q
∂p ∼ ξ

5
4
0 ξ

7
4
max, ∂Q

∂r ∼ − 1
2 ξ

11
4

0 ξ
1
4
max, ∂Q

∂µ ∼ −2ξ
9
4
0 ξ

7
4
max, for ξ = ξ0,

∂Q
∂p ∼ −ξ

3
4
0 ξ

9
4
max, ∂Q

∂r ∼ + 1
2 ξ

5
4
0 ξ

7
4
max, ∂Q

∂µ ∼ −4ξ
7
4
0 ξ

9
4
max, for ξ = ξ̄,

∂Q
∂p ∼ −ξ

1
4
0 ξ

11
4

max, ∂Q
∂r ∼ − 1

2 ξ
− 1

4
0 ξ

13
4

max, ∂Q
∂µ ∼ −2ξ

1
4
0 ξ

15
4

max, for ξ = ξmax.

(4.25)

Let (δp, δr, δµ) such that δp ∂Q
∂p (ξ, p∗, r∗, µ∗) + δr ∂Q

∂r (ξ, p∗, r∗, µ∗) + δµ∂Q
∂µ (ξ, p∗, r∗, µ∗) < 0 for ξ = ξ0,

ξ = ξ̄ and ξ = ξmax. Using the expansion (4.25),we have for large ξmax

ξ
3
2
maxδp − 1

2ξ
3
2
0 δr − 2ξ0ξ

3
2
maxδµ < 0,

−ξ
1
2
maxδp + 1

2ξ
1
2
0 δr − 4ξ0ξ

1
2
maxδµ < 0,

−ξ
1
2
0 δp − 1

2ξ
1
2
maxδr − 2ξ

1
2
0 ξmaxδµ < 0.

(4.26)

For δµ < 0, equations (4.26) imply

(
ξmax

ξ0

) 3
2

δp − 1
2δr < 0, −

(
ξmax

ξ0

) 1
2

δp + 1
2δr < 0, −δp− 1

2

(
ξmax

ξ0

) 1
2

δr < 0. (4.27)
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Adding the first two inequalities in (4.27) yields (( ξmax

ξ0
)

3
2 − ( ξmax

ξ0
)

1
2 )δp < 0, which implies δp < 0. From

the second inequality we then obtain δr < 0, which together contradict the last inequality in (4.27).
By Corollary 2.10, we obtain (p∗, q∗) = (p∗, q∗), which concludes the proof of Theorem 4.1.
If the algorithm is discretized in time with a time step ∆t, then ξmax is indeed large for ∆t → 0 and we
obtain from (4.15):

Corollary 4.2 (O1 Discrete Convergence Factor Estimate without Overlap) For ∆t small, there
is a unique solution of the min-max problem (4.12). The values of p∗, q∗ and RO1(ξ0, ξmax) have the
following asymptotic leading order term as ∆t tends to 0:

p∗ ∼ ξ
3
4
0 (2πν)

1
8 ∆t−

1
8 , q∗ ∼ 1

2ξ
1
4
0 (2πν)

3
8

∆t
3
8 , RO1(ξ0, ξmax) ∼ 1 − 4ξ

1
4
0 (2πν)−

1
8 ∆t

1
8 .

Remark 4.2 In the course of Theorem 4.1, we have proved the first assertion in Remark 2.1: for large
ωmax, which corresponds to large K1, the number of equioscillation points for the real problem (2.11) is
actually equal to 3. For the second assertion in that remark, we show now that, when ωmax tends to 0,
or equivalently ξmax tends to ξ0, there can not be three equioscillations points for the best approximation
polynomial s∗1: suppose there are three equioscillation points. The study of R in the first part of the proof
of Theorem 4.1 shows that two of them have to be ξ0 and ξmax. Letting ξmax = ξ0(1 + ε), with ε > 0, we
first see that p∗ has to tend to ξ0 with ξmax. On the one hand, we have

h(s∗1) ≤ h(ξ0) =
ξmax − ξ0

ξmax + ξ0
∼ ε

2
.

and on the other hand,

h(s∗1) ≥
∣∣∣∣
f(0) − s∗1(0)

f(0) + s∗1(0)

∣∣∣∣ =
∣∣∣∣
p∗ − ξ0

p∗ + ξ0

∣∣∣∣,

which proves that p∗ tends to ξ0. Therefore it has the form p∗ = ξ0(1 + Cε) + O(ε2) with C ≤ 1.
Inserting these values into the formula for the discriminant in (4.18) gives ∆ ∼ 8ξ8

0(2C − 1)ε, which
implies C ≥ 1/2. We now calculate from (4.19) q∗ ∼ 1

2ξ0
. For p = ξ0 and q = 1

2ξ0
, the polynomial P is

equal to 4
ξ3
0
ξ4(ξ2 − ξ2

0), which has ξ0 as a root. This shows that there is an extremum at ξ0, but it is a

minimum of R, since the derivative of P with respect to ξ is equal to 8ξ2
0 > 0.

4.2.2 The Overlapping Case

With the exponential weight, it is interesting to consider the best approximation problem for ω in R,
since this gives insight for the discrete case with limiting value ωmax. With the notation in Section 2, this
corresponds to l > 0, K1 = iR+, K = iR. By Theorem 2.5, we know that a solution exists, but we loose
the uniqueness and the fact that the coefficients are real. We therefore restrict our analysis to (2.12),
and will use the ad hoc Theorem 2.11 to prove similar results as in the non-overlapping case. With the
notation in (4.2), (4.1), the problem (2.12) is equivalent to finding (p∗

∞, q∗∞) in (R+)2 such that

inf
p≥0,q≥0

sup
ξ≥ξ0

R(ξ, p, q, ξ0, L) = sup
ξ≥ξ0

R(ξ, p∗∞, q∗∞, ξ0, L),

and the value of the infimum is called R
∞

O1(ξ0, L). To simplify the notation, we set

ζ =
Lξ

ν
, ζ0 =

Lξ0

ν
, p̃ =

Lp

ν
, q̃ =

νq

L
,

so we remove the explicit dependence on the overlap parameter L and the parameter ν of the convergence
factor R given in (4.1). The value of R in the new variables ζ, p̃, q̃ and ζ0, is

R̃(ζ, p̃, q̃, ζ0) = R(ξ, p, q, ξ0, L) =
(ζ − p̃)2 + (ζ2 − ζ2

0 )(1 − 2ζq̃)2

(ζ + p̃)2 + (ζ2 − ζ2
0 )(1 + 2ζq̃)2

e−ζ . (4.28)

The new real best approximation problem is therefore to find (p̃∗
∞, q̃∗∞) in (R+)2 such that

inf
p̃≥0,q̃≥0

sup
ζ≥ζ0

R̃(ζ, p̃, q̃, ζ0) = sup
ζ≥ζ0

R̃(ζ, p̃∗∞, q̃∗∞, ζ0). (4.29)

We show now that, for small overlap L, there is a unique solution, which equioscillates at three points,
and we obtain the analogon of Theorem 4.1.
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Theorem 4.3 (O1 Convergence Factor Estimate with Overlap) For L sufficiently small, the so-
lution of (4.29) is unique and equioscillates three times, i.e. (p̃∗

∞, q̃∗∞) is the unique solution of

R̃(ζ0, p̃, q̃, ζ0) = R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) = R̃(ζ4(p̃, q̃), p̃, q̃, ζ0) (4.30)

where ζ2(p̃, q̃) denotes the second and ζ4(p̃, q̃) the fourth of the four distinct positive roots, ordered in
increasing order, of the polynomial

P (ζ) = 16q̃4ζ8 − 32q̃3(q̃ζ2
0 + 1)ζ6

+ (16q̃ − 48q̃2p̃ + 16q̃4ζ4
0 + 4 + 64q̃3ζ2

0 + 8q̃2p̃2 + 8q̃2ζ2
0 − 16q̃p̃)ζ4

+ (−32q̃3ζ4
0 + 16q̃ζ2

0 p̃ − 8q̃ζ2
0 + 24q̃p̃2 − 4ζ2

0 − 8p̃ + 16q̃2ζ2
0 p̃ − 8q̃2ζ4

0 − 8q̃2ζ2
0 p̃2)ζ2

+ (ζ2
0 − p̃2)(ζ2

0 + 8q̃ζ2
0 − p̃2 − 4p̃).

