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Self!consistent estimates for the rate!dependent
elastoplastic behaviour of polycrystalline

materials
R. Masson, A. Zaoui

Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, 80017 Palaiseau Cedex, France 

Abstract

Keywords] Creep^ ElasticÐviscoplastic material^ Polycrystalline material^ Inhomogeneous material

0[ Introduction

The self!consistent scheme has been intensively used for forty years in view of
the prediction and the interpretation of the mechanical properties of heterogeneous
materials\ especially polycrystals[ Roughly speaking "Zaoui\ 0886#\ this scheme is
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This paper aims at proving that, contrary to previous contributions to the subject, Hillsconception 
of the nonlinear self-consistent scheme, which has been applied in the past toelastoplasticity and 
to viscoplasticity, can still be adopted with success for elastoviscoplasticity.After a qualitative 
presentation of the main arguments for this statement, a new Hill-typeapproach is proposed for 
rate-dependent elastoplastic heterogeneous materials. The associatedlinearization procedure relies 
on an affine formulation instead of Hills incremental one and onthe use of the correspondence 
principle to solve the concentration problem; this problem isproved to reduce to a linear 
viscoelastic one with eigenstrain, i.e. to a linear thermoviscoelasticproblem. The full set of 
equations is reported for the case of the self-consistent scheme andillustrative applications are 
given for polycrystals: they are shown to be, as expected, alwayssofter than Kröner-type 
predictions and to take better into account the viscoelastic coupling andthe associated long range 
memory effect. In conclusion, the connection and differences betweenthe present approach and 
other ones already proposed for viscoplastic materials is emphasizedand the limits of Hills 
conception itself are acknowledged and discussed.



based on a speci_c method of estimating the average mechanical interactions between
every constituent phase and all the other ones] these interactions are approximated
by the ones which are sustained by an ellipsoidal inhomogeneity\ representative of
the considered constituent\ embedded in a homogeneous in_nite matrix\ made of the
homogeneous equivalent medium "H[E[M[# which is searched for\ subjected to the
macroscopic loading[ This medium is determined by a self!consistency condition
which expresses the fact that the H[E[M[|s overall response results from the weighted
individual contributions of all the phases when they are considered alternatively as
ellipsoidal inhomogeneities[

Whereas this scheme is now widely accepted as a well!de_ned and e.cient model
for elastic "Hershey\ 0843^Kro�ner\ 0847# or linear viscoelastic "Laws andMcLaughlin\
0867# disordered materials such as polycrystals\ its extensions to nonlinear behaviour
are still open to discussion[ During the last decades\ two main approaches have
been proposed in this _eld[ The _rst one\ initially developed by Kro�ner "0850# for
elastoplastic polycrystals as a straightforward application of Eshelby|s solution of the
inclusion problem "Eshelby\ 0846#\ was extended later to rate!dependent elastoplastic
materials by Weng "0870# for in_nitesimal strains and by Nemat!Nasser and Obata
"0875# and by Harren "0880# for _nite strains[ The second one was proposed by Hill
"0854# as an alternative model to that of Kro�ner and then applied and extended to
elastoplastic polycrystals "Hutchinson\ 0869^ Berveiller and Zaoui\ 0868^ Iwakuma
and Nemat!Nasser\ 0873^ Lipinski et al[\ 0889# and developed for viscoplastic
materials "Hutchinson\ 0865^ Molinari et al[\ 0876^ Lebensohn and Tome\ 0882#[ It is
based on the linearization of the constitutive equations and on the use of Eshelby|s
solution of the elastic inhomogeneity problem "Eshelby\ 0846#[

Whereas Hill|s version of the self!consistent scheme rapidly gained acceptance
for rate!independent elastoplasticity\ for de_nite reasons which are recalled in the
following\ no attempt has been made up to now to extend this version to rate!
dependent elastoplasticity[ On the contrary\ Kro�ner|s model has been either claimed
as adapted better "Weng\ 0870# to this case or implicitly considered as such "Nemat!
Nasser and Obata\ 0875^ Harren\ 0880#[ This paper aims at proving the superiority
of Hill|s conception in this case too[

First\ the matter of Hill vs Kro�ner|s controversy for elastoplastic polycrystals is
brie~y recalled in order to prove that the same arguments which lead to acknowledging
the better adequacy of Hill|s conception still hold for rate!dependent elastoplasticity
"Section 1#[ Second\ a new Hill!type approach relying on an {a.ne| formulation is
proposed for this latter case "Section 2# and some applications are developed as an
illustration and compared to Kro�ner|s model!type predictions "Section 3#[ It is shown
that\ as in the case of rate!independent plasticity\ Hill|s conception leads to softer
predictions than Kro�ner|s one[ In conclusion "Section 4#\ the limits and de_ciencies
of Hill|s conception itself are brie~y discussed and further developments are suggested[

1[ Kro
�
ner|s vs Hill|s versions of the nonlinear self!consistent model

Hill vs Kro�ner|s controversy for the self!consistent modelling of elastoplastic poly!
crystals has been already exposed and discussed for a long time "e[g[ Berveiller and
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Zaoui\ 0868#[ First we brie~y report the matter of this debate\ in order to extend the
discussion to the new framework of rate!dependent elastoplasticity[ Kro�ner|s
approach was based on the assimilation of the plastic strain to a {stress!free strain|
"or {transformation strain|\ {eigenstrain| [ [ [# as de_ned by Eshelby in the context of
elasticity and on the associated elastic treatment of the ellipsoidal inclusion problem]
at any given stage of the plastic ~ow\ while the polycrystal is sustaining the macro!
scopic plastic strain E

�
p under the overall stress S

�
\ every set of grains "r# with the same

lattice orientation\ average shape and average plastic strain o
�
p
r is supposed to undergo

the same average back!stress "s
�r−S

�
# as the one sustained by an inclusion "with the

uniform eigenstrain o
�
p
r # embedded in an in_nite matrix "with the uniform eigenstrain

E
�

p#[ For isotropic elasticity\ isochoric plastic strains and spherical shapes\ this treat!
ment leads to the well!known Kro�ner|s concentration "or interaction# equation]

s
�r−S

�
� 1m"0−b#"E

�
p−o

�
p
r # "0#

with b an elastic coe.cient ranging 9[3Ð9[5[
Such a treatment of the intergranular interactions is clearly open to the criticisms

of being a purely elastic "instead of an elastoplastic# one\ according to which the plastic
strains in the inclusion and in the matrix considered when solving the concentration
problem are not disturbed by these mechanical elastic interactions[ Consequently\
this leads to a strong overestimation of these interactions and of the resulting overall
sti}ness of the polycrystal[ As a matter of fact\ the elastic multiplier 1m"0−b# in "0#\
which is of the order of m\ is so high with respect to the yield stress level that it leads
to almost null plastic strain deviations "o

�
p
r−E

�
p#\ which practically makes Kro�ner|s

model coincide with that of Taylor "Taylor\ 0827#\ based on the assumption of
uniform plastic strains[

This is the reason why Hill "0854# proposed an alternative treatment relying on the
incremental linearization of the elastoplastic constitutive equations] at a given stage\
the "r# phase has the instantaneous "multibranched# elastoplastic moduli lepr de_ned
for the average strain o

�r whereas the H[E[M[ has the overall elastoplastic moduli Lep

so that the concentration equation derives from the solution of the corresponding
Eshelby|s inhomogeneity problem for the ellipsoid Vr with the moduli lepr in an in_nite
matrix with the moduli Lep[ In simple cases it can be put in the form

s
¾
�r−S

þ
�
�−L�r ] "o

¾
�r−E

þ
�
#\ "1#

where Hill|s constraint tensor L�r depends on Lep and on the shape and orientation of
Vr[
It has been signi_cantly checked "Hutchinson\ 0869^ Berveiller and Zaoui\ 0868^

