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Crack propagation from a pre-existing flaw at a notch root. I.
Introduction and general form of the stress intensity factors at the
initial crack tip

JEAN-BAPTISTE LEBLOND1 and PIERRE MOURO2
1Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Tour 66, 4 place Jussieu,
75005 Paris, France
2Laboratoire de Mécanique des Solides, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France

Abstract. This paper and its companion are devoted to the study of crack kinking from some small pre-existing
crack originating from a notch root (the notch root radius being zero). Both the notch boundaries and the initial
crack are allowed to be curved; also, the geometry of the body and the loading are totally arbitrary. The ingredients
required are knowledge of the stress intensity factors at the initial crack tip and use of a suitable mixed mode
propagation criterion. This paper is devoted to the first point, and more specifically to establishing the general
(that is, not yet fully explicit) form of the formulae giving these stress intensity factors. The method used is based
on changes of scale (homogeneity properties of the equations of elasticity) on the one hand, and on continuity
of the displacement and stresses at a given, fixed point with respect to the crack length on the other hand. The
formulae derived for the stress intensity factors at the tip of the small crack are of universal value: they apply
to any situation, whatever the geometry of the body, the notch and the crack and whatever the loading, the stress
intensity factors depending always only upon the ‘stress intensity factor of the notch’ (the multiplicative coefficient
of the singular stress field near the notch root in the absence of the crack), the length of the crack, the aperture
angle of the notch and the angle between its bisecting line and the direction of the crack.

Key words: Notch, pre-existing crack, mixed mode, stress intensity factors, homogeneity and continuity proper-
ties, universality properties.

1. Introduction

Predicting crack growth from some notch root is a problem of obvious practical importance.
If one adopts the classical theory of LEFM, however, one immediately encounters a problem :
indeed crack propagation cannot occur directly from a notch root because the relevant energy-
release-rate is zero. One is therefore forced to postulate the presence of some pre-existing
small flaw originating from the notch root, and study crack propagation from this initial crack.

We therefore consider the general problem depicted schematically in Fig. 1. An arbitrarily
shaped isotropic elastic body � under plane strain conditions is subjected to arbitrary pre-
scribed displacements up on the portion ∂�u of its boundary ∂� and to arbitrary prescribed
tractions Tp on the complementary portion ∂�T . This body contains a traction-free notch of
apex O, with a zero root radius and an aperture angle 2(π − ψ) (so that ψ represents the
angle between the bisecting line Ox of the notch, oriented towards the material, and the notch
boundaries), with π/2 ≤ ψ ≤ π . The notch boundaries are allowed to be curved; we denote
by C1 the curvature of the upper boundary at the point O and by C2 the curvature of the lower
boundary at the same point. An edge traction-free crack (in full line in Fig. 1) of small length
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Figure 1. The general problem considered.

a originates from the notch apex O. It makes an initial angle ϕ (−ψ < ϕ < +ψ) with the
bisecting line Ox of the notch. It is also allowed to be curved; we denote by C its curvature at
the point O1 . Since in general the crack is loaded in mixed mode I+II, subsequent propagation
will occur along a deviated branch (in dotted line in Fig. 1). The purpose of this paper and its
companion is to predict the beginning of the propagation path, and more specifically the kink
angle χ , that is, the angle between the old and new tangents to the crack at its initial tip (see
Fig. 1)2 .

This goal will be achieved through use of some appropriate mixed mode propagation cri-
terion; we shall choose the well-known and widely accepted principle of local symmetry of
Goldstein and Salganik (1974) in Part II. However, prediction of the kink angle χ through this
criterion of course requires knowledge of the stress intensity factors (SIFs) Kp(a)(p = I, I I )

at the initial crack tip. Calculation of these SIFs, in the limit case a → 0, therefore appears as
an indispensable prerequisite.