(4.31)

For L small, the optimal parameters and the bound R
∞

O1(ξ0, L) on the convergence factor, which is the
common value in (4.30) at point (p̃, q̃) = (p̃∗

∞, q̃∗∞), have the expansion

p∗∞ ∼ ξ
4
5
0 ν

1
5 L− 1

5 , q∗∞ ∼ 1

2
ν− 3

5 ξ
− 2

5
0 L

3
5 , R

∞

O1(ξ0, L) ∼ 1 − 4ξ
1
5
0 ν− 1

5 L
1
5 . (4.32)

Proof

1. We first examine the variations of R̃. For fixed p̃, q̃, the partial derivative of R̃ with respect to ζ
shows that the roots of P given in (4.31) determine the extrema of R̃. Since P is a bi-quartic in ζ
with real coefficients, it has at most four positive real roots, and hence for ζ ≥ ζ0 ≥ 0, R̃ can have
at most two interior maxima. Using the change of variables χ = 2q̃ζ2, we obtain

P (ζ) = χ4 − 4χ3 + (
4

q̃
− 12p̃ − 4

p̃

q̃
+ 2p̃2 +

1

q̃2
)χ2 + (12p̃2 − 4

p̃

q̃
)χ + p̃2(p̃2 + 4p̃)

+ y2
0

[
−4q̃χ3 + (2 + 16q̃)χ2 + (−4q̃p̃2 + 8q̃p̃ − 2

q̃
− 4 + 8p̃)χ − 2p̃(p̃ + 4q̃p̃ + 2)

]

+ y4
0

[
4q̃2χ2 − 4q̃(1 + 4q̃)χ + 1 + 8q̃

]
.

The dominant part of P for q̃ sufficiently large, p̃q̃ sufficiently small, and for ζ0 sufficiently small, is

P0(χ) = χ4 − 4χ3 +
4

q̃
χ2 − 4p̃

q̃
χ + 4p̃3.

This polynomial has four real positive distinct roots χj , j = 1 . . . 4, ordered in increasing order. If
1/q̃ and p̃q̃ tend to 0, we have χ1 ∼ q̃p̃2, χ2 ∼ p̃, χ3 ∼ 1/q̃, χ4 ∼ 4. By a perturbation argument, it
follows that for ζ0 sufficiently small (which corresponds to L going to zero), P has 4 real positive
distinct roots as well, with the asymptotic behavior

ζ1 ∼ p̃√
2
, ζ2 ∼

√
p̃

2q̃
, ζ3 ∼ 1

q̃
√

2
, ζ4 ∼

√
2

q̃
.

2. We now show that (4.30) has a solution (p̃∗, q̃∗) for ζ0 small. We add the assumptions that ζ0 = o(p̃)
as p̃ tends to 0, and we easily find asymptotic expansions of the three terms in (4.30),

R0 = R̃(ζ0, p̃, q̃, ζ0) ∼ 1 − 4
ζ0

p̃
,

R2 = R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) ∼ 1 − 4
√

2p̃q̃,

R4 = R̃(ζ4(p̃, q̃), p̃, q̃, ζ0) ∼ 1 − 2

√
2

q̃
.

(4.33)

The map (p̃, q̃) 7→ (R2 − R0, R4 − R0) maps a domain (q0 < q̃ < p̃/2ζ2
0 , 0 < p̃q̃ < ε0) for q0 large

and ε0 small, onto a neighbourhood of 0 in R2.

3. We now establish the asymptotic expansions for (p̃∗, q̃∗). They are easily found by equating the
expansions in (4.33). We solve

ζ0

p̃
=
√

2p̃q̃ =
1√
2q̃

,
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from which we deduce

p̃∗ ∼ ζ
4/5
0 , q̃∗ ∼ 1

2
ζ
−2/5
0 , (4.34)

and (4.32) by the change of variables. In particular the assumption ζ0 = o(p̃) in item 2 is validated.

4. We now prove that for L sufficiently small, (p̃∗, q̃∗) is a strict local minimum for the best approxima-
tion problem (4.29). The pair (p̃∗, q̃∗) is a strict local minimum if there exists no variation (δp, δq)
such that R̃(ζ, p̃∗ + δp, q̃∗ + δq, ζ0) < R̃(ζ, p̃∗, q̃∗, ζ0) for ζ = ζ0, ζ2, ζ4. By the Taylor formula, it suf-

fices to prove that there is no variation (δp, δq), such that δp ∂R̃
∂p (ζ, p̃∗, q̃∗, ζ0)+δq ∂R̃

∂q (ζ, p̃∗, q̃∗, ζ0) < 0

for ζ = ζ0, ζ2, ζ4. For ζ0 small, expanding the arguments of R̃, we have from (1) and (4.34) the
leading order terms in the expansion. Including the next higher order terms, we find

p̃∗ ∼ ζ
4
5
0 (1 − 1

15ζ
2
5
0 ), q̃∗ ∼ 1

2ζ
− 2

5
0 (1 − 7

10ζ
2
5
0 ),

ζ2 ∼ ζ
3
5
0 (1 + 2

15ζ
2
5
0 ), ζ4 ∼ 2ζ

1
5
0 (1 + 1

10ζ
2
5
0 ).

Inserting these expansions into the expressions of the derivatives of R̃, we get

∂R̃
∂p (ζ0, p̃∗, q̃∗, ζ0) ∼ 4ζ

3
5
0 , ∂R̃

∂q (ζ0, p̃∗, q̃∗, ζ0) = 0,

∂R̃
∂p (ζ2, p̃∗, q̃∗, ζ0) ∼ −2ζ

3
5
0 , ∂R̃

∂q (ζ2, p̃∗, q̃∗, ζ0) ∼ −4ζ
3
5
0 ,

∂R̃
∂p (ζ4, p̃∗, q̃∗, ζ0) ∼ − 1

2ζ
1
5
0 , ∂R̃

∂q (ζ4, p̃∗, q̃∗, ζ0) ∼ 4ζ
3
5
0 .

(4.35)

Let E be the set of vectors (δp, δq) such that δp ∂R̃
∂p (ζ, p̃∗, q̃∗, ζ0) + δq ∂R̃

∂q (ζ, p̃∗, q̃∗, ζ0) < 0 for ζ =
ζ0, ζ2, ζ4. We need to prove that E is empty. For small ζ0, E can be obtained using the expansion
(4.35):

4ζ
3
5
0 δp < 0, −2ζ

3
5
0 δp − 4ζ

3
5
0 δq < 0, −1

2
ζ

1
5
0 δp + 4ζ

3
5
0 δq < 0. (4.36)

The first inequality in (4.36) implies δp < 0, while adding the second and the third inequality in
(4.36) yields δp > 0, which is a contradiction, and thus the set E is empty.