Lipinski et al[\ 0889# that\ in agreement with most experimental data\ Hill|s incremen!
tal model yields much softer predictions than those of Kro�ner and Taylor and can
take into better account the speci_c hardening properties of the considered crystals[
Consequently\ Hill|s treatment was accepted as better than Kro�ner|s a long time ago\
as far as rate!independent elastoplasticity was considered[ When the time came to
extend the self!consistent scheme to elastoplastic _nite strains "Iwakuma and Nemat!
Nasser\ 0873^ Lipinski et al[\ 0889#\ Hill|s version was naturally chosen as the adequate
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basis for this development^ moreover\ when Hutchinson wanted to derive self!con!
sistent estimates for creep of polycrystalline materials "Hutchinson\ 0865# in the
framework of viscoplasticity "without elasticity#\ he naturally founded his devel!
opment on Hill|s version too\ by replacing strains by strain rates in the basic inhomo!
geneity problem "before deriving a {secant| formulation for the special case of power!
law creep#[

The question of rate!dependence in the context of the self!consistent schemewas _rst
addressed by Laws andMcLaughlin "0867# for linear viscoelasticity] they proposed to
use the principle of correspondence and the Laplace transform technique in order to
convert the viscoelastic problem into a symbolical elastic one and to derive the
viscoelastic response by _nal inversion of the transformed variables[ But such an
elegant solution of the problem obviously fails for nonlinear viscoelasticity or ela!
stoviscoplasticity[ On the other hand\ Hill|s linearization method does not work any
more\ at least in its simplest form\ due to the simultaneous occurrence in the consti!
tutive equations of time derivatives of di}erent orders of stress and strain\ so that no
simple {tangent| moduli or compliances can be derived straightforwardly[

The existence of such an apparent deadlock on the way to extend Hill|s method to
rate!dependent elastoplasticity may have been the reason why Kro�ner|s approach was
then called for help[ Weng "0870# even found some physical reasons to do so] his
analysis of the {time!dependent creep problems| concluded that {{[ [ [ Kro�ner|s model
then becomes entirely consistent [ [ [ The crux of the matter is that creep\ unlike plastic
deformation\ is a truly {stress!free| process in the sense of Eshelby\ because the creep
strain rate\ at any generic state\ depends only on the current stress and deformation
history and is independent of the stress rate[ The latter independence obviously does
not hold in plasticity\ and this leads to the presence of tangent moduli in Hill|s
constraint tensor[ This subtle point appears to have not been realized [ [ [||[

Actually\ whether the creep strain rate is dependent or not on the stress rate does
not matter] the actual {crux of the matter| is that\ {at any generic state| and at any
point x of the heterogeneous material\ the anelastic strain and its rate depend on the
local mechanical state and are not known in advance[ In other words\ the simple
decomposition of the total local strain into its elastic and viscoplastic parts\ say

o
�
"x\ t#� o

�
el"x\ t#¦o

�
vp"x\ t# "2#

with Hooke|s equations ruling the elastic behaviour

o
�
el"x\ t#� s"x#]s

�
"x\ t# "3#

through the elastic compliance s"x# cannot be considered as yielding constitutive
equations for elastoviscoplasticity as long as the stress!dependence of o

�
vp"x\ t# has not

been speci_ed[ Recall here that Eshelby|s treatment of the inclusion problem relies on
the fact that the {stress!free strain| is given a priori and does not depend on the
mechanical loading\ so that the foregoing relations are "elastic# constitutive equations
and can be used as such in order to solve the concentration problem[ If rate!dependent
as well as rate!independent plasticity is considered and if the same equations are used
as constitutive equations when solving the concentration problem\ this means that
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the considered constitutive behaviour is a purely elastic one "with eigenstrains#]
consequently\ the resulting concentration equations will express elastic intergranular
interactions instead of elasto"visco#plastic ones\ as it was already discussed when
criticizing Kro�ner|s original model[

More recently\ Weng|s formulation was extended to _nite strains either within an
Eulerian "Nemat!Nasser and Obata\ 0875# or a Lagrangian "Harren\ 0880# approach[
The corresponding analyses did not resume explicitly Weng|s arguments about the
physical nature of the creep strain rate but they used the classical Green function
technique in a way which indeed presupposed Weng|s arguments to be valid[ If\ for
the sake of simplicity\ we get rid of the technical complication of the _nite strain
formalism which is not essential for our present purpose and if we convert their
treatment into the framework of in_nitesimal strain analysis\ this waymay be summed
up as follows]

*consider the decomposition of the total strain rate into its elastic and viscoplastic
parts and Hooke|s equations as constitutive equations\ both at the micro and the
macroscale\ namely

s
¾
�r � cr] "o

¾
�r−o

¾
�
vp
r #

S
þ
�
�CSC] "E

þ
�
−E

þ
�

vp# "4#

with {SC| standing for {self!consistent| and with cr and CSC the local and overall elastic
moduli^

*use the Green technique in order to solve the elastic problem of an ellipsoidal
inhomogeneous inclusion Vr"cr\ o

¾
�
vp
r # embedded in the in_nite homogeneous matrix

"CSC\E
þ
�

vp# through the strain!Green operator of the "elastic# e}ective medium G
SC\

with o
¾
�
vp
r and E

þ
�

vp uniform[ This resolution can make use of the well!known uniformity
of the "hereafter mentioned as# {Green tensor|

PSC
r "x#� gVr

G
SC"x−x?# dV? "5#

when x $Vr^

*combine the resulting concentration relation with the constitutive equations and
the average conditions in order to predict the overall behaviour[

The corresponding equations are a special case of the general equations for the
homogenization of a heterogeneous linear thermoelastic medium\ i[e[ a linear elastic
medium with eigenstrains^ if Ar and Br are the average strain and stress concentration
tensors for the phase "r#\ respectively\ in the absence of eigenstrains and if o

�
T
r and E

�
T

are the local and overall eigenstrains\ we have\ as classically]

Ceff �ðc]AŁ�ðtA] c]AŁ

Seff � "Ceff#−0 �ðs]BŁ�ðtB] s]BŁ
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Ar � sr]Br]ðs]BŁ
−0

E
�

T �ðtB] o
�
TŁ�Seff]ðtA] c] o

�
TŁ\ "6#

where tA stands for the transposed tensor of A and ð=Ł denotes a spatial average^ in
addition\ a "model!dependent# concentration equation and a speci_c expression for
Ar or Br are needed[

When applied to the self!consistent scheme and to the special case which is under
consideration here\ the resulting procedure is nothing but the self!consistent elastic
treatment for an elastic inhomogeneous body with "known# eigenstrain rates[ It is easy
to show that additional simpli_cations "uniform elasticity\ spherical representative
inclusions and isotropy# lead to Kro�ner|s concentration eqn "0#\ written for rates[
An illustration of the fact that such a modelling of rate!dependent elastoplastic
heterogeneous materials reduces to the transcription "or the extension to _nite strains#
of Kro�ner|s model can be found in the comparisons which have been performed by
Harren "0880# between its own predictions and those derived from the Taylor model
for various responses and texture evolutions corresponding to problems of metal
forming] it can be checked that\ as expected from what precedes\ these predictions
almost coincide [ [ [ [

At this point\ we can conclude that\ for rate!dependent elastoplasticity\ Kro�ner|s
approach is as inadequate as it was for rate!independent elastoplasticity and that
Hill|s conception would be more appropriate in this case too[ It remains to make
e}orts in order to accommodate Hill|s conception to the speci_c di.culties associated
with the rate!dependence and especially with the critical viscoelastic coupling[ In
addition\ while adopting Hill|s general point of view\ we can feel free to choose
another formulation than Hill|s incremental one[ This is done in what follows by
combining a new {a.ne| formulation and the use of the correspondence principle
"and the associated Laplace transform technique# in this new linearized quasi!{ther!
moviscoelastic| context[

2[ A new Hill!type formulation for rate!dependent elastoplasticity

If we try to extract the essential features of Hill|s approach "Hill\ 0854# to the self!
consistent modelling of nonlinear heterogeneous materials\ we can stress two basic
ideas] the _rst one is the reduction of the nonlinear homogenization procedure to a
"quasi!#linear one through some adequate linearization of the constitutive equations^
the second one refers to the derivation of self!consistent concentration equations from
the resolution of Eshelby!type problems where both the ellipsoidal inhomogeneity
and the in_nite matrix are given uniform linearized properties[Within this framework\
several variants can exist and we can _nd in the literature several Hill!type formu!
lations\ for elastoplasticity as well as for viscoplasticity\ which mainly di}er from each
other in the chosen linearizationmethod[ So\ we have _rst to decide which formulation
to adopt[
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2[0[ Which formulation<