This problem has never been envisaged previously with this degree of generality. However,
partial results are available for various particular cases which all involve a notch with straight
boundaries and a straight crack (C1 = C2 = C = 0), and angles ψ and ϕ taking special
values. For instance, it is a classical result that for = π/2 and ϕ = 0 (surface crack
originating perpendicularly from a regular, corner-free free surface), KI (a) � 1.12σ∞

yy

√
πa

and KII (a) = 0, where σ∞
yy denotes the remote tensile stress. The case where ψ = π but

ϕ is arbitrary (semi-infinite crack with an arbitrarily kinked extension) has been extensively
1Rigorously speaking, one should introduce parameters characterizing the geometry of the notch boundaries

and the crack with a higher degree of accuracy than that envisaged here, that is, consider successive derivatives of
the curvatures at the point O. It can easily be verified at the end, however, that this would not modify the results
derived in any way.

2χ is represented as negative in Fig. 1 because ϕ is taken as positive; we shall see in Part II that these angles
are necessarily of opposite signs.
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studied, for instance by Bilby and Cardew (1975), Wu (1978), Amestoy et al. (1979), Amestoy
and Leblond (1992); accurate numerical results are available for that situation. The case where

= π/2 and ϕ is arbitrary (oblique edge crack emanating from a regular free surface)
has been considered by several authors (Wilson, 1969; Sha and Yang, 1985; Aliabadi et al.,
1987), whose (numerical) results have recently been compiled and compared by Fett and
Munz (1997). Finally, these authors have also considered the case where ϕ = 0 but ψ is
arbitrary (crack lying along the bisecting line of an arbitrary notch), using previous works of
Gross (1970), Hasebe and Iida (1978) and Isida (1979); they have derived an approximate but
accurate formula for KI(a)(KII (a) being zero) in that case.

Treating the problem in its full generality (arbitrary geometry of the body, the notch and the
small crack, arbitrary loading) obviously requires a radically new approach. That which will
be used here, which is basically similar to that employed by Leblond (1989) and Amestoy and
Leblond (1992) to study crack kinking in an arbitrarily shaped body subjected to an arbitrary
loading, consists of two steps. The present Part I is devoted to Step 1. It consists of establishing
the general form (that is, not yet fully explicit because it involves some unknown functions)
of the asymptotic expression of the SIFs Kp(a) for a small crack length a. The method is
based on two ingredients : first, changes of scale and homogeneity properties of the equations
of elasticity (invariance of these equations upon homothetical transformations), and second,
continuity properties of the mechanical fields (displacement, stresses) at a given, fixed point
of the body with respect to the crack length a for a = 0. The SIFs at the tip of the small crack
are shown to depend on the ‘stress intensity factor’ κ of the notch (that is, the multiplicative
factor of the singular stress field near the notch root, in the absence of the crack), the length a

of the crack, the aperture angle 2(π − ψ) of the notch and the angle ϕ between its bisecting
line Ox and the initial direction of the crack. The formulae derived are of universal value, that
is, they apply to any situation, whatever the geometry of the body, the notch and the crack and
whatever the loading, the SIFs at the tip of the small crack depending always solely upon the
mechanical and geometrical parameters just mentioned.

The formulae obtained involve some (universal but) unknown functions of the angles ψ

and ϕ. Although the approach used does not provide the values of these functions, it does
yield a method for their determination through solution of a plane strain elasticity problem
corresponding to some special case. Not surprisingly, this special case involves an infinite
body containing a notch with arbitrary aperture angle 2(π − ψ) but straight (C1 = C2 = 0)

boundaries and a straight (C = 0) crack of unit (a = 1) length making an arbitrary angle ϕ

with the bisecting line Ox of the notch.
Step 2 will be envisaged in Part 2. It will consist of explicitly solving the elasticity problem

just mentioned, using Muskhelishvili’s (1952) complex potentials method. The determination
of the kink angle χ of the future extension of the small crack, as a function of the angles ψ

and ϕ, will be envisaged in conclusion.

