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A counter-example to uniqueness in quasi-static elastic
contact problems with small friction

Patrick Ballard *
Laboratoire de Mécanique des Solides, Ecole Polytechnique, 91128 Palaiseau Cédex, France

It is often conjectured that the existence and uniqueness of solutions to the quasi-static Signorini
problem with Coulomb friction should hold, provided that the friction coe�cient is lower than a critical
value. Recently, the existence of solutions to the quasi-static Signorini problem with non-local Coulomb
friction was shown (M. Cocu, E. Pratt, M. Raous, Int. J. Engng. Sci. 34 (1996) 783±798) in functional
spaces of type W1,p(0, T) and for a su�ciently low friction coe�cient. In this paper, it is proved that 
uniqueness does not hold, in general, for an arbitrarily small friction coe�cient.

1. Introduction: the Signorini problem with Coulomb friction

The problem of the equilibrium of a linear elastic body submitted to unfrictional unilateral

contact conditions with a rigid obstacle was ®rst considered by Signorini [1] and solved by

Fichera [2]. Fichera's existence and uniqueness proof was followed immediately by general

results on abstract variational inequalities [3]. These results allowed the solution of many non-

linear boundary problems [4±6].

From a mechanical point of view, the will to incorporate friction in Fichera's analysis of the

Signorini problem rapidly emerged [7] and what is often called the Signorini problem with

Coulomb friction began to be considered. This problem is not an equilibrium problem any

more but an evolution problem. This problem faced great mathematical di�culties. For this

reason, only an equilibrium problem (the so-called static one), obtained by a simpli®cation of
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the equations, was ®rst considered [4]. Having introduced a regularization (the non-local
friction law), existence and uniqueness of the solution to the regularized static problem was
shown by Duvaut [8±10] under a condition on the friction coe�cient: it must be lower than a
critical value. This result was followed by an existence result of the static problem without
regularization and under a similar condition on the friction coe�cient [11, 12]. The results
concerning the static problem allowed Klarbring to prove the existence and uniqueness of
solutions of the rate problem associated with the regularized (by non-local friction law) quasi-
static problem [13]. This result was still obtained under the condition on the friction coe�cient.
It is worth underlining that, as far as systems with a ®nite number of degrees of freedom (dof)
are considered, the non-local regularized problem reduces to the unregularized one. To stress
the importance of the condition on the friction coe�cient, Klarbring [15] performed the
complete analysis of the rate problem associated with a 2 dof quasi-static problem and
exhibited explicitly the condition on the friction coe�cient for which existence and uniqueness
for the rate problem was achieved. He showed that as soon as this condition is violated, non-
uniqueness of solution to the evolution problem may be observed. From a mechanical point of
view, the non-uniqueness for great friction coe�cient is attributed to the physical irrelevancy of
the model, since inertia forces are neglected.
These results have led the community to conjecture that, provided the condition on the

friction coe�cient, existence and uniqueness of solutions to the quasi-static Signorini problem
with Coulomb friction should hold. A ®rst step towards this direction was accomplished
recently by Cocu et al. [14] who proved the existence of solutions to the non-local regularized
quasi-static problem in functional spaces of type W1,p(0, T).
In this paper, an n dof problem is considered. A complete analysis of this problem is

provided. For n = 2, this problem reduces to Klarbring's one [15]. In this case, it is proved
that, under Klarbring's condition, existence and uniqueness of the solution to the evolution
problem is achieved in an appropriate functional framework (let us recall that Klarbring
proved only the existence and uniqueness for the associated rate problem). For the case nr3,
existence is proved under a condition which generalizes Klarbring's one. A counter-example is
constructed which shows that in this case, uniqueness does not hold, in general, for an
arbitrarily small friction coe�cient.