In the case of elastoplasticity\ as brie~y mentioned above ðeqn "1#Ł\ the original Hill
method consisted in an incremental procedure based on the de_nition of instantaneous
multibranched elastoplastic moduli lepr and Lep relating the local and global stress and
strain rates\ respectively[ The choice of an incremental formulation was closely related
to the multibranched nature of the elastoplastic constitutive equations and to the
irreversibility of the plastic strain[ According to this incremental formulation "Hut!
chinson\ 0869#\ the overall elastoplastic response to a given loading path is derived
through a step by step procedure] at each step\ the initial mechanical state of every
phase is known from the resolution of the linearized self!consistent problem associated
to the previous step^ the local elastoplastic moduli lepr are then updated as is the global
one Lep too from the self!consistent equation[ The mechanical state of every phase
can be updated from the concentration equations and the procedure may be resumed
for the next step[

An alternative approximate treatment which can still be considered as related
to Hill|s approach was proposed later "Berveiller and Zaoui\ 0868# for monotonic
proportional loading paths] based on the deformation theory of plasticity\ it makes
use of isotropic secant elastoplastic moduli and does not di}er in nature from a
nonlinear elastic treatment[ At any stage\ the overall secant moduli and the associated
local and global mechanical variables can be derived independently of their values at
any other stage through the "nonlinear# determination of a self!consistent ensemble
of local and global quantities[ A secant formulation has also been proposed in
the case of viscoplasticity] starting from a strict transcription of Hill|s incremental
formulation\ now relating the stress rate and the second!order time derivative of the
strain\ Hutchinson "0865# showed that for power!law creep this formulation can
rigorously be integrated into a {total| one which makes use of anisotropic secant creep
compliances[

Apart from various extensions to _nite strains which can be omitted here\ a new
Hill!type formulation was proposed by Molinari et al[ "0876# for viscoplasticity and
developed later by Lebensohn and Tome "0882#[ This formulation is neither an
incremental nor a secant one] it makes use of {tangent| moduli as well as of initial
stresses for the linearization of the local and overall constitutive equations[ Roughly
speaking\ it proposes to assimilate at any stage the nonlinear curve correlating the
viscoplastic strain rate and the stress to its tangent at this stage[ This is done not only
for the constituent phases but also for the overall behaviour[ Through the restriction
to power!law creeping phases with the same exponent\ the authors consider as granted
that the overall response obeys a similar power!law and that the overall moduli are
{tangent| to the overall response[ That is why this formulation can be referred to as a
{tangent formulation|[

Starting from a similar linearization method at the local level\ adapted to the case
of rate!dependent elastoplastic materials\ Rougier et al[ "0883# proposed a di}erent
homogenization procedure of the thermo"visco#elastic type\ referring to linear vis!
coelasticity with eigenstrains[ We adopt the same general framework in the following\
but we modify di}erent aspects of this formulation in order to transform it into a
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consistent {a.ne| one "see Masson\ 0887 or Zaoui and Masson\ 0887# in the speci_c
context of rate!dependent elastoplasticity[

2[1[ The linearization procedure

We consider a representative volume element V of a multiphase material[ At each
point x and at any time t\ the total strain rate is the sum of the elastic and the inelastic
"either viscous or viscoplastic# strain rates according to "2#[ The inelastic strain
generally depends on internal parameters which model irreversible or viscous pro!
cesses such as hardening e}ects[ Furthermore\ we assume time e}ects to dominate "no
rate!independent plasticity# so that the inelastic strain is derived from a viscoplastic "or
nonlinear viscoelastic# potential w"x\s

�
\ a#]

o
¾
�
in"x\ t#�

1w

1s
�

"x\s
�
\ a#�

�̀
"x\s

�
\ a#\ "7#

where the internal parameters a\ which are supposed here\ for the sake of simplicity\
to be vectorial variables\ obey evolution equations of the form

a
¾ "x\ t#�h"x\s

�
\ a#[ "8#

Both functions
�̀
and h are nonlinear but continuous in s

�
and a[

The mechanical macroscopic loading is supposed to be null before t�9 and known
at any time t− 9[ We want to predict the overall response at some time t� t[ Thus
we have to derive linearized local constitutive equations referring to the heterogeneous
material at time t� t but\ due to the viscoelastic coupling\ these constitutive equations
have to be expressed for any t^ in addition\ for the same reason\ we have to be able\
at t� t\ to consider as known the whole local stress and strain histories at any point
x up to t� t[

Before dealing with this speci_c di.culty "see Section 2[2#\ we have to identify the
mechanical nature of the local linearized constitutive equations in order to predict
the form of the global ones[ This will be _rst discussed\ for a better understanding\ in
the simpler case where the ~ow function

�̀
does not depend on internal variables a[

Since the variable x remains _xed in this section\ it is omitted in the following[

2[1[0[ Simple case
In this case\ the local nonlinear constitutive equations read

o
¾
�
in"t#�

�̀
"s
�
"t##[ "09#

According to our a.ne approach\ the linearized constitutive equations read for t− t]

o
¾
�
"t#� s]s¾

�
"t#¦m"t#]s

�
"t#¦o

¾
�
9"t\ t# "t− t#\

m"t#�
d
�̀

ds
�

"s
�
"t##\

o
¾
�
9"t\ t#�

�̀
"s
�
"t##−m"t#]s

�
"t#\ "00#
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where the fourth!order tangent creep compliance m"t# and the strain rate o
¾
�
9"t\ t#

express the stress!dependence of the inelastic strain in a linearized way[
As explained above\ we need\ at t� t\ constitutive equations for any t] so an

expression similar to "00# must be de_ned for 9¾ t¾ t too[ Instead of a linear
relation\ it is then better to use the potentially known nonlinear expression
o
¾
�
in"t# �

�̀
"s
�
"t## for t¾ t[ Consequently\ denoting by H"t# the unit step function at

t�9\ the complete set of constitutive equations to be considered in the state cor!
responding to t reads\ for any t]

o
¾
�
"t#� s]s¾

�
"t#¦m"t#]s

�
"t#¦o

¾
�
9"t\ t#\

m"t#�
d
�̀

ds
�

"s
�
"t##\

o
¾
�
9"t\ t#�

�̀
"s
�
"t##−m"t#]s

�
"t#

¦ð
�̀
"s
�
"t##−

�̀
"s
�
"t##−m"t#] "s

�
"t#−s

�
"t##Łð0−H"t−t#Ł[ "01#

The crucial point of the proposed method lies in the nature of these constitutive
equations and especially in the nature of the auxiliary strain rate o

¾
�
9"t\ t#[ Except for

this contribution\ "01# de_ne an ordinary linear viscoelastic "Maxwellian# behaviour^
as for the additional term o

¾
�
9"t\ t#\ the important thing to notice is that it can be

considered as entirely known in advance for any t when using "01#\ since all the
involved quantities will have been determined on ð9\ tŁ "see Section 2[2#[ It follows
that o¾

�
9"t\ t# can be considered as a true {stress!free strain rate| "or an eigenstrain rate#

in a sense somewhat generalized from that of Eshelby and it will be dealt with as such
in the sequel[ Let us emphasize the fact that this eigenstrain rate o¾

�
9"t\ t# has nothing

in common with the one which is considered in Kro�ner|s type models\ namely o
¾
�
in"t#[

In this treatment\ similarly to Hill|s elastoplastic one\ the _rst!order stress dependence
of the viscoplastic part of the strain rate is well accounted for through the tangent
creep compliance m"t#] this compliance\ which could be considered as multibranched
as well\ accounts for the viscoelastic or elasticÐviscoplastic ~ow[