2. The stress field near the notch root in the absence of a crack

The problem of finding the asymptotic form of the stress field near the apex of a notch with
aperture angle 2(π − ψ) (π/2 ≤ ψ ≤ π) is a very classical one, which was solved for the
first time by Williams (1952). He showed that for ψ < π , the stress field is of the form, in
polar cordinates r, θ :
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σrr(r, θ) = −κ
α

2
(2πr)α−1

[
(3 − α) sin((1 + α)ψ)

(1 − α) sin((1 − α)ψ)
cos((1 − α)θ) + cos((1 + α)θ)

]
,

σθθ(r, θ) = κ
α

2
(2πr)α−1

[
−(1 + α) sin((1 + α)ψ)

(1 − α) sin((1 − α)ψ)
cos((1 − α)θ) + cos((1 + α)θ)

]
,

σrθ(r, θ) = κ
α

2
(2πr)α−1

[
−sin((1 + α)ψ)

sin((1 − α)ψ)
sin((1 − α)θ) + sin((1 + α)θ)

]
,

(1)

where α is the smallest positive solution (varying from 1 for ψ = π/2 to 1/2 for ψ = π ) of
the equation

sin(2αψ) + α sin(2ψ) = 0 (2)

and κ a constant (depending on the far geometry and loading) which we shall call the ‘mode I
stress intensity factor’, or more briefly the ‘stress intensity factor’, ‘of the notch’. The reason
why κ is said to correspond to ‘mode I’ is that the associated stress field is symmetric with
respect to the bisecting line θ = 0 of the notch (σrr and σθθ are even, and σrθ odd, functions of
θ). A ‘mode II stress intensity factor of the notch’ does also exist but it corresponds to some
stress field which is less singular (that is, proportional to some greater power of r) than that
associated to κ (except for ψ = π : limit case of a crack) and therefore negligible in the limit
r → 0.

In fact, formulae (1) involve some degree of arbitrariness in that one can always multiply
κ by some factor while dividing the rest of the expression of the stresses by the same factor.
Choosing this factor (here as unity) means choosing a certain definition for the ‘stress intensity
factor of the notch’. The definition adopted here is the ‘best’ possible one, in the sense that it
possesses the nice properties that κ reduces to the ordinary mode I SIF KI for ψ = π (case
of a crack) and to the uniform tensile stress σyy for ψ = π/2 (case of a regular, corner-free
boundary). This is established in detail in the Appendix.

3. Continuity of the mechanical fields at a given point with respect to the crack length

We now wish to establish that the displacement and stresses at some given, fixed point of the
body are right-hand continuous functions of the crack length a for a = 0+.

Let us first consider the initial situation where the prescribed displacements up are applied
on ∂�u and the prescribed tractions Tp on ∂�T , in the absence of any crack emanating from
the notch root O. The displacement and stresses at the generic point M of the body are then
denoted u(M) and σ (M). One can always suppose that a crack of length a in fact originates
from the point O provided that one exerts on the lips of this crack some suitable closing
tractions T+(s) ≡ σ (s).n+(s), T−(s) ≡ σ (s).n−(s), where s denotes the curvilinear length
along the crack from the point O and n+(s), n−(s) the unit normal vectors to the upper (+)

and lower (−) lips at the point s, oriented towards the opposite lip. These tractions are O(sα−1)

like σ (s).
Let us now consider the final situation where up is still imposed on ∂�u and Tp on ∂�T ,

but a traction-free crack of length a emanates from the point O; equivalently, the tractions
T+(s), T−(s) applied on the crack lips in the initial situation are released. The displacement
and stresses at the point M are then denoted u(M, a) and σ (M, a). If we take the difference
between the final and initial situations, taking advantage of the linearity of the equations of
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elasticity, we obtain some Problem A where a zero displacement is imposed on ∂�u and
a zero traction on ∂�T while tractions −T+(s),−T−(s) are exerted on the crack lips. The
displacement and stresses at the point M are then u(M, a) − u(M) and σ (M, a) − σ (M).

We further define some Problem B in the following way. Let us consider the same geometry
as before, including a crack of length a originating from the point O. Let (e1, e2, e3) denote
an arbitrary orthonormal basis. We again impose a zero displacement on ∂�u and a zero
traction on ∂�T and the crack lips, but now exert a unit point force parallel to ei on the point
M. The resulting displacements on the upper and lower crack lips at the point s are denoted
v(i)+(M, a; s), v(i)−(M, a; s).

Application of Betti’s reciprocity theorem to Problems A and B yields

ui(M, a) − ui(M) = −
∫ a

0

[
T+(s).v(i)+(M, a; s) + T−(s).v(i)−(M, a; s)

]
ds . (3)

Also, differentiating this equation with respect to the coordinates xj of the point M, we get

∂ui

∂xj

(M, a) − ∂ui

∂xj

(M) = −
∫ a

0

[
T+(s).