Using the uniqueness in Theorem 2.11, we obtain (p̃∗
∞, q̃∗∞) = (p̃∗, q̃∗), which concludes the proof.

In Figure 2, we show the convergence factors R
∞

T1(ξ0, L) and R
∞

O1(ξ0, L) for an example with ξ0 = 1,
L = 0.08 and ν = 0.2 from the numerical section.
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Figure 2: Convergence factors R
∞

T1 and R
∞

O1 for an overlapping example from the numerical section on
the left, and zoom on the right showing the equioscillation at the optimal solution.

One can see on the left the much better performance of the optimized first order transmission conditions
compared to the first order Taylor transmission conditions, and also the equioscillation of the optimal
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choice on the right, which makes the convergence factor rather small and flat, before the effects of the
exponential take over.

Theorem 4.3 gives the parameters p∗ and q∗ to choose in the first order transmission conditions of
the optimized Schwarz waveform relaxation algorithm at the continuous level to get the best convergence
factor, which is 1 − O(L

1
5 ), and therefore is significantly better than the best result achievable with

optimized Robin conditions [11], which led to a convergence factor 1 − O(L
1
3 ).

In Figure 3, we show the first few iterations, at the end of the time interval, of the classical and
optimized Schwarz waveform relaxation algorithm with first order optimized transmission conditions
according to Theorem 4.3 for a model problem.
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Figure 3: From left to right, the iterates uk

1(x, T ) and uk+1
2 (x, T ) (dashed) at the end of the time interval

t = T for k = 1, 3, 5 for an example from the numerical section, together with the exact solution (solid).
Top row the classical Schwarz waveform relaxation algorithm, and bottom row the optimized one.

This experiment shows well that the new transmission conditions improve the convergence behavior
tremendously, they are very effective to transport the convected solution from left to right across the
artificial interfaces between subdomains.

As we have seen earlier, in a numerical setting, not all the frequencies are present. We thus have
to address the question again if the maximum of the convergence factor attained at y4 is relevant in a
computation. Letting L = C1∆x and ∆t = C2∆xβ , the maximum numerical frequency we can expect
on the time discretization grid leads from (4.5) to a bound on ζ, ζ0 ≤ ζ ≤ ζmax, where ζmax has the
expansion

ζmax =
Lxmax

ν
= C1∆x

√√√√√

√
x4

0 +
(

4νπ
C2∆xβ

)2

+ x2
0

2
= C1

√
2π

νC2
∆x1− β

2 + O(∆x1+ β
2 ).

Now ζ4 from the optimization in (4.30) satisfies for L (and thus ζ0) small

ζ4 ∼ 2ζ
1
5
0 = 2

(
ξ0C1

ν

) 1
5

∆x
1
5 .

Hence, if 1 − β
2 = 1

5 i.e. β = 8
5 and if C1 is equal to the critical value Cc = ν

3
8 ξ

1
4
0

(
2C2

π

) 5
8 , the numerical

ζmax and ζ4 from the optimization are asymptotically at the same location, which represents the boundary
between the usefulness of the continuous optimization result (4.30) on an unbounded domain, and the
optimization on the compact set [0, ωmax], for which the analysis in Section 2.2 becomes relevant, as we
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now show: by Theorems 2.5 and 2.7, problem (3.9) in P1 has a unique solution s∗1 = p∗ + 4iωνq∗ for
sufficiently small overlap L. By Theorem 2.8, s∗1 has real coefficients. Therefore, (p∗, q∗) is the unique
pair of real numbers such that

inf
p,q∈R

sup
ξ0≤ξ≤ξmax

R(ξ, p, q, ξ0, L) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗, q∗, ξ0, L), (4.37)

where we denote the infimum by RO1(ξ0, ξmax, L), which is also equal to
(
δ1(

L
2ν )
)2

.

Lemma 4.5 The solution (p∗, q∗) of the min-max problem (4.37) satisfies p∗ > 0 and q∗ ≥ 0.

Proof By Theorems 2.1, 2.3 and 2.8, there is a unique real number p∗
0 in P0 such that

inf
p∈R

sup
ξ0≤ξ≤ξmax

R(ξ, p, 0, ξ0, 0) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗0, 0, ξ0, 0),

and the value of the infimum is δ2
0 . Furthermore, since δ0 < 1, p∗0 is positive. If (p∗, q∗) is a solution of

the min-max problem (4.29), we have

R(ξ0, p
∗, q∗, ξ0, L) =

(ξ0 − p∗)2

(ξ0 + p∗)2
e−

L
ν

ξ0 ≤ max
ξ0≤ξ≤ξmax

R(ξ, p∗, q∗, ξ0, L)

≤ max
ξ0≤ξ≤ξmax

R(ξ, p∗0, 0, ξ0, L) ≤ max
ξ0≤ξ≤ξmax

R(ξ, p∗0, 0, ξ0, 0)e−
L
ν

ξ0

≤ δ2
0e

−L
ν

ξ0 < e−
L
ν

ξ0 ,

with the notation from (2.1), which can only hold if p∗ > 0. To prove that q∗ ≥ 0, we note that for
negative q, we have for any ξ ≥ ξ0 from (4.1) R(ξ, p, q, ξ0, L) ≥ R(ξ, p,−q, ξ0, L), which can be seen by
expanding the numerator of R(ξ, p, q, ξ0, L) − R(ξ, p,−q, ξ0, L).

Theorem 4.4 (O1 Discrete Convergence Factor Estimate with Overlap) If L = C1∆x and ∆t =
C2∆xβ , for ∆x sufficiently small, we have the following asymptotic behaviors:

1. For β > 8
5 , or β = 8

5 and C1 > Cc,

RO1(ξ0, ξmax, L) ∼ 1 − 4
(

C1ξ0

ν

) 1
5

∆x
1
5 , p∗ ∼

(
ξ4
0ν
C1

) 1
5

∆x− 1
5 , q∗ ∼ 2C

3
5
1

(
ν
ξ0

) 2
5

∆x
3
5 ,

where Cc = ν
3
8 ξ

1
4
0

(
2C2

π

) 5
8 .

2. For β = 8
5 and C1 ≤ Cc,

RO1(ξ0, ξmax, L) ∼ 1 −
(

4C1ξ0

C̃pν

)
∆x

1
5 , p∗ ∼ C̃pν

C1
∆x− 1

5 , q∗ ∼ 2
ξ2
0C3

1

C̃3
pν2

∆x
3
5 ,

where C̃p is the unique positive root of the polynomial

P̃ (ξ) = 2ν3C2ξ
4 + C1πξ2

0ξ − 2ξ3
0C4

1

√
2πC2

ν
.

3. Finally for 0 < β < 8
5 , we have

RO1(ξ0, ξmax, L) ∼ 1− 2
(

27C2ξ2
0

πν

) 1
8

∆x
β
8 , p∗ ∼

(
2πνξ6

0

C2

) 1
8

∆x− β
8 , q∗ ∼

(
(2ν)5C3

2

ξ2
0π3

) 1
8

∆x
3β
8 .

Proof We use here the notation introduced for Theorem 4.3, see (4.28), and consider the minmax
problem in the form

inf
p̃∈R,q̃∈R

sup
ζ0≤ζ≤ζmax

R̃(ζ, p̃, q̃, ζ0) = sup
ζ0≤ζ≤ζmax

R̃(ζ, p̃∗, q̃∗, ζ0). (4.38)

20



The proof of the first case is a direct consequence of Theorem 4.3 for the non compact case with optimal
parameters (p̃∗∞, q̃∗∞), since in the first case, ζmax > ζ4(p̃

∗
∞, q̃∗∞).