2. Presentation of the problem and a statement of the results

2.1. Description of the problem and notations

Let n (nr2) be an arbitrary integer (the interesting cases will be n= 2 and n= 3). (0, eN,
eT1, . . . , eT(n ÿ 1)) is an orthonormal coordinate system in euclidean Rn. A punctual particle,
whose position at time t is given by U(t) = UN(t)eN+UT(t), is considered, where UT(t) is the
orthogonal projection of UT(t) on the subspace of Rn spanned by (eT1, eT2, . . . , eT(n ÿ 1)). All
inertia e�ects are neglected. The particle is ``kept'' by a system of linear springs (see Fig. 1) so
that the force exerted by the springs on the particle is (after linearization) ÿKU(t), where K is a
symmetric positive de®nite matrix of order n (the sti�ness matrix). Reciprocally, if K is an
arbitrary symmetric positive de®nite matrix, it always corresponds to such a system of springs.
An external force F(t), varying with time, is also applied on the particle. Moreover, the particle
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is supposed to obey to unilateral contact conditions with the half-space UNr0 and Coulomb
friction law. Denoting by R(t) = RN(t)eN+RT(t) the instantaneous reaction exerted by the
obstacle on the particle, the equations of movement are given by:

KU � F� R (equilibrium)
UNR0;RNR0;UNRN � 0 (unilateral contact)
8V 2 Rnÿ1;RT�Vÿ _UT� ÿ mRN�kVk ÿ k _UTk�r0 (Coulomb friction)

8<: �1�

where _UT denotes the time derivative of UT (supposed regular enough), m the friction
coe�cient and k�k the usual norm in euclidean Rnÿ1.
The variational formulation in part three of Eq. (1) of the Coulomb friction law was

introduced by Duvaut & Lions [4] and Moreau [16]. It is equivalent to the classical
formulation. Note that Eq. (1) has formally the same structure as the equations of the
Signorini problem with Coulomb friction for a continuum. The sti�ness matrix K plays the
role of the elastic energy bilinear form. In the sequel, K will be written under the form:

K � kN
tw

w KT

� �
; �2�

where w is an element of Rnÿ1 and KT is a real matrix of order nÿ 1. Note that the positive
de®niteness of K is equivalent to demand:

kN ÿt w � Kÿ1T � w > 0; and KT symmetric positive de�nite: �3�

2.2. Statement of problem

Let T be an arbitrary strictly positive real number and F an arbitrary element of
W1,p(0, T; Rn) (1RpR1) such that F(0) = 0. The following problem is considered:
Problem Pn: ®nd U and R in W1,p(0, T; Rn), such that:

U�0� � 0
KU�t� � F�t� � R�t�; 8t 2 �0;T�
UN�t�R0;RN�t�R0;UN�t�RN�t� � 0; 8t 2 �0;T�
RT�t��Vÿ _UT�t�� ÿ mRN�t��kVk ÿ k _UT�t�k�r0; 8V 2 Rnÿ1 and for a:a: t 2 �0;T�:

�4�

Fig. 1. Geometry and notations.
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2.3. Statement of the results obtained from existing literature

It is known from existing literature that:

. There exists a critical value mc of the friction coe�cient depending on the sti�ness matrix K,
such that for a strictly lower friction coe�cient m, there exists a unique solution to the rate
problem associated with problem Pn [13]. With the notations introduced above, the
condition on the friction coe�cient can be written:

m <
lmin
K���������������������

k2N � kwk2
q ; �5�

where lmin
K denotes the lowest eigenvalue of the stifness matrix K.

. There exists a critical value mc of the friction coe�cient depending on the sti�ness matrix K,
such that for a strictly lower friction coe�cient m, there exists at least one solution in
W1,p(0, T; Rn) �W1,p(0, T; Rn) of problem Pn [14]. The condition on the friction coe�cient
is expressed by condition (5).

. Under the condition:

m <
KT

jwj ; �6�

the rate problem associated with problem P2 (note that in the case n= 2, w and KT reduce
to real numbers) admits a unique solution in R2. If condition (6) is violated, then, the
existence of the solution for the rate problem may be lost for certain load rates and
uniqueness may also be lost for some other load rates [15]. In the case where condition (6) is
violated, Klarbring gives also an example of a load history for which an in®nite number of
solutions to the evolution problem P2 are possible.

2.4. Statement of the results obtained in this paper

Denoting by lmin
KT

the lowest eigenvalue of the matrix KT, and assuming that the following
condition hold:

m <

�����������������������
lmin
KT

tw � Kÿ1T � w

s
; �7�

then, problem Pn admits at least one solution in W1,p(0, T; Rn) �W1,p(0, T; Rn). Moreover, if
n= 2 or w = 0 this solution is unique and, if nr3 and w$0 uniqueness does not hold, in
general, whatever the strictly positive friction coe�cient m ful®lling condition (7) is.
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2.5. Comments