∂v(i)+

∂xj

(M, a; s) + T−(s).
∂v(i)−

∂xj

(M, a; s)

]
ds . (4)

The quantities (∂v(i)+/∂xj )(M, a; s), (∂v(i)−/∂xj )(M, a; s) in this equation must not be in-
terpreted as strains, since the coordinates with respect to which differentiation is performed
are those of the point of application of the force, not those of the point of observation of
the displacement. Rather, they should be interpreted as displacements on the upper and lower
crack lips at the point s resulting from the application of a unit ‘dipole’ at the point M (that
is, two opposite infinite forces parallel to ei applied on points separated by an infinitesimal
vector parallel to ej , the product of the intensity of the forces and the distance between the
points being equal to unity).

The displacements v(i)+(M, a; s), v(i)−(M, a; s) are obviously bounded by some positive
constant A. Similarly, (∂v(i)+/∂xj )(M, a; s) and (∂v(i)−/∂xj )(M, a; s) being also displace-
ments, as just noted, they are also bounded by some positive constant B. It then follows from
Equations (3) and (4) that

|ui(M, a) − ui(M)| ≤ A

∫ a

0

(∥∥T+(s)
∥∥ + ∥∥T−(s)

∥∥)
ds ; (5)

∣∣∣∣∂ui

∂xj

(M, a) − ∂ui

∂xj

(M)

∣∣∣∣ ≤ B

∫ a

0

(∥∥T+(s)
∥∥ + ∥∥T−(s)

∥∥)
ds . (6)

Since the tractions T+(s), T−(s) are O(sα−1), it follows from inequalities (5) and (6) that
|ui(M, a)−ui (M)| and |(∂ui/∂xj )(M, a)−(∂ui/∂xj )(M)| are O(aα). Since α is positive (see
Section II above), this implies that the displacement and its gradient (and hence the stresses)
at any given, fixed point M are continuous functions of a for a = 0+, q.e.d.

4. Asymptotic form of the stress intensity factors at the tip of a small crack

We shall now examine the asymptotic form of the SIFs Kp(a) at the tip of the crack originating
from the notch root O for a → 0.
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Figure 2. The special case of a circular disk.

We first consider the special case where the body considered is a circular disk of center O,
radius R, endowed with a notch with apex at O and a crack originating from the same point,
and subjected to some boundary traction field T (see Fig. 2). The geometric parameters of the
problem are the radius R, the aperture angle 2(π − ψ) of the notch, the angle ϕ between its
bisecting line Ox and the initial tangent to the crack, the curvatures C1, C2 of the upper and
lower boundaries of the notch, the curvature C of the crack and its length a. Thus the vector
K(a) ≡ (KI (a),KII (a)) of SIFs at the crack tip may be written symbolically as

K(a) ≡ L(R,ψ, ϕ,C1, C2, C, a).T , (7)

where L is a (vectorial) linear functional, depending on the geometric parameters R, ψ , ϕ, C1,
C2, C, a.

It is a classical property of the equations of elasticity that one can obtain a new solu-
tion from an old one by multiplying both the distances and displacements by some arbitrary
positive factor λ while keeping the strains and stresses (and therefore the surface tractions)
unchanged. In this operation, the parameters R, ψ , ϕ, C1, C2, C, a become λR, ψ , ϕ, C1/λ,
C2/λ, C/λ, λa. Furthermore, since the SIFs are limits of certain stress components times the
square root of some vanishingly small distance, they are multiplied by

√
λ in the process. Thus

the functional L satisfies the following ‘positive homogeneity’ property :

L(λR,ψ, ϕ,C1/λ,C2/λ,C/λ, λa).T = √
λ L(R,ψ, ϕ,C1, C2, C, a).T ⇒

L(λR,ψ, ϕ,C1/λ,C2/λ,C/λ, λa) = √
λ L(R,ψ, ϕ,C1, C2, C, a) (∀λ > 0) .