For the two other cases, we have asymptotically ζ3(p̃
∗
∞, q̃∗∞) ≤ ζmax ≤ ζ4(p̃

∗
∞, q̃∗∞), and the proof

follows the same steps as before: we first show the existence of (p̃∗, q̃∗), such that R̃(ζ, p̃, q̃, ζ0) equioscillates
at the three points ζ0, ζ2(p̃, q̃) and ζmax. We then determine the expansions of (p̃∗, q̃∗), ζ2(p̃∗, q̃∗), deduce
that (p̃∗, q̃∗) is a strict local minimum for hl in Pr

n, and finally conclude that (p̃∗, q̃∗) = (p̃∗, q̃∗).

We work with ζ0 as the small parameter: let Cm = C1

(
2π

νC2

)1/2( ν
C1ξ0

)1−β/2
, so that ζmax ∼ Cmζ

1−β/2
0 .

To prove the second and third result of the theorem, we need to study solutions of

R̃(ζ0, p̃, q̃, ζ0) = R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) = R̃(ζ0, p̃, q̃, ζmax) (4.39)

for ζ0 small. Let R0 := R̃(ζ0, p̃, q̃, ζ0), R2 := R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) and Rmax := R̃(ζ0, p̃, q̃, ζmax). A direct
computation gives for q̃ large, and p̃q̃ and ζ0 small,

Rmax ∼ 1 − 4

[
1

2qζmax
+

ζmax

4

]
∼ 1 − 4

[
1

2q

ζ
β/2−1
0

Cm
+

Cm ζ
1−β/2
0

4

]
.

Using the expansions from (4.33),

R0 ∼ 1 − 4
ζ0

p̃
, R2 ∼ 1 − 4

√
2p̃q̃,

we see first, by the Implicit Function Theorem, as in the proof of Theorem 4.3, that there exists a solution
(p̃∗, q̃∗) to (4.39). We find their behavior at infinity by equaling R0, R2 and Rmax, which gives the system
of equations

Cmζ
4−β/2
0 ∼ C2

m

4
p̃ζ4−β

0 + p̃4, q̃ ∼ ζ2
0

2p̃3
.

For β = 8/5, the two terms on the right in the first equation are balanced, which leads to p̃∗ ∼ Cζ
4/5
0 ,

where C is the unique positive root 2 of Cm = (C3 + C2
m/4)C and q̃∗ ∼ 1

2C2 ζ
−2/5
0 . For β < 8/5,

the dominant term is p̃4, from which we find p̃∗ ∼ C
1/4
m ζ

1−β/2
0 . Using the second equation, we obtain

q̃∗ ∼ 1
2C

−3/4
m ζ

−1+ 3β
8

0 . We now expand the partial derivatives of R̃ to show that, for L sufficiently small,
(p̃∗, q̃∗) is a strict local minimum for the best approximation problem (4.38). For R0, we obtain, since ζ0

is negligible with respect to p,

∂R̃

∂p̃
(ζ0, p̃∗, q̃∗, ζ0) ∼ 4C−1/2

m ζ
−1+β/4
0 ,

∂R̃

∂q̃
(ζ0, p̃∗, q̃∗, ζ0) = 0.

For R2, we use that ζ0 � p̃∗ � ζ2 � ζmax, and ζ2q̃∗ ∼ 1
2C

−1/4
m ζ

β/8
0 , to obtain

∂R̃

∂p̃
(ζ2, p̃∗, q̃∗, ζ0) ∼ −2C−1/2

m ζ
−1+β/4
0 ,

∂R̃

∂q̃
(ζ2, p̃∗, q̃∗, ζ0) ∼ −2C1/2

m ζ
1−β/4
0 .

For Rmax, we use ζmaxq̃∗ ∼ C′

2 ζ
−β/8
0 with C ′ = C

1/4
m for β < 8/5 and C ′ = Cm/C2 for β = 8/5,

∂R̃

∂p
(ζmax, p̃∗, q̃∗, ζ0) ∼ −ζ−3

maxq̃−2
∗ ∼ −4C−1

m C ′−2ζ
−1+3β/4
0 ,

∂R̃

∂q
(ζmax, p̃∗, q̃∗, ζ0) ∼ 2ζ−1

maxq̃−2
∗ ∼ 8CmC ′−2ζ

1−β/4
0 .

After proceeding as in point 4 of the proof of Theorem 4.3, we use Corollary 2.10 to conclude that
(p̃∗, q̃∗) = (p̃∗, q̃∗), and we have the asymptotic expansion

RO1(ξ0, ξmax, L) ∼ 1 − 4
ζ

β/2
0

C
1/4
m

.

2This is a polynomial equation of fourth degree which is actually the first fourth degree equation which has been solved
by Lodovico Ferrari in 1545. Note that all equations in the text resume to polynomials of degree at most 4, and as such
can be solved by radicals, using Del Ferro/Tartaglia/Cardan formulas [3].
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Finally note that for any 0 < β < 8/5, the five extremal points of R̃(ζ, p̃∗, q̃∗, ζ0) behave like

ζ0 ∼ ζ0, ζ1 ∼ C
1/4
m√
2

ζ
1−β/8
0 , ζ2 ∼ C1/2

m ζ
1−β/4
0 , ζ3 ∼

√
2C3/4

m ζ
1−3β/8
0 , ζmax ∼ Cmζ

1−β/2
0 ,

4.3 Summary and Extension to Higher Dimensions

To summarize the results of this section, and to permit an easy lookup of the parameters p and q to be
used in practice, we show in Table 1 an overview of the performance one can obtain with the various
choices of the parameter p and q in the transmission conditions (3.11) of the new Schwarz waveform
relaxation algorithm in one dimension.

method convergence factor parameter p parameter q

Taylor no overlap 1 − O(
√

∆t)
√

a2 + 4νb 2ν√
a2+4νb

Optimized no overlap 1 − O(∆t
1
8 ) (2νπ(a2 + 4νb)3)

1
8 ∆t−

1
8 (π3(a2 + 4νb))−

1
8 (2ν)

5
8 ∆t

3
8

Taylor overlap ∆x,

{
β ≥ 1
β < 1

1 − O(
√

∆x)

1 − O(∆x
β
2 )

√
a2 + 4νb 2ν√

a2+4νb

Optimized overlap ∆x,

{
β > 8

5
β < 8

5

1 − O(∆x
1
5 )

1 − O(∆x
β
8 )

(ν(a2 + 4νb)2)
1
5 ∆x− 1

5

(2νπ(a2 + 4νb)3)
1
8 ∆x− β

8

2ν
2
5 (a2 + 4νb)−

1
5 ∆x

3
5

(2ν)
5
8 (π3(a2 + 4νb))−

1
8 ∆x

3β
8

Table 1: Summary of the asymptotic convergence factors for the parameter choices in the first order
transmission conditions in one dimension, for ∆t = ∆xβ .