In other words\ the a.ne formulation allows the concentration problem to be
transformed into a linear thermo"visco#elastic type problem] we put our linearized
constitutive equations in the more classical form used for linear viscoelasticity "with
eigenstrains# through the use of a Stieljes!type convolution product\ denoted by &

and de_ned as

ðst &s
�
Ł"t\ t#�

d
dt $g

t

9

st"t\ t−u#]s
�
"u# du%

� g
t

9

st"t\ t−u#]s¾
�
"u# du¦st"t\ t#]s�"9#

� g
t

9

dst
du

"t\ u#]s
�
"t−u# du¦st"t\ 9#]s�"t#\ "02#
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where possible discontinuities of the involved quantities\ considered as generalized
functions\ have to be taken into account^ eqns "01# then read]

o
¾
�
"t#� ðst &s

¾
�
Ł"t\ t#¦o

¾
�
9"t\ t#\

st"t\ t#� s¦m"t#t\

m"t#�
d
�̀

ds
�

"s
�
"t##\

o
¾
�
9"t\ t#�

�̀
"s
�
"t##−m"t#]s

�
"t#

¦ð
�̀
"s
�
"t##−

�̀
"s
�
"t##−m"t#] "s

�
"t#−s

�
"t##Łð0−H"t−t#Ł[ "03#

We can then be sure that the corresponding overall constitutive equations will read]

E
þ
�
"t#� ðSt &S

þ
�
Ł"t\ t#¦E

þ
�

9"t\ t#\

S
þ
�
"t#� ðCt & "E

þ
�
−E

þ
�

9#Ł"t\ t#\ "04#

with the homogenized quantities St"t\ t#\ Ct"t\ t# and E
þ
�

9"t\ t# derived from the cor!
responding local ones through equations similar to "6#\ extended to viscoelasticity by
use of the correspondence principle[ Of course\ the Laplace transform technique is
expected to be of some use when dealing with such calculations "see hereafter#[

2[1[1[ General case
We go back to the more general behaviour de_ned by "7# and "8# where aI"9¾ I¾N#
could be\ in the case of a crystalline material\ some reference shear stress on the slip
system "I#[ The linearization method is the same as above[ For t− t\ we write from
"7# and "8#]

o
¾
�
"t#� s]s¾

�
"t#¦

�̀
"t#¦m"t#] ðs

�
"t#−s

�
"t#Ł¦n"t# = ða"t#−a"t#Ł\

a
¾ "t#�h"t#¦p"t#] ðs

�
"t#−s

�
"t#Ł¦q

�
"t# = ða"t#−a"t#Ł "t− t#\ "05#

where
�̀
"t# and h"t# are shortened notations for

�̀
"s
�
"t#\ a"t## and h"s

�
"t#\ a"t##\ respec!

tively\ q
�
"t# is a second!order "N×N# matrix whereas n"t# and p"t# are third order

""2×2×N# and "N×2×2# resp[# matrices[ Their components read\ with "i\ j�0\ 1\ 2#
and "I\ J�0\ [ [ [ \N#]

mijkl"t#�
1`ij
1skl

"s
�
"t#\ a"t##\

nijI"t#�
1`ij
1aI

"s
�
"t#\ a"t##\

pIkl"t#�
1hI
1skl

"s
�
"t#\ a"t##\

qIJ"t#�
1hI
1aJ

"s
�
"t#\ a"t##\ "06#
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where q
�
"t# is assumed to be invertible with q

�
−0"t# its inverse and I

�a the associated unit
"N×N# matrix[
Instead of "05#\ di}erent expressions hold for t− t[ To make them simpler\ we _rst

solve "05# as a di}erential equation for a"t# with a continuity condition at t� t\
namely\

a"t#−a"t#� a"t\ t#¦g
t

9

e
�
"t−u#q

�
"t# = p"t#]s

�
"u# du\ "07#

where the matrix exponential of tq
�
"t# and a"t\ t# are de_ned by

e
�
tq
�"t# �s

�

9

0
m;

"tq
�
"t##m

and

a"t\ t#�q
�

−0"t# = ðe
�
"t−t#q

�
"t#−I

�aŁ = ðh"t#−p"t#]s
�
"t#Ł−g

t

9

e
�
"t−u#q

�
"t# = p"t#]s

�
"u# du[

Thus\ we get for t− t]

t− t o
¾
�
"t#� s]s¾

�
"t#¦m"t#]s

�
"t#¦n"t# = g

t

9

e
�
"t−u#q

�
"t# = p"t#]s

�
"u# du¦o

¾
�
9"t\ t#

o
¾
�
9"t\ t#�

�̀
"t#−m"t#]s

�
"t#¦n"t# = a"t\ t#[

As before\ o¾
�
9"t\ t# can be given its actual potentially known value for t¾ t instead of

the linearly back!extrapolated one[ For the same reasons as above it can be considered
as a true eigenstrain rate and dealt with as such when solving the corresponding linear
thermoviscoelastic concentration problem[

Finally the linearized constitutive equations read]

o
¾
�
"t#� ðst &s

¾
�
Ł"t\ t#¦o

¾
�
9"t\ t#\

st"t\ t#� s¦m"t#t−n"t# = q
�

−0"t# = ðI
�at¦q

�

−0"t# = "I
�a−e

�
tq
�
"t##Ł = p"t#\

o
¾
�
9"t\ t#�

�̀
"t#−m"t#]s

�
"t#¦n"t# = a"t\ t#¦e¾

�
"t\ t#ð0−H"t−t#Ł\

e¾
�
"t\ t#�

�̀
"t#−

�̀
"t#−m"t#] "s

�
"t#−s

�
"t##−n"t#

= $a"t\ t#¦g
t

9

e
�
"t−u#q

�"t# = p"t#]s
�
"u# du%\ "08#

with m"t#\ n"t#\ p"t#\ q
�
"t# and a"t\ t# de_ned above[ In the following\ we suppose st

to have the full diagonal symmetry "i[e[ stijkl� stklij#[ Clearly\ this condition implies
some restrictions on the form of the ~ow and hardening functions

�̀
and h[ This point

will be evoked later "Section 3#[
According to the above discussion\ we can once again presume that the cor!
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responding overall constitutive equations will read as in "04#[ Equivalent integrated
expressions can be used instead of "04# or of "08#[ For instance\ at the local level\ they
have the form

o
�
"t#� ðst &s

�
Ł"t\ t#¦o

�
9"t\ t#\

o
�
9"t\ t#� o

�
9"t\ 9#¦g

t

9

o
¾
�
9"t\ u# du\

a"t#� a"9#¦g
t

9

h"u# du\ "19#

with o
�
9"t\ 9¦# � o

�
"9¦#−s]s

�
"9¦# when the initial response at t�9¦ is elastic[

Notice that\ instead of the proposed resolution of "05# as a di}erential equation
for a"t#\ we could have used the LaplaceÐCarson transform technique as well "see
Navidi et al[\ 0885# with the same result[ Since this technique is applied in the following
to the resolution of the homogenization problem\ we now indicate some aspects of
the way it will be used hereafter[

2[1[2[ LaplaceÐCarson transformation
For any time t\ we are left with a linear viscoelastic homogenization problem which\
except for the presence of an eigenstrain\ is classical[ The usual way to solve it is to
convert this problem into an elastic one by use of the correspondence principle[ A
convenient tool for that is the LaplaceÐCarson transform technique which transforms
any temporal function f "t# into a symbolic function f�"p# of the complex variable p
according to

f �"p#�p g
¦�

9

f "t# e−pt dt[

Consequently\ our transformed linearized constitutive equations read

o
�
�"p#� s�t"t\ p#]s��"p#¦o

�
9�"t\ p#

with

s�tijkl"t\ p#�sijkl¦
0
p
mijkl"t#¦

0
p
nijI"t#wIJ"t\ p#pJkl"t#

"i\ j\ k\ l� 0\ 1\ 2^ I\ J� 0\ [ [ [ \N^w
�
"t\ p#� ðpI

�a−q
�
"t#Ł−0#[

After the resolution of the symbolic elastic homogenization problem\ an inversion
of the transformed quantities is needed[ In the sequel\ we use the collocation method
according to which any complex function f�"p# is approximated as a _nite series of
the form

12



f �"p#¼ a¦
b

p
¦ s

k�M

k�0

fk
0

0¦puk
\

so that f "t# can be estimated as

f �"p#¼ a¦bt¦ s
k�M

k�0

fk"0−e−
t
uk#[

Additional details are given in Appendix A[

2[2[ The homo`enization scheme

In order to derive the macroscopic response as well as the local stresses and internal
variables at t� t\ we need to know the entire local mechanical history from t�9 to
t� t in every phase[ This is already apparent before specifying any homogenization
model when we use the correspondence principle in order to solve the concentration
problem within the linearized framework which has been described above] referring
to the elastic problem with eigenstrains whose general homogenization relations have
been described in "6#\ we have now to write with obvious notations