(8)

We now introduce the hypothesis that K(a) behaves like a certain power of the crack length
a for a → 0; this implies that

L(R,ψ, ϕ,C1, C2, C, a) ≡ L
(β)(R,ψ, ϕ,C1, C2, C)aβ + o(aβ) , (9)
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Figure 3. Circular disk within an arbitrary body.

where β is an unknown exponent to be determined and L
(β)(R,ψ, ϕ,C1, C2, C) some new

linear functional1 . Inserting Equation (9) into Equation (8), one gets

L
(β)(λR,ψ, ϕ,C1/λ,C2/λ,C/λ)(λa)β + o(aβ) =

= √
λ

[
L

(β)(R,ψ, ϕ,C1, C2, C)aβ + o(aβ)
] ;

identifying terms proportional to aβ in this equation, one gets the following ‘positive homo-
geneity’ property for the functional L

(β):

L
(β)(λR,ψ, ϕ,C1/λ,C2/λ,C/λ) = λ

1
2 −β

L
(β)(R,ψ, ϕ,C1, C2, C) (∀λ > 0) . (10)

We now come back to the general case where the shape of the body � is arbitrary. We
consider, within �, circular disks of center O and radius R (intended to be shrunk to zero at
the end, but fixed for the moment), containing the entire crack (R > a): see Fig. 3. We denote
by T (R, a) the traction field exerted on the boundary of the disk of radius R, when the crack
length is a, as a result of the application of the prescribed loading (up, Tp) on ∂�u and ∂�T .
Clearly, the SIFs Kp(a) are unchanged if one eliminates the exterior of the disk of radius R

while preserving the traction field T (R, a) exerted on its boundary; thus Equation (7) holds
for that loading :

K(a) ≡ L(R,ψ, ϕ,C1, C2, C, a).T (R, a) . (11)

Now we take the limit a → 0 in the previous equation. Then, R being fixed, T (R, a) tends
towards the traction field T (R) exerted on the boundary of the disk prior to initiation of the
crack, because of the property of continuity of the stresses at a fixed point with respect to a

for a = 0+ established in the previous section. Thus, by Equation (9),
1The notation o(xγ ) is recalled to stand for a function of the form xγ f (x), with limx→0 f (x) = 0.
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K(a) ≡ K(β)aβ + o(aβ), (12)

where

K(β) ≡ L
(β)(R,ψ, ϕ,C1, C2, C).T (R) . (13)

This equation shows that K(β) possesses the remarkable property of depending on the me-
chanical fields only through their value prior to initiation of the crack.

We shall finally show that they depend in fact only on the asymptotic value of the initial
mechanical fields. In order to do so, we shall now let R → 0. Prior to doing that, however, we
rewrite Equation (13), using Equation (10) with λ = 1/R, as

K(β) ≡ R
1
2 −β

L
(β)(1, ψ, ϕ,RC1, RC2, RC).T (R) . (14)

Furthermore, we note that in view of Equations (1), the stresses prior to initiation of the crack
are of the form

σ (r, θ) ≡ κrα−1f(ψ; θ) + o(rα−1)

where r and θ denote polar coordinates, κ the ‘stress intensity factor of the notch’ in the
absence of the crack and α the ‘exponent of the displacements’ as in Section 2, and f(ψ; θ)

some universal (depending only on ψ and θ) symmetric second-rank tensor. It follows that the
traction field T (R) exerted on the boundary of the disk of radius R prior to crack initiation is
of the form

T (R) ≡ κRα−1 {f(ψ; θ).er (θ)} + o(Rα−1) (15)

where er (θ) denotes the unit radial vector and {T(θ)} the surface traction field defined by the
traction T(θ). Inserting Equation (15) into Equation (14) and using linearity, we get

K(β) ≡ κRα− 1
2 −β

L
(β)(1, ψ, ϕ, 0, 0, 0). {f(ψ; θ).er (θ)} + o(Rα− 1

2 −β) . (16)

Now the left-hand side in this formula is in fact independent of R by definition (it is connected
to the SIFs at the crack tip, which are governed only by the geometry of the body and the
loading applied, not by the radius of the fictitious disk envisaged); it follows that the exponent
α − 1

2 − β in the right-hand side must necessarily be zero, which implies that

β = α − 1
2 . (17)

Since α > 1/2 except for ψ = π (case where the notch is in fact a crack), β > 0 except in
that case, which means, by Equation (12), that the SIFs Kp(a) tend to zero with a except for

= π . Equation (16) may be rewritten, using Equation (17), as

K(β) = κL
(β)(1, ψ, ϕ, 0, 0, 0). {f(ψ; θ).er (θ)} + o(R0) .