In higher dimension, without showing the details of the derivation, the Taylor transmission conditions
lead to the parameters pT =

√
a2 + 4νb and qT = 2ν√

a2+4νb
with associated convergence factor 1−O(∆x)

in the case without overlap, and 1 − O(
√

∆x) in the case with overlap O(∆x). Even if we do not have
the complete analysis in this general case for the optimized problem (i.e. the equivalent of Theorems
4.1, 4.3 and 4.2), we can still give formally the order of magnitude of the various quantities. The
optimal parameters in the transmission conditions are for the non-overlapping case asymptotically given
by p = Cp∆x− 1

4 and q = Cq∆x
3
4 , which leads to an optimized convergence factor 1 − O(∆x

1
4 ) of the

associated optimized Schwarz waveform relaxation algorithm. The constants Cp and Cq depend on the
problem parameters and the spatial dimension n ≥ 2 of the problem (3.1), as shown in Table 2.
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β ν Cp Cq
{

ν̄1 ≤ 1
2 and ν > 1

2
ν̄1 > 1

2 and ν > ν̄2

(
νπ(a2+4νb)

3
2
√

n−1
2

) 1
4

(
8ν

π3(n−1)
3
2
√

a2+4νb

) 1
4

1 ν̄1 < ν ≤ 1
2

(
π
√

(a2+4νb)3(n−1)

4

) 1
4

(
4

π3
√

(a2+4νb)(n−1)3

) 1
4

{
ν̄1 ≤ 1

2 and ν ≤ ν̄1

ν̄1 > 1
2 and ν ≤ ν̄2

(
8νπ(a2+4νb)2(n−1)

(8ν+
√

(a2+4νb)(n−1))2

) 1
4

(
128ν

π3(n−1)(8ν+
√

(a2+4νb)(n−1))2

) 1
4

{
ν > 1

2 and n ≤ 5
ν > ν̄6 and n ≥ 6

(
ν3(a2+4νb)3(ζ4+16π2)2

2(
√

ν2ζ4+π2+νζ2)(ζ2+4
√

ν2ζ4+π2−4νζ2)2

)1
8
(
8(
√

ν2ζ4+π2+νζ2)3(ζ2+4
√

ν2ζ4+π2−4νζ2)6

ν(a2+4νb)(ζ4+16π2)6

)1
8

1
2 < ν ≤ ν̄6 and n ≥ 6

(
πν3(a2+4νb)3(π2(n−1)2+16)2

2(π(n−1)(1−4ν)+4w)2(νπ(n−1)+w)

) 1
8

(
8(π(n−1)(1−4ν)+4w)6(νπ(n−1)+w)3

π3ν(a2+4νb)(π2(n−1)2+16)6

) 1
8

2 ν̄5 < ν ≤ 1
2 and 2 ≤ n ≤ 5 (2νπ(a2 + 4νb)3)

1
8

(
1

2048(νπ)3(a2+4νb)

) 1
8

{
ν̄4 < ν ≤ ν̄5 and 2 ≤ n ≤ 5
ν̄4 < ν ≤ 1

2 and n ≥ 6

(
πν(a2+4νb)3(π2(n−1)2+16)2

8(π(n−1)(1−4ν)+4w)2(νπ(n−1)+w)

) 1
8

(
2(π(n−1)(1−4ν)+4w)6(νπ(n−1)+w)3

π3ν3(a2+4νb)(π2(n−1)2+16)6

) 1
8

ν ≤ ν̄4 and n ≥ 2

(
π
√

(n−1)(a2+4νb)3

4

) 1
4

(
4

π3
√

(n−1)3(a2+4νb)

) 1
4

Table 2: Summary of the constants in the asymptotically optimized parameters p = Cp∆x− 1
4 and

q = Cq∆x
3
4 in dimension n ≥ 2 in the non-overlapping case, for ∆t = ∆xβ , β = 1, 2. The constants ν̄1

up to ν̄6, ζ and w are defined in the text.

In the table, ζ represents the smallest positive root of the polynomial

P (ζ) = 3π2ν2(8ν−1)ζ3−4π4(1−4ν−100ν2+320ν3)ζ2+128π6(48ν3+3−12ν−10ν2)ζ−1024π8(2ν−1)2,

w =
√

π2ν2(n − 1)2 + 1, and the other constants are given by given by ν̄1 =
√

n − 1
b
√

n−1+
√

b2(n−1)+16a2

32 ,

ν̄2 is the root of the equation ν = 1
2 ((a2+4νb)(n−1))

1
4− 1

8 ((a2+4νb)(n−1))
1
2 , ν̄2 ∼ a2

√
a
√

n−1(4−
√

a
√

n−1)

2(4a2−2b
√

a
√

n−1+ab
√

n−1)
,

ν̄3 = 1
32π(n − 1),

ν̄4 =
π(n−1)

“

π5(n−1)5+80π3(n−1)3+512π(n−1)+
√

(3π2(n−1)2+16)(π2(n−1)2+16)4
”

16(π6(n−1)6+56π4(n−1)4+640π2(n−1)2+2048) ,

ν̄5 = 4096−2048π(n−1)+256π2(n−1)2+128π3(n−1)3−16π4(n−1)4−π6(n−1)6+
√

d
1024π3(n−1)3 ,

d = (π(n − 1) − 4)(π3(n − 1)3 + 4π2(n − 1)2 + 48π(n − 1) − 64)(π2(n − 1)2 + 16)4,

and ν̄6 = ν̄6(n) is defined by equalizing the constant Cp (or Cq) of the first two cases of β = 2 in Table
2, and is shown graphically, together with the other constants, in Figure 4.
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Figure 4: Regions in the n-ν plane where the different constants Cp and Cq of the optimized parameters
in dimension n ≥ 2 apply according to Table 2.

In the case with overlap, the optimal parameters in the transmission conditions are asymptotically
given by p = Cp∆x− 1

5 and q = Cq∆x
3
5 , where the constants Cp and Cq depend on the problem parameters,

as shown in Table 3.

β ν Cp Cq

1 ν > 1
2 ( 1

4ν(a2 + 4νb)2)
1
5

(
64ν2

(a2+4νb)

) 1
5

1 ν ≤ 1
2

(
(a2+4νb)2

8

) 1
5

(
16

a2+4νb

) 1
5

2 ν > 1
2 (2ν2(a2 + 4νb)2)

1
5

(
1

8ν(a2+4νb)

) 1
5

2 1
8 < ν ≤ 1

2 (ν(a2 + 4νb)2)
1
5

(
1

32ν3(a2+4νb)

) 1
5

2 ν ≤ 1
8

(
(a2+4νb)2

8

) 1
5

(
16

a2+4νb

) 1
5

Table 3: Summary of the constants in the optimized asymptotic parameters p = Cp∆x− 1
5 and q = Cq∆x

3
5

for the case with overlap L = ∆x in dimension n ≥ 2 for ∆t = ∆xβ .

The optimized convergence factor of the associated algorithm with this choice is given by 1−O(∆x
1
5 ).

It is interesting to note that in the case with overlap, the results are independent of the dimension for
n ≥ 2.

5 Well-posedness and convergence of the Schwarz waveform re-

laxation algorithms

For the analysis in this Section, we rely on the theory of weak solution in Sobolev spaces by a Galerkin
method, see [2] and [20]. A weak solution of (3.1) is defined to be a u ∈ C(0, T ; L2(Ω))∩L2(0, T ; H1(Ω)),
such that, for any v in H1(Ω), we have

d

dt
(u, v) +

1

2

(
((a · ∇)u, v) − ((a · ∇)v, u)

)
+ ν(∇u,∇v) + b(u, v) = (f, v), in D′(0, T ), (5.1)

where (·, ·) denotes the inner product in L2(Ω). Problem (5.1) is completed by the initial condition

u(x, 0) = u0(x), in Ω. (5.2)

The next two theorems show the well-posedness and the regularity of the problem.
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Theorem 5.1 (Existence and uniqueness) Let Ω = RN . If the initial value u0 is in L2(Ω), and
the right hand side f is in L2(0, T ; L2(Ω)), then there exists a unique weak solution u of (5.1), (5.2) in
L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)).