Ct"t\ t#�ððct &AtŁ"t\ t#Ł\

St"t\ t#�ððst &BtŁ"t\ t#Ł\

Art"t\ t#� ðsrt &Brt &ðst &BtŁ
−0&Ł"t\ t#\

E
þ
�

9"t\ t#�ððtBt & o
¾
�
9Ł"t\ t#Ł� ðSt &ðtAt & ct & o

¾
�
9ŁŁ"t\ t#\ "10#

where crt"t\ t# "resp[ Ct"t\ t## is the convolutive reciprocal of srt"t\ t# "resp[ St"t\ t##
through the operation] ct"t\ t#� ðst"t\ t#Ł

−0&[
Notice _rst that we need to know o

¾
�
9"t\ t# for any t¾ t\ which means that we have

to know the local stress and internal variables for t¾ t too[ Moreover\ except for
very crude estimates such as ReussÐVoigt ones for which the concentration tensors
At or Bt reduce to unity and the stress or strain concentration equations are time!
invariant\ the choice of speci_c concentration tensors and equations will enhance this
necessity[

The same conclusion can be drawnwhen considering the LaplaceÐCarson transform
of "10#\ namely]

C�t"t\ p#�ðc�t"t\ p#]A�t"t\ p#Ł\

S�t"t\ t#�ðs�t"t\ p#]B�t"t\ p#Ł\

A�rt"t\ p#� s�rt"t\ p#]B�rt"t\ p#]ðs�t"t\ p#]B�t"t\ p#Ł
−0\

E
�

9�"t\ p#�ðtB�t"t\ p#] o�
9�"t\ p#Ł�S�t"t\ p#]ð

tA�t"t\ p#] c�t"t\ p#] o�
9�"t\ p#Ł\ "11#

with c�rt"t\ p#� ðs�rt"t\ p#Ł
−0 and C�t"t\ p#� ðS�t"t\ p#Ł

−0[
So we have to overcome two kinds of di.culties[ On the one hand\ an a.ne "by

contrast with an incremental# approach leads to concentration tensors and equations\
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which are necessary to determine the local and global mechanical responses at time
t� t\ depending themselves on these mechanical responses\ so that the whole non!
linear problem has an implicit nature[ On the other hand\ due to the viscoelastic
coupling\ we even need to know not only these responses at time t� t\ but also at
any previous time from t�9[ Consequently\ we have to proceed in the following
general way] the whole concerned time interval ð9\ tŁ must be discretized with inter!
mediate times ti and the associated unknown variables s

�r"ti\ ti# and ar"ti\ ti# as derived
from an a.ne model de_ned at t� ti^ an iterative scheme has then to be elaborated
so as to allow us the simultaneous determination of these variables which have\ for
some given macroscopic loading path\ to satisfy at any ti the concentration and
constitutive equations referring to ti\ which depend themselves on the set of values of
these variables on the interval ð9\ tiŁ[ On the contrary\ an incremental formulation\
aiming at deriving at t� t time increments of the local stresses and internal variables
and of the associated time increments of the overall quantities\ would have to use
already determined histories of the local variables on ð9\ tŁ\ as derived from their
incremental "step by step# computation on this interval[

Additional details on this question are given in the next subsection 2[3 which is
devoted to the self!consistent scheme[ But we emphasize that the proposed treatment
is quite general and is not restricted to this scheme "see e[g[ Beurthey\ 0886 for an
application to the generalized self!consistent scheme and to polymer blends#[

2[3[ Application to the self!consistent scheme

Up to now\ we have applied the a.ne linearization procedure at each point x of
every phase "r# so that the linearized {comparison medium| "according to Ponte
Castan½eda\ 0880# is a continuously heterogeneous one[ Drastic simpli_cations are
needed now when choosing a speci_c homogenization scheme\ so as to deal with
uniform per phase tangent compliances and prestrain rates[ These quantities will be
de_ned at the phase stress averages s

�r[ Obviously this is a crucial "but usual# assump!
tion which we have to keep in mind "see Section 4#[

The concentration tensors Art"t\ t# and Brt"t\ t# which are then uniform per phase
are derived from the case of inhomogeneous elasticity with eigenstrains which has
already been discussed in Section 1\ by simply replacing the involved constant quan!
tities by the LaplaceÐCarson transformed of the variable ones[ According to classical
results in elasticity\ we have now]

A�rt"t\ p#� "I¦P�rt] "c�rt−C�t##
−0]ð"I¦P�t] "c�t−C�t##

−0Ł−0\

P�rt"t\ p#� gVr

G�t"t\ p\xr\x?r# dV?r\

B�rt"t\ p#� "I¦Q�rt] "s�rt−S�t##
−0]ð"I¦Q�t] "s�t−S�t##

−0Ł−0\

Q�rt"t\ p#�C�t−C�t]P�rt]C�t[ "12#

As for the concentration equation\ it can be written for the local stresses s
�r"t# instead
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of the strains[ When restricting oneself\ as done in the sequel\ to identically shaped
and oriented ellipsoidal "or spherical# inclusions\ this equation reads simply

s
�
�r"t\ p#�B�rt]S��¦B�rt]Q�t] "E�

9
t �−o

�
9
rt�# "13#

or\ in the real space t]

s
�r"t\ t#� ðBrt &S

�
Ł"t\ t#¦ðBrt &Qt & "E

�
9
t−o

�
9
rt#Ł"t\ t#\ "14#

whereas internal variables ar"t\ t# are de_ned by "19#[ Notice that\ as suggested in the
preceding subsection\ eqns "12#Ð"14# will have to be used at previous times ti too[
Consideration of "14# makes the di}erence between the a.ne and incremental

formulations quite clear for the self!consistent scheme] whereas a concentration equa!
tion for an incremental treatment would relate s¾

�r"t\ t# and S
þ
�
"t#\ E

þ
�

9
t "t\ t#\ o

¾
�
9
rt"t\ t# by an

equation similar to "14#\ the time derivative of s
�r"t# from this equation would make

additional terms appear\ originating from the stress!dependence of the involved quan!
tities[

Di}erent iterative schemes could be conceived in order to determine intermediate
values of the local stresses and internal variables at times ti prior to t� t as argued
in subsection 2[2[ The one we have selected looks for the set "s

�r"ti\ ti#\ ar"ti\ ti## by
_nding the solution through increasing values of ti from 9 to t] an iterative procedure
has then to be used at each ti[ The corresponding numerical implementation may be
summed up as follows[ Let us consider e[g[ a given prescribed macroscopic stress
path S

�
"t#[ In order to derive the macroscopic response E

�
"t#\ we _rst determine\

through an elastic analysis\ the initial response E
�
"9¦# and the associated initial local

stresses\ strains\ eigenstrains and internal variables[ Suppose we have succeeded in
deriving these variables at increasing times t0\ t1\ [ [ [ \ ti−0[ In order to do the same at
time ti� ti−0¦dt close to ti−0\ we _rst estimate a trial set of values for s