Problem Pn is a particular case of the general quasi-static Signorini problem with Coulomb
friction considered in Ref. [14]. For this particular case, condition (7) on the friction coe�cient
for which existence holds is always less restrictive than condition (5) under which Cocu et al.
proved the existence in the general case. This demonstrates that the Cocu et al. condition is not
optimal. However, condition (7) is not optimal either in general. From a mechanical point of
view, it is interesting to precise the optimal value of the critical friction coe�cient, since it is
related to a transition of the qualitative behaviour of the system. However, even for the simple
system which is considered here, this optimal critical value cannot be explicitly expressed, in
general, in terms of the matrix K.
When the condition on the friction coe�cient holds, uniqueness of the solution of Signorini

problem with Coulomb friction is often conjectured since one knowns from Ref. [13] that the
associated rate problem is well posed. The aim of this paper is to show that one has to answer
by the negative to this conjecture, at least in the functional framework W1,p(0, T; Rn) in which
the problem is usually considered.

3. Proof of the announced results

3.1. Solution for the normal degree of freedom

Proposition 1. Assuming that condition (7) holds the existence (respectively uniqueness) of a
solution of problem Pn is equivalent to the existence (respectively uniqueness) of a solution of the
following problem:
Problem P'n ÿ 1: ®nd UT and RT in W1,p(0, T; Rn ÿ 1), such that:

UT�0� � 0
KTUT�t� � ÿUN�t�w� FT�t� � RT�t�; 8t 2 �0;T�
RT�t��Vÿ _UT�t�� � �S�t� ÿ mtw � Kÿ1T � RT�t���kVk ÿ k _UT�t�k�r0; 8V 2 Rnÿ1 and for a:a: t 2 �0;T�

8<:
�8�

where:

UN�t� � ÿ 1

kN ÿt w � Kÿ1T � w
hFN�t� ÿt w � Kÿ1T � FT�t�iÿ;

S�t� �mhFN�t� ÿt w � Kÿ1T � FT�t�i�:
If x is a real number, hxi+=max(x, 0) and (x)ÿ=max(ÿx, 0) denote, respectively, the positive
and negative parts of x.
Proof. First, one considers a solution U, R of problem Pn and it is going to be proved that

their tangential part UT and RT form a solution of problem P'n ÿ 1. Let us de®ne:

F*�t� � Kÿ1F�t�; R*�t� � Kÿ1R�t�: �10�
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*It is clear that F* and R* belong to W1,p(0, T; Rn). The coordinate RN of R* along eN is:

R*
N�t� �

RN�t� ÿt w � Kÿ1T � RT�t�
kN ÿt w � Kÿ1T � w

: �11�

Moreover, part four of Eq. (4) implies:

8t 2 �0;T�; kRT�t�kRÿ mRN�t�: �12�
Since RN(t) is negative, it is deduced from Eqs. (11) and (12):

8t 2 �0;T�; 1� mkKÿ1T � wk
kN ÿt w � Kÿ1T � w

RN�t�RR*
N�t�R

1ÿ mkKÿ1T � wk
kN ÿt w � Kÿ1T � w

RN�t�: �13�

It is readily seen that condition (7) implies:

mkKÿ1T � wk < 1: �14�
Multiplying each members of Eq. (13) by UN(t) which is negative, and using condition (14),

one obtains, thanks to part three of Eq. (4):

8t 2 �0;T�; UN�t�R0; R*
N�t�R0; UN�t�R*

N�t� � 0; �15�
This, coupled with

8t 2 �0;T�; UN�t� � F*
N�t� � R*

N�t� �16�
leads to the following variational inequality:

8t 2 �0;T�; 8V 2 Rÿ; UN�t��VÿUN�t��rF*
N�t��VÿUN�t�� �17�

The use of Lions±Stampacchia theorem [3] allows us to conclude that there exists a unique

negative function UN(t) satisfying Eq. (17). Actually, one necessary has:

UN�t� � ÿ hF*
N�t�iÿ � ÿ

1

kN ÿt w � Kÿ1T � w
hFN�t� ÿt w � Kÿ1T � FT�t�iÿ;

R*
N�t� � ÿ hF*

N�t�i� � ÿ
1

kN ÿt w � Kÿ1T � w
hFN�t� ÿt w � Kÿ1T � FT�t�i�:

A standard result ([6], Theorem A.1) shows that the functions UN(t) and RN
* (t) given by

Eq. (18) belongs to W1,p(0, T; R). Then, it is easily seen that the tangential parts UT and RT of

U and R constitute a solution of problem P'n ÿ 1.