With the transmission conditions given by Bj in (3.11), we will need more regularity in our analysis, in
the anisotropic Sobolev spaces defined in [20] by

Hr,s(Ω × (0, T )) = L2(0, T ; Hr(Ω)) ∩ Hs(0, T ; L2(Ω)) :

Theorem 5.2 Let Ω = RN , and m be an integer. If the initial value u0 is in H2m+1(Ω), and the right
hand side f is in H2m,m(Ω × (0, T )), then the weak solution u is in H2(m+1),m+1(Ω × (0, T )).

For the proofs of Theorems 5.1 and 5.2, and the trace theorems in Hr,s, we refer to [20].

5.1 Well Posedness of the Algorithm

We first need to study the well-posedness of the subdomain problems with the new boundary conditions.
As we saw in the previous section, in order for the convergence factor to be smaller than 1 in modulus, we
need p > 0, q ≥ 0. The special case where q = 0 can be found in [22], and hence, in the sequel, we assume
q 6= 0. We show here only the analysis for the subproblem on Ω1, the results for Ω2 can be found similarly
by symmetry. The boundary of Ω1 is ΓL = {L}×RN−1. Using the boundary operators S and B1 defined
in (3.11), the problem consists in finding v in an adapted subspace of C(0, T ; L2(Ω1)) ∩ L2(0, T ; H1(Ω1))
such that

Lv = f in Ω1 × (0, T ),
v(·, 0) = u0 in Ω1,
B1v = gL on ΓL × (0, T ).

(5.3)

For the variational formulation, we introduce for any real number s the space

Hs
s (Ω1) = {v ∈ Hs(Ω1), v |ΓL

∈ Hs(ΓL)},

where · |ΓL
denotes the trace operator on ΓL. The scalar product in L2(ΓL) is denoted by (·, ·)ΓL

. The
variational formulation is to find v ∈ H1

1 such that,

∀w ∈ H1
1 (Ω1),

d

dt

[
(v, w) + 2q(v, w)ΓL

]
+

1

2

(
((a · ∇)v, w) − ((a · ∇)v, w)

)
+ ν(∇v, ∇w) + b(v, w)

+
p

2
(v, w)ΓL

+ 2qν((c · ∇y)v, w)ΓL
+ 2qν2(∇yv, ∇yw)ΓL

= (f, v), in D′(0, T ).

Theorem 5.3 For p > 0 and q > 0, if f is in L2(0, T, L2(Ω1)), u0 is in H1
1 (Ω1), and gL is in L2((0, T )×

ΓL), then the subdomain problem (5.3) has a unique solution v in L2(0, T, H2
2 (Ω1)) ∩ H1(0, T ; H0

0 (Ω1)).

Proof The proof is based on a priori estimates: multiplying equation (5.3) by v and integrating in space,
and then using the boundary condition, we obtain

1

2

d

dt

[
‖v(·, t)‖2

L2(Ω1) + 2q‖v(·, t)‖2
L2(ΓL)

]
+ ν‖∇v(·, t)‖2

L2(Ω1) + b‖v(·, t)‖2
L2(Ω1)

+
p

2
‖v(·, t)‖2

L2(ΓL) + 2qν2‖∇yv(·, t)‖2
L2(ΓL) = (f(·, t), v(·, t)) + ν(g(·, t), v(·, t))ΓL

.

On the right-hand side we use the Cauchy-Schwarz inequality together with the inequality

αβ ≤ η

2
α2 +

1

2η
β2, for all α, β ∈ R, and η > 0. (5.4)

If b = 0, we need furthermore the Gronwall Lemma. We obtain by integration in time a bound for v,
with a constant C depending on the physical constants b, ν, the parameters p and q, and the length of
the time interval T :

‖v‖2
L∞(0,T,H0

0 (Ω1))
+ ‖v‖2

L2(0,T ;H1
1 (Ω1)) ≤ C(‖f‖2

L2(0,T,L2(Ω1))
+ ‖g‖2

L2(0,T,L2(ΓL))). (5.5)
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To get further estimates, we multiply equation (5.3) by ∂tv, integrate in space, and use the boundary
condition to obtain

1

2

d

dt

[
b‖v(·, t)‖2

L2(Ω1) + ν‖∇v(·, t)‖2
L2(Ω1)

+
p − a

2
‖v(·, t)‖2

L2(ΓL) + qν2‖∇yv(·, t)‖2
L2(Γ)

]

+ ‖∂tv(·, t)‖2
L2(Ω1) + 2q‖∂tv(·, t)‖2

L2(ΓL)

= (f(·, t), ∂tv(·, t)) + (g(·, t), ∂tv(·, t))ΓL
− ((a · ∇)v(·, t), ∂tv(·, t)) + 2qν((c · ∇y)v(·, t), ∂tv(·, t))ΓL

.

Using the Cauchy-Schwarz inequality together with (5.4) as before, integrating in time and using (5.5),
we obtain

‖v‖2
L∞(0,T,H1

1 (Ω1)) + ‖∂tv‖2
L2(0,T ;H0

0 (Ω1)) ≤ C ′(‖f‖2
L2(0,T,L2(Ω1)) + ‖g‖2

L2(0,T,L2(ΓL))),

where the constant C ′ depends also on a. We complete the result by using the equation, which gives

∆v ∈ L2(0, T ; L2(Ω1)), ∂xv − 2qν∆yv ∈ L2(0, T ; L2(ΓL)).

A regularity theorem proved in [29] asserts that this implies v ∈ L2(0, T ; H2
2 (Ω1)), and gives a bound for

the norm in L2(0, T ; H2
2(Ω1)). Now we have altogether a bound for v in L2(0, T, H2

2 )∩H1(0, T ; H0
0 (Ω1)).

This first proves uniqueness. Using a Galerkin method, we obtain the existence result.
The previous result suffices to define the algorithm in the non-overlapping case. The overlapping case
however requires more regularity.

Theorem 5.4 For p > 0 and q > 0, let f be in H2,1(Ω1 × (0, T )), u0 be in H3(Ω), and gL be in

H
3
2 , 3

4 (ΓL × (0, T )), with the compatibility condition

gL(·, 0) = ∂xu0(L, ·) +
p − a

2ν
u0(L, ·) + 2q(ν∂xxu0(L, ·) − a∂xu0(L, ·) − bu0(L, ·) + f(L, ·, 0)). (5.6)

Then the solution v of the subdomain problem (5.3) is in H4,2(Ω1 × (0, T )). Furthermore, the following
compatibility property at x = 0 is satisfied:

lim
t→0+

B2v(0, ·, t) = ∂xu0(0, ·) − p + a

2ν
u0(0, ·) − 2q(ν∂xxu0(0, ·) − a∂xu0(0, ·) − bu0(0, ·) + f(0, ·, 0)).

Proof With the assumptions in the Theorem, the solution u of (3.1) is indeed in H4,2(Ω1 × (0, T )) by

Theorem 5.2, and by the Trace Theorem in [20], g̃L = B1u(L, ·, ·) is in H
3
2 , 34 (ΓL × (0, T )), and satisfies

the compatibility condition (5.6). Defining h = gL − g̃L, e = v − u is the solution of

Le = 0 in Ω1 × (0, T ),
e(·, 0) = 0 in Ω1,
B1e = h on ΓL × (0, T ).