The left-hand side and the first term of the right-hand side here are independent of R. Hence
the second term of the right-hand side must also be independent of R. Since it tends to zero
with this parameter, it must be zero. Hence we finally get

K(β) = κL
(β)(1, ψ, ϕ, 0, 0, 0). {f(ψ; θ).er (θ)} , (18)

that is,
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K(β) ≡ L(ψ, ϕ)κ , (19)

where L(ψ, ϕ) is a universal vectorial function of the angles ψ and ϕ. The term universal
means that Equation (19) holds for all envisageable geometries and loadings, K(β) being
always given by the product of L(ψ, ϕ) and κ where the function L depends solely on the
arguments ψ and ϕ (and is for instance completely independent of the curvatures C1, C2, C

of the notch boundaries and the crack).

5. Practical calculation of the universal functions Lp(ψ, ϕ)

The reasoning expounded in the preceding section has evidenced the existence of the universal
vectorial function L(ψ, ϕ) but has not provided the values of its components Lp(ψ, ϕ). We
shall now see how this reasoning can be pursued to yield a practical method for effective
determination of these components.

We start from Equations (18) and (19), which imply that

L(ψ, ϕ) = L
(β)(1, ψ, ϕ, 0, 0, 0). {f(ψ; θ).er (θ)} .

Now, by the very definition (9) of the functional L
(β), the preceding expression becomes

L(ψ, ϕ) = lim
a→0

a−β
L(1, ψ, ϕ, 0, 0, 0, a). {f(ψ; θ).er (θ)} =

= lim
a→0

a
1
2 −β

L

(
1
a
,ψ, ϕ, 0, 0, 0, 1

)
. {f(ψ; θ).er (θ)}

(by Equation (8) with λ = a)

= lim
R→+∞ Rα−1

L(R, ψ, ϕ, 0, 0, 0, 1). {f(ψ; θ).er (θ)}

(with R ≡ 1/a, and account being taken of Equation (17)). Using linearity, one therefore
finally gets, for p = I, I I :
Lp(ψ, ϕ) = lim

R→+∞ Lp(R, ψ, ϕ,C1 = 0, C2 = 0, C = 0, a = 1).
{
Rα−1f(ψ; θ).er (θ)

}
. (20)

What Equation (20) says is the following. Consider a circular disk of center O, radius R,

endowed with a notch with apex at O, straight (C1 = C2 = 0) boundaries and aperture angle
2(π − ψ), and a straight (C = 0) crack originating from O of unit (a = 1) length, making
an angle ϕ with the bisecting line Ox of the notch (Fig. 4). Enforce the ‘fundamental’ traction
field

{
Rα−1f(ψ; θ).er (θ)

}
on the boundary of that disk, the boundaries of the notch and the

crack lips remaining traction-free. Then Lp(ψ, ϕ) is identical to the p-th SIF at the tip of the
crack, in the limit R → +∞. It is equivalent to saying that one must consider an infinite body
with the following conditions on the notch boundaries and the crack lips and at infinity :⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ (r, θ = ±ψ).eθ (θ = ±ψ) = 0,∀r > 0 (conditions on the notch boundaries),

σ (r, θ = ϕ±).eθ (θ = ϕ) = 0,∀r, 0 < r < 1 (conditions on the crack lips),

σ (r, θ) = �(r, θ) + o(rα−1) for r → +∞,∀θ,−ψ < θ < +ψ (condition at infinity),

(21)
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Figure 4. The geometry to be considered to determine the functions Lp(ψ,ϕ).

where eθ (θ) denotes the unit orthoradial vector and {�(r, θ)} ≡ {
rα−1f(ψ; θ)