�r"ti# and
ar"ti# from the known state at ti−0\ namely

s
�
"0#
r "ti#�s

�r"ti−0\ ti#

� ðBr\i−0 &S
�
Ł"ti−0\ ti#¦ðBr\i−0 &Qi−0 & "E

�
9
i−0−o

�
9
r\i−0#Ł"ti−0\ ti#

a"0#
r "ti#� ar"ti−0\ ti#� ar"ti−0\ ti−0#¦hr"ti−0\ ti−0#dt[

From these estimates\ tentative local creep compliances and eigenstrains as well as
overall creep compliance S"0#

i "ti\ t#\ eigenstrain E
�

9"0#
i "ti\ t#\ Green and concentration

tensors Q"0#
i "ti\ t#\ B

"0#
r\i "ti\ t# are evaluated as explained in Appendix B[ This de_nes a

new a.ne model which allows one to get updated estimates for s
�r"ti\ ti# and ar"ti\ ti#\

say

s
�
"1#
r "ti#� ðB"0#

r\i &S
�
Ł"ti\ ti#¦ðB"0#

r\i &Q"0#
i & "E

�
9"0#
i −o

�
9"0#
r\i #Ł"ti\ ti#\

a"1#
r "ti#� ar"ti−0\ ti−0#¦ð"0−u#hr"ti−0\ ti−0#¦uh"0#

r "ti\ ti#Łdt\

with u $ ð9\ 0Ł "u¼ 9[4#[ Notice that the use of a linear interpolation for stresses and
internal variables associated to the collocation method allows us to compute the
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convolution products analytically[ If these new estimates deviate too much from the
previous ones "say by a relative variation larger than 0)#\ they are updated once
more and the process is repeated until adequate convergence is obtained] a very small
number of inner iterations "mostly only one# was found enough at each ti[
We emphasize once more that\ even in this {step by step| version\ this a.ne

formulation does not reduce to an incremental one\ which would deal with di}erent
concentration equations at each step[ It is easily extended to the case of a prescribed
macroscopic strain or strain rate path\ as considered in some of the following illustra!
tive applications to the prediction of the mechanical response of rate!dependent
elastoplastic face!centred cubic polycrystals[

3[ Application to FCC polycrystals

The volume sample is now constituted of a large number of single crystals[ They
have the same ellipsoidal "in practice\ spherical# shape and are perfectly bounded at
the boundary[ They only di}er by their lattice orientation which is de_ned by three
Euler angles so that volume averages over the whole sample reduce to averages over
these orientations[

3[0[ Sin`le crystal behaviour

In the following\ we assume that the inelastic strain is only due to glide on slip
systems[ Denoting by ns and ms\ the unit vector normal to the slip plane and along
the slip direction of the slip system "s#\ we de_ne the orientation tensor of this slip
system by

Rs"kl# �
0

1
ðns"k#ms"l#¦ns"l#ms"k#Ł\

so that the resolved shear stress on this system reads

ts �R
�s]s�[

The traceless inelastic strain rate is the sum of the contributions of the shear rates
g
¾9
s on all the systems\ i[e[

o
¾
�
in �s

s

g
¾
sR�s\

where the shear rate g
¾
s is taken to depend on the stress through the resolved shear

stress in the form

g
¾
s � g

¾9
s 0tst9s 1

n

[

The power!law exponent n is the inverse of the material rate sensitivity\ g¾9s is a
reference slip rate of system "s# and t9s its reference shear stress[ In general\ t9s depends
on temperature and inelastic work[ However\ intragranular hardening e}ects are
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neglected in the sequel so that the reference shear stress is kept constant under
isothermal conditions[ Consequently\ the creep compliance at each step t is given by

stijkl"t\ t#�sijkl¦ns
s

g
¾9
s

t9s 0
ts"t#

t9s 1
n−0

Rs"ij#Rs"kl#t

which respects the full diagonal symmetry condition supposed in Section 2[

3[1[ Polycrystal overall responses

In the following\ we consider an isotropic aggregate of face!centred cubic crystals[
In each crystal\ glide occurs on octahedral slip systems[ All these twelve slip systems
have the same reference shear strain rates g¾9 and shear stresses t9[ In addition\ the
elastic behaviour is taken isotropic "Young modulus Ey and Poisson ratio n#[ The
material constants are] n�4\ t9:Ey�09−2 and n� 0

2
[

The polycrystal is untextured] the considered inclusions are spherical and averages
are obtained from an addition over eighty four equally weighted orientations[ The
accuracy of each simulation was evaluated by decreasing the number of orientations
down to forty[ Relative deviations between the two types of simulations never
exceeded one percent[ Time integrations of Taylor|s model andKro�nerÐWeng|s model
were carefully conducted through a classical fourth!order RungeÐKutta method[ As
for our model\ the computation of the LaplaceÐCarson transformed of the con!
centration tensors involves evaluations of the Green tensor which are reported in
Appendix C[

The polycrystal is subjected to the macroscopic stress S
�
[ In the steady regime\

Hutchinson "0865# has shown that the steady creep strain rate is a homogeneous
function of degree n of the overall stress[ In addition\ since the polycrystal is isotropic\
the equivalent e}ective steady strain rate reads

E
þ

eq � g
¾9 0Seq

S9 1
n

[ "15#

The reference stress S9 governs the steady regime of the polycrystal and does not
depend on the loading path[Moreover\S9:t9 depends only on the power!law exponent
n for a given radial loading[

3[1[0[ Tensile stressÐstrain curves
The polycrystal is subjected to a monotonically increasing uniaxial tensile test at a
_xed axial strain rate[ The simulations of the polycrystal tensile strainÐstress responses
according to Taylor|s model\ Kro�nerÐWeng|s model and our model are shown in Fig[
0[

As previously mentioned in the rate!independent context\ both self!consistent sch!
emes lead to quite similar predictions in the early stage of the plastic ~ow[ According
to the present model\ the behaviour is indeed quasi!elastic in this range so that the
concentration tensors are very close to elastic Kro�ner|s ones[ But the di}erences
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Fig[ 0[ Normalized tensile stressÐstrain curve for an isotropic rate!dependent elastoplastic FCC polycrystal
as predicted from Taylor|s model\ Kro�nerÐWeng|s model and this model "t9:Ey�09−2\ n�4\ E

þ
:g¾9�0

with E
þ
the overall prescribed axial strain rate#[

are increasing whereas the plastic ~ow occurs[ As in the case of rate!independent
elastoplasticity\ the use of the elasticÐviscoplastic tangent modulus instead of the
elastic one increases the overall inelastic strain for a given macroscopic stress[ Pre!
dictions are then softer than the classical ones[

The axial stress of the polycrystal tends towards a steady value for increasing plastic
strains[ According to "15#\ this steady e}ective axial stress reads

S�S9 0E
þ

eq

g
þ9 1

0:n

[

Like BishopÐHill|s limit yield stress for rate!independent elastoplasticity\ Taylor|s
asymptotic value is an upper bound for this limit stress[ For this power!law exponent\
Taylor|s reference stress S9 is

S9
¼ 1[65t9\

which is in very good agreement with the result directly obtained by Hutchinson
"0865#[ As discussed before\ it is not surprising that Kro�nerÐWeng|s steady stress
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coincides with that of Taylor since the steady viscoplastic strain rate becomes uniform
in the whole polycrystal when the stresses reach their steady values[

3[1[1[ Creep
The polycrystal is now subjected to a creep tensile test[ Under a stepwise application
of the axial stress\ single crystals are elastically stressed so that the instantaneous
response at t�9 is elastic[ Consequently\ the initial stresses are uniform in the
polycrystal so that the e}ective strain at t�9 reads

E
þ
�
"t#�W g¾9"t9#−n s

s

ðR
�s]S�Ł

nR
�ss`"R�s]S�#w[

Since the single crystal responses display transverse isotropy around the axial
loading direction\ their study can be restricted to one spherical standard triangle[ The
evolutions of the local stresses for four orientations are reported in Fig[ 1 with the
corresponding orientations indicated in the standard triangle attached to this _gure[

Whereas stress heterogeneities predicted by the present theory are lower than
Kro�nerÐWeng|s model ones\ the variations obtained in the transient regime are
qualitatively similar[ As before\ both predictions deviate in the steady creep regime[

Fig[ 1[ Intragranular stress evolution during a tensile creep test "S:1t9�1# for some crystals of an isotropic
rate!dependent elastoplastic FCC polycrystal "s is the equivalent stress\ t9:Ey�09−2\ n�4#[
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In this regime\ Kro�nerÐWeng|s model coincides again with that of Taylor which yields
an upper bound for the e}ective creep strain rate[ Once again\ "15# is satis_ed with
very good agreement[

At odds with this result\ our model predicts a signi_cant creep strain heterogeneity[
Therefore\ creep strain rates have been evaluated for 10 equally weighted orientations
in the standard triangle[ In the resulting Fig[ 2\ we have reported the local normalized
equivalent creep strain rates] the corresponding relative ~uctuations can reach 39)[
This clearly illustrates the grain!to!grain viscoplastic incompatibility during the steady
creep regime[ Conversely\ the grain!to!grain quasi!compatibility associated with
Kro�ner|s approach leads to overestimating the single crystal stresses while the cor!
responding steady strains are underestimated "see Fig[ 3#[

In Fig[ 4 the overall axial creep strain response predicted by both self!consistent
schemes has been reported[ As before\ the e}ective response predicted by the present
model is de_nitely much softer[ Of course our treatment needs much "¼09Ð29 times#
longer computations than that of Weng but the results obtained look much more
realistic[

More recently\ Weng "0882# proposed a new version of an approximate self!