(5.7)

Since h is in H
3
2 , 3

4 (ΓL × (0, T )), and h(·, 0) = 0, we can extend it in H
3
2 , 34 (ΓL × R) by h̃ vanishing on

Γ × R−. Then we extend in time the first equation and the boundary condition in (5.7) to ΓL × R.
The solution ẽ of the extended problem is an extension of e. We finally Fourier transform the resulting
equation in time and y . By (3.4), the Fourier transform of e is given in terms of F h̃, the Fourier
transform of h̃, by

F ẽ(η, ω) =
2ν

f(z) + s(z)
F h̃(η, ω)e

a+f(z)
2ν

(x−L), (5.8)

with z = i(ω + c · η)+ ν|η|2. We introduce τ = ω + c · η. With the definition of f , and using that p > 0,
q > 0, we obtain

Lemma 5.1 There exist positive constants D, D′ such that

2ν∣∣f(z) + s(z)
∣∣ ≤ D(τ2 + |η|4)−1/2,

ν

a + <f(z)
≤ D′(τ2 + |η|4)−1/4, |r+|2 ∼ 2(τ2 + |η|4)1/2.

For large τ and η, we have
|r+|2 ∼ 2(τ2 + |η|4)1/2.
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From (5.8), we obtain for the norm of the second derivative of e in time

‖∂2
t ẽ‖2

L2(Ω1×R) =

∫ L

−∞

∫

Rn−1

∫

R

4ν2ω4

∣∣f(z) + s(z)
∣∣2 |F h̃(η, ω)|2e2<r+(x−L)dx dη dω,

or after integration in the x variable,

‖∂2
t ẽ‖2

L2(Ω1×R) =

∫

Rn−1

∫

R

4ν2ω4

∣∣f(z) + s(z)
∣∣2

ν

a + <f(z)
|F h̃(η, ω)|2dη dω.

We have by Lemma 5.1, for large τ and η,

4ν2ω4

∣∣f(z) + s(z)
∣∣2

ν

a + <f(z)
≤ D2D′(τ − c · η)4(τ2 + |η|4)5/4 = D2D′ (τ − c · η)4

(τ2 + |η|4)2 (τ2 + |η|4)3/4.

Since h̃ is in H
3
2 , 3

4 (ΓL × R), we obtain

‖∂2
t ẽ‖2

L2(Ω1×R2) ≤ D′′‖h̃‖2

H
3
2

, 3
4 (ΓL×R)

.

For the spatial derivatives, we proceed as before, and we have for j + k ≤ 4,

‖∂k
x∂j

yl
ẽ‖2

L2(Ω1×R) =

∫

Rn−1×R

4ν2r2k
+ η2j

l∣∣f(z) + s(z)
∣∣2

ν

a + <f(z)
|F h̃(ω)|2dη dω.

From the bound on the integrand for large τ and η,

4ν2r2k
+ η2j

l∣∣f(z) + s(z)
∣∣2

ν

a + <f(z)
≤ D2D′2k(τ2 + |η|4)(k+j)/2,

we conclude as before that all space derivatives up to order 4 are square integrable, and finally we have

‖ẽ‖H4,2(Ω1×R) ≤ D̄‖h̃‖
H

3
2

, 3
4 (ΓL×R)

.

Taking the infimum over all extensions h̃ gives

‖e‖H4,2(Ω1×(0,T )) ≤ C‖h‖
H

3
2

, 3
4 (ΓL×(0,T ))

.

Similarly, we see that

‖S ẽ(0, ·, ·)‖2

H
3
2

, 3
4 (ΓL×R))

=

∫

Rn−1

∫

R

4ν2|z|2
∣∣f(z) + s(z)

∣∣2 (1 + ω2)
3
2 (1 + |η|2)3 |F h̃(ω)|2e−2<r+Ldη dω,

and therefore Se(0, ·) is in H
3
2 , 34 (ΓL × (0, T )), with

‖Se‖2

H
3
2

, 3
4 (ΓL×(0,T ))

≤ Ce−
aL
ν ‖h‖

H
3
2

, 3
4 (ΓL×(0,T ))

.

For the compatibility property, since h̃ is supported in ΓL ×R+, F h̃ is analytic in the half-plane =ω < 0,
and by (5.8) and the Paley-Wiener Theorem [26], ẽ(0, ·, ·) is supported in ΓL × R+ as well. Since e is in

H4,2(Ω1 × (0, T )), ∂xe is in H
5
2 , 54 (ΓL × (0, T )), and hence all quantities in B2e are continuous on [0, T ],

and therefore limt→0+ B2e(0, ·, t) = 0, which completes the proof of the theorem.
We are now ready to show the well posedness of the algorithm: let gL be given on ΓL and let g0 be given
on Γ0 = {0} × RN−1, and let p > 0 and q > 0. We define for k = 1, 2, . . . the iterations by algorithm
(3.2), initialized by

B1u
1
1=gL on ΓL × (0, T ), B2u

1
2=g0 on Γ0 × (0, T ), (5.9)

Consider first the nonoverlapping case: L = 0. Then it is easy to obtain:
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Theorem 5.5 Let L = 0, gL and g0 be given in L2(Rn−1 × (0, T )), p > 0 and q > 0. Then, for
k = 1, 2, . . ., the algorithm (3.2) with the transmission operators given in (3.11), initialized with (5.9)
defines a unique sequence of iterates (uk

1 , uk
2) in L2(0, T, H2

2 (Ω1))∩H1(0, T ; H0
0 (Ω1))×L2(0, T, H2

2 (Ω2))∩
H1(0, T ; H0

0(Ω2)).

In the overlapping case, we need to use the compatibility condition in Theorem 5.4:

Theorem 5.6 Let L > 0, p > 0 and q > 0 , f be in H2,1(Ω1 × (0, T )), u0 be in H3(Ω), gL and g0 be

given in H
3
2 , 34 (Rn−1 × (0, T )), with the compatibility conditions

gL(·, 0) = ∂xu0(L, ·) +
p − a

2ν
u0(L, ·) + 2q(ν∂xxu0(L, ·) − a∂xu0(L, ·) − bu0(L, ·) + f(L, ·, 0)),

g0(·, 0) = ∂xu0(0, ·) − p + a

2ν
u0(0, ·) − 2q(ν∂xxu0(0, ·) − a∂xu0(0, ·) − bu0(0, ·) + f(0, ·, 0)).

Then, for k = 1, 2, . . ., the algorithm (3.2) with the transmission operators given in (3.11), initialized by
(5.9) defines a unique sequence of iterates (uk

1 , u
k
2) in H4,2(Ω1 × (0, T )) × H4,2(Ω2 × (0, T )).

5.2 Convergence of the Algorithm

Theorem 5.7 For p > 0 and q > 0, under the conditions of existence of the algorithm, the sequence
(uk

1 , u
k
2) converges to (u |Ω1

, u |Ω2
).

Proof We return to the analysis in Section 3, which has been validated by the previous theorems. The
Fourier transforms in time and y of the errors satisfy

ê2k+1
1 (x, η, ω) = ρk ê1

1(x, η, ω), ê2k
1 (x, η, ω) = ρk−1ê1

2(x, η, ω),

ê2k+1
2 (x, η, ω) = ρk ê1

2(x, η, ω), ê2k
2 (x, η, ω) = ρk−1ê1

1(x, η, ω).