}
the ‘funda-

mental’ stress field defined by Equations (1) except for the omission of the factor κ .
Using a classical LEFM trick, one can remove the imposed stresses from infinity to the

crack lips. The conditions on the notch boundaries and the crack lips and at infinity then
become, instead of (21) :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ (r, θ = ±ψ).eθ (θ = ±ψ) = 0,∀r > 0 (conditions on the notch boundaries),

σ (r, θ = ϕ+).(−eθ (θ = ϕ)) = −�(r, θ = ϕ).(−eθ (θ = ϕ)) = �(r, θ = ϕ).eθ (θ = ϕ)

∀r, 0 < r < 1 (condition on the upper lip of the crack),

σ (r, θ = ϕ−).eθ (θ = ϕ) = −�(r, θ = ϕ).eθ (θ = ϕ)

∀r, 0 < r < 1 (condition on the lower lip of the crack),

σ (r, θ) = o(rα−1) for r → +∞,∀θ, −ψ < θ < +ψ (condition at infinity) .

(22)

One will in fact need a more precise information on the behavior of the stresses at infinity than
Equation (22)4. For r → +∞, the influence of the crack vanishes so that the stresses behave
as if it were absent. Hence σ (r, θ) must behave as rα′−1 where α′ is an exponent ‘adapted’ to
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the notched, crack-free geometry, and therefore satisfying one of the equations

sin(2α′ψ) + α′ sin(2ψ) = 0 , sin(2α′ψ) − α′ sin(2ψ) = 0

(see the Appendix); since σ (r, θ) is o(rα−1) for r → +∞, α′ must in fact be the greatest
solution of one of these equations smaller than α. Since α is the smallest positive solution of
one of these equations, α′ cannot be positive. Hence it is the greatest negative1 solution. It
follows that it must be equal to −α. Thus Equation (22)4 may be refined in the following way
:

σ (r, θ) = O(r−α−1) for r → +∞,∀θ,−ψ < θ < +ψ . (23)

Part II will be devoted to the effective calculation of the functions Lp(ψ, ϕ) through
solution of the plane elasticity problem defined by Equations (22), (23).

Appendix: Definition of the stress intensity factor of a notch

The aim of this Appendix is to provide some justification for the definition of the ‘stress
intensity factor of a notch’ κ implicitly implied in Equations (1) of the text.

It is first necessary to briefly recall some elements of Williams’ (1952) classical treatment
of the problem, based on the search of the form of the Airy stress function φ(r, θ). This
function is looked for in the form φ(r, θ) ≡ rα+1χ(θ) where α is the a priori unknown
‘exponent of the displacements’, that is, the exponent of r in their asymptotic expression for
r → 0. Beltrami’s equation ��φ(r, θ) = 0 yields the differential equation χiv(θ) + ((α −
1)2 + (α + 1)2)χ ′′(θ) + (α − 1)2(α + 1)2χ(θ) = 0, the general solution of which is

χ(θ) = A cos((α − 1)θ) + B sin((α − 1)θ) + C cos((α + 1)θ) + D sin((α + 1)θ)

where A,B,C,D are arbitrary constants. The boundary conditions σθθ (r,±ψ) = φ,rr

(r,±ψ) = 0, σrθ (r,±ψ) = −(φ,θ /r),r (r,±ψ) = 0 then yield the two systems of equations⎧⎪⎨
⎪⎩

A cos((α − 1)ψ) + C cos((α + 1)ψ) = 0,

(α − 1)A sin((α − 1)ψ) + (α + 1)C sin((α + 1)ψ) = 0

and ⎧⎪⎨
⎪⎩

B sin((α − 1)ψ) + D sin((α + 1)ψ) = 0 ,

(α − 1)B cos((α − 1)ψ) + (α + 1)D cos((α + 1)ψ) = 0 .

The condition for the first system to possess a non-trivial (non-zero) solution (A,C), that is,
for its determinant to be zero, reads

sin(2αψ) + α sin(2ψ) = 0

while the analogous condition for the second system is

sin(2αψ) − α sin(2ψ) = 0 .