Reciprocally, let UT and RT be a solution of problem P'n ÿ 1. From part three of Eq. (8), it

is readily seen that, for all t in [0, T], S(t)ÿ mtw�Kÿ1T � RT(t) is positive. Let us de®ne:

RN�t� � ÿ 1

m
�S�t� ÿ mtw � Kÿ1T � RT�t��; �19�

which clearly belongs to W1,p(0, T; R). Then, it is readily seen that the functions U and R
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whose tangential parts are UT and RT and normal parts are given respectively by Eqs. (9) and
(19), constitute a solution of problem Pn.

3.2. Existence of a solution for problem P 0nÿ1
Proposition 2. Assuming that condition (7) holds, problem P 0nÿ1 admits at least one solution in

W1,p(0, T; Rnÿ1) �W1,p(0, T; Rnÿ1). Moreover, if n = 2 or w= 0, this solution is unique.
Proof. First, notice that KT de®nes a scalar product on Rnÿ1, the associated norm being

denoted by k�kKT
.

Let us introduce the following closed convex sets of Rnÿ1:

E�t� �fx 2 Rnÿ1=kxk � mtw � Kÿ1 � xRS�t�g
B�t; r� �fx 2 Rnÿ1=kxkRhS�t� ÿ mtw � Kÿ1T � ri�g:

One obviously has:

8r 2 E�t�; r 2 B�t; r�: �21�
Owing to Eq. (14), E(t) is a closed set bounded by an ellipsoid with one focus at the origin,
and B(t, r) is a ball centered at the origin. E8(t) and @E(t) denoting as usual the interior and
the boundary of E(t), one de®nes the multivocal operator A(t) by:

A�t�x �
f0g
flKTx=l 2 R�g
;

if x 2 E��t�
if x 2 @E�t�
if x 62 E�t�

�22�

whenever S(t)$0 [that is, E(t)${0}]. When S(t) = 0 [that is, E(t) = {0}], A(t) is de®ned by:

A�t�x � Rnÿ1

;
if x 2 E�t� � f0g
if x 62 E�t�: �23�

With these notations, problem P 0nÿ1 is easily seen to be equivalent to one or the other of the
two following problems:

RT�0� � 0
ÿ _RT�t� ÿ _FT�t� 2 A�t� �UT�t� for a.a. t 2 [0,T]
KTUT�t� � ÿUN�t�w� FT�t� � RT�t�; 8t 2 [0,T]

8<: �24�

RT�0� � 0
ÿ _RT�t� ÿ _FT�t� 2 @Kÿ1

T
IB�t;RT�t�� � RT�t� for a.a. t 2 [0,T]

KTUT�t� � ÿUN�t�w� FT�t� � RT�t�; 8t 2 [0,T],

8<: �25�

where @Kÿ1T IB[t, RT(t)]
is the subdi�erential of the indicatrix function of B[t, RT(t)] for the scalar

product KT
ÿ1. To obtain formulations (24) and (25), we have used the fact that S(t)$0 implies

_UN(t) = 0. One may also obtain equivalent formulations by using unknown UT(t) instead of
RT(t). For this, we de®ne:
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K�t� � fx 2 Rnÿ1=KTx�UN�t�wÿ FT�t� 2 E�t�g;
C�t; u� � fx 2 Rnÿ1=KTx�UN�t�wÿ FT�t� 2 B�t;KTu�UN�t�wÿ FT�t��g: �26�

One has:

8u 2 K�t�; u 2 C�t; u�: �27�
The multivocal operator B(t) is de®ned by:

B�t�x �
f0g
fl�KTx�UN�t�wÿ FT�t��=l 2 R�g
;

if x 2 K��t�
if x 2 @K�t�
if x 62 K�t�

�28�

whenever S(t)$0. When S(t) = 0, B(t) is de®ned by:

B�t�x � Rnÿ1

;
if x 2 K�t�
if x 62 K�t�: �29�

With these notations, problem P'n ÿ 1 is easily seen to be equivalent to one or the other of the
two following problems:

UT�0� � 0
ÿ _UT�t� 2 B�t� �UT�t� for a.a. t 2 [0,T]
KTUT�t� � ÿUN�t�w� FT�t� � RT�t� 8t 2 [0,T]