For p and q strictly positive, we have |ρ| < 1 for all (ω, η) in (R ×Rn−1). By the Lebesgue Theorem, we
conclude the proof.

Remark 5.1 The results in this Section generalize the analysis from [22] to the case when the operator
S contains the transverse Laplace operator ∆y. In [22], the proof of convergence in the non-overlapping
case is based on clever energy estimates, and as such extends to variable coefficients.

6 Numerical Results

We perform in this section one-dimensional numerical experiments to measure the convergence factors
of the numerical implementation of the various Schwarz waveform relaxation algorithms analyzed at the
continuous level in this paper. We use the parabolic model problem (3.1) on the domain Ω = (0, 6). We
impose homogeneous boundary conditions, u(0, t) = 0 and u(6, t) = 0, and use various initial conditions
u(x, 0), x ∈ Ω.

6.1 Experiments with Two Subdomains

We first use a decomposition of the domain Ω into the two subdomains Ω1 = (0, L2) and Ω2 = (L1, 6),
L1 ≤ L2, and hence L = L2 −L1. We refer with the term iteration to a double iteration of the respective
algorithms, since for two subdomains, one can perform all the iterations in an alternating fashion and thus
obtain the even iterates on one subdomain and the odd ones on the other, without having to compute
the remaining ones. We show only results of numerical experiments for the algorithm with overlap, since
with overlap, we can compare the results to the classical Schwarz waveform relaxation algorithm with
Dirichlet transmission conditions, which does not converge without overlap. We chose for the problem
parameters ν = 0.2, a = 1, b = 0. We discretize (3.1) using an upwind finite difference discretization
in space with mesh parameter ∆x = 0.02, and a backward Euler discretization in time, with time step
∆t = 0.005. We chose L1 = 2.96 and L2 = 3.04, which means the overlap is L = 0.08, and we compute
the numerical solution in the time interval [0, T = 2.5]. Using as initial condition

u(x, 0) = e−3(1.2−x)2 ,
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we have already shown in Figure 3 for this example the first few iterations at the end of the time interval
T = 2.5, where we started the algorithm with a zero initial guess, both for the classical and the optimized
waveform relaxation algorithm. In Figure 5 on the left,
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Figure 5: Left: convergence factors of the classical Schwarz waveform relaxation algorithm with Dirichlet
transmission conditions compared to the same algorithm with the new first order transmission conditions.
Right: the error obtained running the algorithm with first order transmission conditions for 5 steps and
various choices of the free parameters p and q, and indicated by a star the choice p∗, q∗ predicted by the
theory.

one can see the performance of the classical algorithm and the one with first order Taylor con-
ditions, p = pT = 1 and q = qT = 0.4, and with optimized parameters, which were found to be
p = p∗ = 1.366061845 and q = q∗ = 0.1363805228 using Theorem 4.3. It is important to realize that
the computational cost per iteration of all these algorithms is the same: a change in the transmission
conditions does not affect the local solver cost on each subdomain.

In Figure 5 on the right, we performed five iterations of the optimized Schwarz waveform relaxation
algorithm with first order transmission conditions, varying the free parameters p and q, and show the
base 10 logarithm of the error obtained. We indicate by a star the optimal parameters p∗, q∗ predicted
by Theorem 4.3. This shows that the continuous analysis predicts the optimal choice very well.

To illustrate the asymptotic results given in Theorem 4.3 for the Taylor conditions and in Theorem 4.4
for the optimized ones, we choose the same problem parameters as before, but start now with a coarser
mesh both in space and time, ∆x = 0.04 and ∆t = 0.01, and we fix the overlap to be L = ∆x. We then run
the optimized Schwarz waveform Relaxation algorithm with first order Taylor and optimized transmission
conditions until the error becomes smaller than 10−14, and count the number of iterations. We repeat this
experiment dividing ∆x and ∆t by 2 several times. This corresponds for the first order Taylor conditions
to the case in Theorem 4.3 where the convergence factor should behave like 1 − O(

√
∆x), and for the

first order optimized conditions to the case in Theorem 4.4 where the convergence factor should behave
like 1 − O(∆x

1
8 ), almost independent of ∆x. Figure 6 shows on the left
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Figure 6: Asymptotic behavior as the mesh is refined with an overlap L = ∆x: on the left the case
where ∆t = O(∆x) and on the right where ∆t = O(

√
∆x), together with the predicted rates from the

analysis, both for the classical and the optimized Schwarz waveform relaxation algorithms with Taylor
and optimized first order transmission conditions.

the results obtained from these experiments. One can see that the asymptotic analysis predicts
very well the numerical behavior of the algorithms. Next, we perform a similar experiment, starting
with the same values for ∆x and ∆t, but now we divide ∆x by 2 each time and ∆t only by

√
2 (such

a refinement is admissible, since our scheme is implicit), which implies ∆t = O(
√

∆x). While this
does not change anything for the classical algorithm, which still has the same bad convergence factor
1 − O(∆x), for the algorithm with Taylor first order transmission conditions now case 3 of Theorem 4.3

applies, and the algorithm should show the much better convergence factor 1−O(∆x
1
4 ). The optimized

Algorithm has according to Theorem 4.4 now the even better convergence factor 1−O(∆x
1
16 ), virtually

independent of ∆x. In Figure 6 on the right, one can clearly see that this is the case. The algorithm has
different asymptotic convergence factors with the same overlap, depending on the discretization in time,
as predicted.

6.2 Experiments with Eight Subdomains

We now show experiments which indicate that the results we obtained for two subdomains are also
relevant for many subdomains. Using the same model problem as before, we now decompose the domain
into eight subdomains. In Figure 7, we show in the top row the first 3 iterations of the classical Schwarz
waveform relaxation algorithm, and below the same iterations for the algorithm with optimized first order
transmission conditions.
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Figure 7: From left to right, the first, second and third iterates uk
j (x, T ), j = 1, . . . , 8 (dashed) at the end

of the time interval t = T together with the exact solution (solid) for the same model problem as before:
top row the classical and bottom row the optimized algorithm.

This clearly shows how important the transmission conditions are in the many subdomain case. We
show the corresponding convergence factors in Figure 8 on the left, and on the right we perform the same
asymptotic experiments as in Figure 6 on the left, but now with eight subdomains, which indicates that
the results of Theorems 4.3 and 4.4 also hold for more than two subdomains.

7 Conclusions

We presented and analyzed a homographic best approximation problem for complex functions of one
complex variable, which is important for the performance of a new class of waveform relaxation algo-
rithms. We showed that the best approximation problem has at least one solution and that all solutions
satisfy an equioscillation property. In the case of a compact domain, we also proved that the solution is
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unique. An important part of the analysis is the study of local minima. We then introduced the new
waveform relaxation algorithm, whose performance relies on the optimization of the convergence factor
on a range of relevant discrete frequencies. Using the general results in the first part, we were able to
prove an “overequioscillation property” for this particular problem, which leads to explicit formulae for
the optimal parameters in one dimension. We also derived asymptotic formulas, both for the one and
higher dimensional cases, which permit the direct use of the optimized algorithms in practice.
We showed that the new algorithm is well posed and convergent, and that it greatly outperforms the
classical one. Our analyses concern both the overlapping and nonoverlapping cases. Therefore the new
algorithm can be used with or without overlap, which is an advantage for local adaptation in space-time.
Further improvements of our work will concern higher dimensions with variable coefficients.
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