1The solution α′ = 0 can be ruled out because it only represents some rigid-body (translatory) motion.
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It is easily verified that for ψ < π, the smallest positive1 value of α satisfying one of these
equations, corresponding to the most singular stress field, is in fact a solution of the first
equation. Provided that α takes this particular value, the coefficient A is arbitrary but C is tied
to it through the relation

C = −(1 − α) sin((1 − α)ψ)

(1 + α) sin((1 + α)ψ)
A

while the coefficients B and D are necessarily zero. It follows that the Airy stress function is
of the form

φ(r, θ) = Arα+1
[
cos((1 − α)θ) − (1 − α) sin((1 − α)ψ)

(1 + α) sin((1 + α)ψ)
cos((1 + α)θ)

]
.

Now define

κ ≡ −2(2π)1−α (1 − α) sin((1 − α)ψ)

sin((1 + α)ψ)
A;

the expression of the stress function becomes

φ(r, θ) = κ

2
(2π)α−1rα+1

[
− sin((1 + α)ψ)

(1 − α) sin((1 − α)ψ)
cos((1 − α)θ) + 1

1 + α
cos((1 + α)θ)

]

and it follows that the stresses are given by

σrr(r, θ) =
(

φ,θθ

r2 + φ,r

r

)
(r, θ) =

= −κ
α

2
(2πr)α−1

[
(3 − α) sin((1 + α)ψ)

(1 − α) sin((1 − α)ψ)
cos((1 − α)θ) + cos((1 + α)θ)

]
;

σθθ(r, θ) = φ,rr (r, θ) =

= κ
α

2
(2πr)α−1

[
−(1 + α) sin((1 + α)ψ)

(1 − α) sin((1 − α)ψ)
cos((1 − α)θ) + cos((1 + α)θ)

]
;

σrθ(r, θ) = −
(

φ,θ

r

)
,r

(r, θ) =

= κ
α

2
(2πr)α−1

[
−sin((1 + α)ψ)

sin((1 − α)ψ)
sin((1 − α)θ) + sin((1 + α)θ)

]
,

that is, Equations (1) of the text.
To check that our definition of the ‘stress intensity factor of the notch’ κ is the best possible

one, let us now consider the special situations where ψ = π (case of a crack) and ψ = π/2
(case of a corner-free boundary).

If ψ = π, α = 1/2 so that sin((1 + α)ψ) = −1, sin((1 − α)ψ) = 1, and the expressions
of the stresses become

1The ‘displacement exponent’ α must be positive because the ‘stress exponent’ α − 1 must be greater than
−1 in order for the total elastic energy to be finite.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σrr(r, θ) = κ

4
√

2πr

(
5 cos

θ

2
− cos

3θ

2

)

σθθ(r, θ) = κ

4
√

2πr

(
3 cos

θ

2
+ cos

3θ

2

)

σrθ(r, θ) = κ

4
√

2πr

(
sin

θ

2
+ sin

3θ

2

)
;

they are identical to the classical formulae for a crack loaded in mode I, with κ ≡ KI .

If ψ = π/2, α = 1 so that sin((1 − α)ψ) = sin((1 + α)ψ) = 0, and we get the indeter-

minate form
sin((1 + α)ψ)

(1 − α) sin((1 − α)ψ)
in the expression of the stresses. To find the value of this

indeterminate form, it suffices to note that since the value of α is such that the determinant of
the system in A and C be zero,

(1 + α) cos((1 − α)ψ) sin((1 + α)ψ) − (1 − α) sin((1 − α)ψ) cos((1 + α)ψ) = 0

so that
sin((1 + α)ψ)

(1 − α) sin((1 − α)ψ)
= cos((1 + α)ψ)

(1 + α) cos((1 − α)ψ)
→ cos π

2 cos 0
= −1

2
for ψ → π/2. From there, one immediately derives the expressions of the stresses :⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σrr(r, θ) = κ

2
(1 − cos(2θ)) = κ sin2 θ

σθθ(r, θ) = κ

2
(1 + cos(2θ)) = κ cos2 θ

σrθ(r, θ) = κ

2
sin(2θ) = κ sin θ cos θ,

which correspond to some uniform stress field σyy ≡ κ.

We have thus shown that with our definition of κ, this parameter possesses the nice prop-
erties of reducing to KI for ψ = π (case of a crack) and to σyy for ψ = π/2 (case of a regular
boundary), which justifies our choice.
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