8<: �30�

UT�0� � 0
ÿ _UT�t� 2 @KT

IC�t;UT�t�� �UT�t� for a.a. t 2 [0,T],
KTUT�t� � ÿUN�t�w� FT � RT�t�; 8t 2 [0,T]

8<: �31�

where @KT
IC[t, UT(t)]

is the subdi�erential of the indicatrix function of C[t, UT(t)] for the scalar
product KT.
Note that, in general, part two of problem (30) is not monotone except for the cases

n= 2 or w= 0. For these cases, a standard argument gives uniqueness of a solution in
W1,p(0, T; Rn ÿ 1). Now, it is going to be proved that problem (31) admits a solution by use of
the Leray±Schauder ®xed point theorem.
Let H[�, �] denote the Hausdor� distance associated with the norm k�kKT

in Rnÿ1 (for the
de®nition and properties of the Hausdor� distance, see, for example, Ref. [6]).
Lemma 1. Let t be an element of [0,T] and U1 and U2 be in K(t). One has:

H�C�t;U1�;C�t;U2��RakU1 ÿU2kKT
�32�

where:

a � m

�����������������������
tw � Kÿ1T � w

lmin
KT

s
< 1: �33�
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Proof. Let S1, S2 be two positive real numbers and C1, C2 be the sets de®ned by:

Ci � fx 2 Rnÿ1=kKTxkRSig; i � 1; 2: �34�
From the properties of the Hausdor� distance, one has:

H�C1;C2�RmjS2 ÿ S1jMax kukKT
; �35�

where the maximum runs over the set of u such that kKTuk= 1. This maximum is readily seen
to be 1/Zlmin

KT
and inequality (35) is actually an equality. Hence,

H�C�t;U1�;C�t;U2�� � m���������
lmin
KT

q j�U2 ÿU1� � wj: �36�

The Cauchy±Schwartz inequality ends the proof of Lemma 1.
Lemma 2. There exist three positive real constants A, B and C, such that, for every UT in

W1,p(0, T; Rn ÿ 1):

8s; t 2 �0;T� H�C�t;UT�t�;C�s;UT�s��RAkFT�t� ÿ FT�s�kKT
� BjUN�t� ÿUN�s�j

� CjS�t� ÿ S�s�j � akUT�t� ÿUT�s�kKT
:

Proof. The proof is straightforward by use of the following properties of the Hausdor�
distance:

H�C� fxg;C�RkxkKT

H�C1;C3�RH�C1;C2� � H�C2;C3�
and inequality (35). One may choose:

A �1� 1

lmin
KT

;

B �1� kwkKT
;

C � 1���������
lmin
KT

q
:

�39�

Now, one can prove proposition 2. The proof is adapted from that of Monteiro Marques [17]
who considered a similar problem. Let C ([0, T], Rn ÿ 1) be the Banach space of the continuous
functions from [0, T] into Rnÿ1, equipped with the uniform convergence norm (relative to the
norm k�kKT

) denoted by k�kKT
, 1. Var(f; a, b), where f belongs to W1,p(0, T; Rn ÿ 1) and a, b to

[0, T] will be the classical variation of the function f over the interval [a, b] in the sense of the
norm k�kKT

. Let K be the subset of C ([0, T], Rn ÿ 1), constituted by the elements u such that
u(0) = 0 and:

80RsRtRT; ku�t� ÿ u�s�kKT
R A

1ÿ a
Var�FT; s; t� � B

1ÿ a
Var�UN; s; t� � C

1ÿ a
Var�S; s; t�:

�40�
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It is obvious that K is non-empty, closed and convex. Moreover, it is equibounded (since FT,
UN and S have bounded variation over [0, T] and equicontinuous by Eq. (40) (since FT, UN

and S are absolutely continuous); thus, by the Ascoli±ArzelaÁ theorem, K is a compact subset
of C ([0, T], Rn ÿ 1).