Fig[ 2[ Normalized intragranular equivalent steady creep strain rates for grains of an isotropic rate!
dependent elastoplastic FCC polycrystal as predicted from this model "S:1t9�1^ E

þ
and o

¾ denote the
overall and local equivalent creep strain rates\ respectively^ t9:Ey�09−2\ n�4#[
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Fig[ 3[ Intragranular equivalent strain evolution during a tensile creep test "S:1t9�1# for some crystals of
an isotropic rate!dependent elastoplastic FCC polycrystal as predicted by Kro�nerÐWeng|s model "dashed
lines# and this model "oe is the elastic response at t�9^ t9:Ey�09−2\ n�4#[

consistent scheme taking into account the viscoplastic ~ow of the polycrystal in a
simpli_ed way\ but the results obtained from this scheme still lead to uniform creep
strains in this steady regime[ This can be shown to be due to the simpli_ed form of
the interaction law[

4[ Conclusion

This study shows that Hill|s conception for extending the self!consistent model
for nonlinear constitutive behaviour has not to be restricted to rate!independent
elastoplasticity and viscoplasticity but can indeed be applied successfully to rate!
dependent elastoplasticity[ This conception relies on a linearization procedure applied
to the local constitutive equations which leads to much softer mechanical interactions
between the constituents than the ones derived from the elastic Kro�ner!type analysis
adopted in previous treatments[ The associated predictions for typical mechanical
responses of FCC polycrystals have been shown to be\ as expected\ more realistic "i[e[
softer# than that of Kro�nerÐWeng[ Similar conclusions have also been drawn from
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Fig[ 4[ Evolution of the overall axial strain during a tensile creep test "S:1t9�1# for an isotropic rate!
dependent elastoplastic FCC polycrystal as predicted by Kro�nerÐWeng|s model and this model "Ee is the
overall instantaneous elastic response at t�9^ t9:Ey�09−2\ n�4#[

other current applications "hexagonal crystals\ Masson\ 0887\ polymer blends\ coup!
ling to rate!independent plasticity\ Beurthey\ 0886 [ [ [#[

Instead of Hill|s original incremental formulation\ a new {a.ne| approach has been
adopted here] it leads to the reduction of the concentration problem to a linear
thermoviscoelastic one which can be solved by use of the correspondence principle and
classical results of the homogenization theory of linear thermoelastic heterogeneous
bodies[ The viscoelastic coupling and the associated long range memory e}ect are
responsible for a rather complex "though tractable# numerical implementation] this
complexity is related to the dependence of the current response on the whole former
load history[ The same a.ne formulation can be applied more easily to rigid!vis!
coplasticity or nonlinear elasticity "Masson and Zaoui\ 0886^ Masson\ 0887^ Zaoui
and Masson\ 0887#[ In these cases\ it has proved to yield softer responses than
Hill|s incremental and Hutchinson|s secant formulations which have been shown
"Gilormini\ 0884# to lead to the violation of a nonlinear upper bound for the moduli[
These apparent merits of the a.ne formulation which\ contrary to the tangent method
of Molinari et al[ "0876# and Lebensohn and Tome "0882#\ does not lead to a Reuss!
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type behaviour with an increasing nonlinearity for power!law creep and can deal with
more general constitutive behaviour\ are likely to be correlated with its relationship
to the {second!order procedure| recently proposed by Ponte Castan½eda "0885#[ The
main advantage of the a.ne formulation with respect to this procedure lies in its
ability to be extended to elastoviscoplasticity which cannot be de_ned by one single
potential[ Though no variational approach leading to nonlinear bounds still exists in
this _eld\ the a.ne method is expected to yield more realistic predictions than the
incremental one in this case too[

Nevertheless\ we cannot expect the a.ne version of the self!consistent scheme to
be immune to bounds violation since it is based on an approximate resolution of the
basic underlying matrix:inclusion problem where both moduli are assumed to be
uniform whereas they should vary from point to point with the local stresses and
strains[ According to the {linear composite comparison medium| point of view\ this
intrinsic limit of Hill|s conception itself\ whatever formulation one has chosen\ orig!
inates in the rough approximation of the substitution of the actual continuously
heterogeneous linear comparison medium by a simpli_ed body with tangent moduli
which are uniform per phase and de_ned at some reference "usually phase average#
stress or strain[ Obviously\ this suggests the need for further developments which\
similarly to the {modi_ed secant moduli theory| "Suquet\ 0884#\ would refer the
phase properties to re_ned average quantities in connection with adequate variational
procedures [ [ [ [
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Appendix A] Numerical inversion of the LaplaceÐCarson transformation

Let us consider e[g[ the LaplaceÐCarson transform of the e}ective compliance
tensor S�t"t\ p#[ The asymptotic behaviour of St"t\ t# is _rst determined from one of
the local compliances which obey

lim
=p=:�

s�t"x\ t\ p#� s"x#\ lim
p:9

p = s�t"x\ t\ p#� svt"x\ t#\

with the purely viscous part svt "x\ t# given by

svt "x\ t#�mt"x\ t#−nt"x\ t# = ðqt"x\ t#Ł
−0 = pt"x\ t#[

Assuming the e}ective symbolic properties to be continuous functions of the local
compliances\ we can de_ne the e}ective elastic and purely viscous overall compliances
S and Sv

t by
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lim
=p=:�

S�t"t\ p#�S lim
p:9

p = S�t"t\ p#�Sv
t \ "16#

which is equivalent "limit value theorem# to

lim
t:9

St"t\ t#�S\ lim
t:�

St"t\ t#
0
t
�Sv

t [ "17#

According to the collocation method\ we are looking for an approximation of
St"t\ t# in the form of a Dirichlet series\ namely

St"t\ t#�S¦Sv
tt¦ s

k�M

k�0

btk"0−e−
t
uk#[

The M relaxation times uk are chosen equispaced on a logarithmic scale over six
decades\ with M¼ 19[ From the computed values of S�t"t\ p# at M real points
pl� "0:ul#"0¾ l¾M#\ we are left with a linear system of N equations\ namely

0¾ l¾M S�t"t\ pl#�S¦Sv
t

0
pl
¦ s

k�M

k�0

btk
0

0¦pluk
[

The resolution of this system then leads to the determination of the set of the unknown
fourth!order tensors "bt0\ [ [ [ \ btM# and to the expected Dirichlet series[

A similar treatment is used for the overall moduli\ Green and concentration tensors[
As pointed out by Turner and Tome "0882# for linear viscoelasticity\ the elastic and
purely viscous self!consistent e}ective compliance tensors are given by substituting
s�t in "11# by s or svt \ respectively[ This asymptotic analysis allows the collocation
method to be focused on the transient regime\ which greatly improves the quality of
the numerical inversions[

Appendix B] Numerical resolution of the self!consistent equation

Given an intermediate time ti\ the creep and purely viscous compliances and eig!
enstrains are _rst computed in each phase[ Note once more that these eigenstrains
have to be evaluated from t�9 to t� ti for each phase[

To get the e}ective tangent behaviour at ti\ M scalar collocation points
ðp0³ = = =³ pMŁ are chosen and the LaplaceÐCarson transform of every creep com!
pliance is expressed at each collocation point[ The resolution of the nonlinear equa!
tions "11# yields the purely viscous e}ective compliance Sv

ti
[ The following iterative

process is used to solve this equation] we start with the _rst estimate Sv"0#
ti

�ðsvtiŁ[ The
stress concentration tensors are then derived in each phase\ which improves the
estimate of the purely viscous e}ective compliance Sv"1#

ti
by using "11#[ This iterative

process is repeated until adequate convergence is achieved[ Starting from
S"0#
ti
�"ti\ pl#�S¦"0:pl#S

v
ti
\ the same iterative scheme is used to evaluate the LaplaceÐ

Carson transform S�ti"ti\ pl# at each collocation point pl[ Once these calculations are
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performed\ the creep compliances and concentration tensors are evaluated by the
collocation method[ The overall eigenstrain is then deduced from "10#[