Note that if u $ K then u is absolutely continuous [and even in W1,p(0, T; Rn ÿ 1)] and by
lemma 2, t 4 C[t, u(t)] is an absolutely continuous function. More precisely:

Var�C; s; t�RA Var�FT; s; t� � B Var�UN; s; t� � C Var�S; s; t�

� aA
1ÿ a

Var�FT; s; t� � aB
1ÿ a

Var�UN; s; t� � aC
1ÿ a

Var�S; s; t�

R A

1ÿ a
Var�FT; s; t� � B

1ÿ a
Var�UN; s; t� � C

1ÿ a
Var�S; s; t�: �41�

Hence, by Moreau's results on sweeping processes [18], to every u $ K one may associate
F(u) = v, the unique absolutely continuous solution to the sweeping process:

v�0� � 0
ÿ_v�t� 2 @KT

IC�t;u�t�� � v�t�; for a:a: t 2 �0;T�:
�

�42�

In order to apply the Leray±Schauder ®xed point theorem, we have to prove that F(u) $ K and
that u 4 F(u) is continuous in K. In fact, F(u) is a continuous function, F(u)(0) = 0, and by
Ref. [18] and Eq. (41), the following estimate holds:

kF�u��t� ÿ F�u��s�kKT
RVar�C; s; t�
R A

1ÿ a
Var�FT; s; t� � B

1ÿ a
Var�UN; s; t� � C

1ÿ a
Var�S; s; t�; �43�

showing that F(u)$K. To prove that F is continuous, let u and v be two elements of K. By the
results of moreau on the dependence of solutions to sweeping processes on the data [18], we
have:

kF�u�t� ÿ F�v��t�k2KT
R2m�t�hVar�C�s; u�s��; 0; t� � VarfC�s; v�s��; 0; tgi; �44�

where m(t) is the least upper bound of H{C[s, u(s)], C[s, v(s)]} for s $ [0, t]. By lemma 1,
m(t)Rakuÿ vkKT

,1, which, by Eq. (41) gives:

kF�u� ÿ F�v�k2KT;1R 4a
1ÿ a

�AVar�FT; 0;T� � BVar�UN; 0;T� � CVar�S; 0;T��kuÿ vkKT;1;

�45�
which shows the continuity of F.
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From the Leray±Schauder theorem, there is a function UT $ K such that F(UT) = UT.
Clearly, UT $ W1,p(0, T; Rn ÿ 1) [because of Eq. (40)] and is a solution of problem (31) and,
therefore of problem P 0nÿ 1.

3.3. A counter-example to uniqueness

In this section, we consider problemP3 with the following particular form of the sti�ness matrix:

K �
1 e 0
e 1 0
0 0 1

0@ 1A; �46�

where e is a given real number in the open interval ]0,1[. Given an arbitrary element F in
W1,p(0, T; Rn ÿ 1) such that F(0) = 0, it is known from Section 3.1 and 3.2 that there exists at
least one solution of this particular case of problem P3 provided that the following condition
holds:

m <
1

e
: �47�

Now, a load history F(t) in W1,p(0, T; R3) is going to be constructed for an arbitrary m in ]0,1/
e[. For this load history, two distinct solutions of problem P3 in W1,1(0, T; R3) are going to
be exhibited. This construction is not speci®c to the particular form of Eq. (46). Actually, such
a construction can be performed whenever nr3 and w$0. This particular case has been
chosen for the sake of simplicity.
We start from the problem P 02 associated with the particular form of Eq. (46) of the sti�ness

matrix. It has been seen that this problem can be written as:

RT�0� � 0
ÿ _RT�t� ÿ _FT 2 A�t� � RT�t�; for a:a t 2 �0;T�
UT�t� � ÿUN�t�w� FT�t� � RT�t�; 8t 2 �0;T�;

8<: �48�

where A(t) is, in this case the multivocal operator de®ned by:

A�t�x �
f0g
R�x
;

if x 2 E��t�
if x 2 @E�t�
if x 62 E�t�;

�49�

whenever E(t)${0}. For E(t) = {0} , A(t) is de®ned by:

A�t�x � R2;
;;

if x 2 E�t� � f0g
if x 62 E�t�: �50�

Let us recall that E(t) is the closed convex set:

E�t� � f�x1; x2� 2 R2=
���������������
x21 � x22

q
� ex1RS�t�g: �51�

We are now going to construct a function S(t) in W1,1(0, 1; R) such that S(0) = 0 and a
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function FT(t) in W1,1(0, 1; R2), such that FT(0) = 0 and two distinct solutions RT
a (t) and