Appendix C] Calculation of the concentration tensors

Any self!consistent model involves an evaluation of the Green tensor PSC
r for the

e}ective medium[ For the applications considered in Section 3\ we restrict ourselves
to a simple tension loading\ so that the LaplaceÐCarson transform of the e}ective
compliance tensor S�t"t\ p# displays transverse isotropy with respect to the tensile axis[
In this case\ evaluation of PSC

r only needs the use of ordinary integrals[ Corresponding
formulae are\ for instance\ detailed in Hutchinson "0869# "with some misprints rec!
ti_ed in Hutchinson\ 0865#[ Then the concentration tensors are evaluated in each
phase through "12#[

However\ due to the viscous incompressibility\ these formulae do not strictly apply
to the derivation of the asymptotic purely viscous e}ective compliance needed for the
LaplaceÐCarson inversions[ We then proceeded in an approximate manner by using
the former calculation of S�t"t\ p# for a very small value po of p[ As Hutchinson already
did in the viscoplastic context "Hutchinson\ 0865#\ this amounts to introducing a
small compressibility for the derivation of PSC

r [ The e}ective purely viscous com!
pliance Sv

t is then given by

Sv
t ¼ poS�t"t\ po#[

Numerical tests were performed to ensure that decreasing this small compressibility
does not signi_cantly change the _nal result[

References

Berveiller\M[\ Zaoui\ A[\ 0868[ An extension of the self!consistent scheme to plastically ~owing polycrystals[
J[ Mech[ Phys[ Solids 15\ 214Ð233[

Beurthey\ S[\ 0886[ Mode�lisations du comportement d|alliages de polyme�res[ Ph[D[ thesis\ E
ł
cole Poly!

technique\ France[
Eshelby\ J[D[\ 0846[ The determination of the elastic _eld of an ellipsoidal inclusion and related problems[

Proc[ Roy[ Soc[ London A130\ 265Ð285[
Gilormini\ P[\ 0884[ Insu.sance de l|extension classique du mode�le autocohe�rent au comportement non

line�aire[ C[R[ Acad[ Sci[ Paris 219 II\ 004Ð011[
Harren\ S[V[\ 0880[ The _nite deformation of rate dependent polycrystals I and II[ J[ Mech[ Phys[ Solids

28\ 234Ð272[
Hershey\ A[V[\ 0843[ The elasticity of an isotropic aggregate of anisotropic cubic crystals[ A[S[M[E[ J[

Appl[ Mech[ 10\ 125Ð139[
Hill\ R[\ 0854[ Continuum micro!mechanics of elastoplastic polycrystals[ J[ Mech[ Phys[ Solids 02\ 78Ð090[
Hutchinson\ J[W[\ 0869[ ElasticÐplastic behaviour of polycrystalline metals and composites[ Proc[ Roy[

Soc[ London A208\ 136Ð161[
Hutchinson\ J[W[\ 0865[ Bounds and self!consistent estimates for creep of polycrystalline metals[ Proc[

Roy[ Soc[ London A237\ 090Ð016[

25



Iwakuma\ T[\ Nemat!Nasser\ S[\ 0873[ Finite elasticÐplastic deformation of polycrystalline metals[ Proc[
Roy[ Soc[ London A283\ 76Ð008[

Kro�ner\ E[\ 0847[ Berechnung der elastischenKonstaten des Vielkristalls aus denKonstaten des Einkristalls[
Z[ Phys[ 040\ 493Ð407[

Kro�ner\ E[\ 0850[ Zur plastischen Verformung des Vielkristalls[ Acta[ Metall[ Mater[ 8\ 044Ð050[
Laws\ N[\ McLaughlin\ R[\ 0867[ Self!consistent estimates for the viscoelastic creep compliance of com!

posite materials[ Proc[ Roy[ Soc[ London A248\ 140Ð162[
Lebensohn\ R[\ Tome\ C[N[\ 0882[ A self!consistent anisotropic approach for the simulation of plastic

deformation and texture development of polycrystals] application to zirconium alloys[ Acta[ Metall[
Mater[ 30\ 1500Ð1513[

Lipinski\ P[\ Krier\ J[\ Berveiller\ M[\ 0889[ E
ł
lastoplasticite� des me�taux en grandes de�formations] com!

portement global et e�volution de la structure interne[ Rev[ Phys[ Appl[ 14\ 250Ð277[
Masson\ R[\ 0887[ Estimations non line�aires du comportement global de mate�riaux he�te�roge�nes en for!

mulation a.ne[ Ph[D[ thesis\ E
ł
cole Polytechnique\ France[

Masson\ R[\ Zaoui\ A[\ 0886[ From rate!dependent to rate independent self!consistent modeling of ela!
stoplastic multiphase materials[ In] Khan\ A[S[ "Ed[#\ Physics and Mechanics of Finite Plastic and
Viscoplastic Deformation[ Neat Press\ Maryland\ U[S[A[\ pp[ 198Ð109[

Molinari\ A[\ Canova\G[R[\ Ahzi\ S[\ 0876[ A self!consistent approach of the large deformation polycrystals
viscoplasticity[ Acta[ Metall[ Mater[ 24\ 1872Ð1883[

Navidi\ P[\ Rougier\ Y[\ Zaoui\ A[\ 0885[ Self!consistent modelling of elasticÐviscoplastic multiphase
materials[ In] Pineau\ A[\ Zaoui\ A[ "Eds[#\ Micromechanics of Plasticity and Damage of Multiphase
Materials[ Kluwer Academic\ Dordrecht\ pp[ 012Ð029[

Nemat!Nasser\ S[\ Obata\ M[\ 0875[ Rate!dependent _nite elastoplastic deformation of polycrystals[ Proc[
Roy[ Soc[ London A386\ 232Ð264[

Ponte Castan½eda\ P[\ 0880[ The e}ective mechanical properties of nonlinear composite materials[ J[ Mech[
Phys[ Solids 28\ 34Ð60[

Ponte Castan½eda\ P[\ 0885[ Exact second order estimates for the e}ective mechanical properties of nonlinear
composite materials[ J[ Mech[ Phys[ Solids 33\ 716Ð751[

Rougier\ Y[\ Stolz\ C[\ Zaoui\ A[\ 0883[ Self!consistent modelling of elasticÐviscoplastic polycrystals[ C[R[
Acad[ Sci[ Paris 270 II\ 034Ð040[

Suquet\ P[\ 0884[ Overall properties of nonlinear composites] a modi_ed secant moduli theory and its link
with Ponte Castan½eda|s nonlinear variational procedure[ C[R[ Acad[ Sci[ Paris 219 II\ 452Ð460[

Taylor\ G[I[\ 0827[ Plastic strain in metals[ J[ Inst[ Metals 51\ 296Ð213[
Turner\ P[A[\ Tome\ C[N[\ 0882[ Self!consistent modeling of viscoelastic polycrystals] application to

irradiation creep and growth[ J[ Mech[ Phys[ Solids 30\ 0080Ð0100[
Weng\ G[J[\ 0870[ Self!consistent determination of time!dependent behaviour of metals[ J[ Appl[ Mech[

37\ 30Ð35[
Weng\ G[J[\ 0882[ A self!consistent relation for the time!dependent creep of polycrystals[ Int[ J[ Plast[ 8\

070Ð087[
Zaoui\ A[\ 0886[ Structural morphology and constitutive behaviour of micro!heterogeneous materials[ In]

Suquet\ P[ "Ed[#\ Continuum Micromechanics\ CISM Lecture Notes[ Springer Verlag\ Berlin\ pp[ 180Ð
236[

Zaoui\ A[\Masson\ R[\ 0887[Micromechanics!basedmodeling of plastic polycrystals] an a.ne formulation[
In] NSF!IMM Symposium on Micromechanical Modeling of Industrial Materials[ Seattle\ July 0887\
to appear[

26