RT
b (t) of the associated problem (48). Then, as stated in proposition 1, these solutions will be

used to construct two distinct solutions of problem P3 associated with the particular form of
Eq. (46) of the sti�ness matrix.
Let us begin to introduce the following notation:

b � 1� 1ÿ
�������������
1ÿ e2
p�������������
4ÿ e2
p : �52�

b is readily seen to be strictly greater than one.
Lemma 3. Let T1, T2 (T1<T2), be two real numbers. Let S(t). (T1RtRT2) be a constant

function on [T1, T2] with value S (S >0). Then, there exists a function F'T in L1 (T1, T2; R2)
and two solutions Ra

T and Rb
T in W1,1 (T1, T2; R2) of problem:

ÿ _RT�t� ÿ F 0T�t� 2 A�t� � RT�t�; for a:a: t 2 �T1;T2�; �53�

with initial conditions:

Ra
T�T1� � �0; 0� Rb

T�T1� � ÿS

b
e

1ÿ e2
; 0

� �
; �54�

and such that the following holds:

Ra
T�T2� � �0; 0� Rb

T�T2� � ÿS e

1ÿ e2
; 0

� �
�55�

Proof. It is easy to check that one may choose:

F 0T�t� � ÿ 5S
T2ÿT1

�0; 1� 8t 2 �T1;T1 � T2ÿT1

5

�
F 0T�t� � ÿ 5S

T2ÿT1
0; 1ÿ

��������
1ÿe2
p

b
��������
1ÿe2
p

� �
8t 2 �T1 � T2ÿT1

5 ;T1 � 2�T2ÿT1�
5

�
F 0T�t� � ÿ 5S

T2ÿT1
ÿ 1

2
e

1ÿe2 ÿ 1ÿ 1
2

��������
4ÿe2
1ÿe2

q� �
8t 2 �T1 � 2�T2ÿT1�

5 ;T1 � 3�T2ÿT1�
5

�
F 0T�t� � ÿ 5S

T2ÿT1

1ÿb
b

e
1ÿe2 ÿ 1ÿ

��������
1ÿe2
p

b
��������
1ÿe2
p

� �
8t 2 �T1 � 3�T2ÿT1�

5 ;T1 � 4�T2ÿT1�
5

�
F 0T�t� � ÿ 5S

T2ÿT1

1
2

e
1ÿe2 ;

1
2

��������
4ÿe2
1ÿe2

q� �
8t 2 �T1 � 4�T2ÿT1�

5 ;T2

�
�56�
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as well as the functions RT
a (t) and RT

b (t) de®ned by the linear interpolations of the values:

Ra
T�T1� � �0; 0�

Rb
T�T1� � S ÿ 1

b
e

1ÿ e2
; 0

� �(

Ra
T T1 � T2 ÿ T1

5

� �
� S�0; 1�

Rb
T T1 � T2 ÿ T1

5

� �
� S ÿ 1

b
e

1ÿ e2
; 1

� �
8><>:
Ra

T T1 � 2�T2 ÿ T1�
5

h i
� S�0; 1�

Rb
T T1 � 2�T2 ÿ T1�

5

h i
� S ÿ 1

b
e

1ÿ e2
; 1� 1ÿ

�������������
1ÿ e2
p

b
�������������
1ÿ e2
p

� �
8>><>>:
Ra

T T1 � 3�T2 ÿ T1�
5

h i
� S ÿ 1

2
e

1ÿ e2
;ÿ 1

2

�������������
4ÿ e2

1ÿ e2

r� �
Rb

T T1 � 3�T2 ÿ T1�
5

h i
� S ÿ 1

2 � 1
b

� �
e

1ÿ e2
;ÿ 1

2

�������������
4ÿ e2

1ÿ e2

r
� 1ÿ

�������������
1ÿ e2
p

b
�������������
1ÿ e2
p

� �
8>>><>>>:
Ra

T T1 � 4�T2 ÿ T1�
5

h i
� S ÿ 1

2
e

1ÿ e2
;ÿ 1

2

�������������
4ÿ e2

1ÿ e2

r� �
Rb

T T1 � 4�T2 ÿ T1�
5

h i
� S ÿ 3

2
e

1ÿ e2
;ÿ 1

2

�������������
4ÿ e2

1ÿ e2

r� �
8>>><>>>:
Ra

T�T2� � �0; 0�
Rb

T�T2� � S ÿ e
1ÿ e2

; 0
� �

:

(
�57�

The corresponding evolution of the segment [Ra
T, R

b
T] is sketched on Fig. 2. The step function

FT'(t) and the functions RT
a (t) and RT

b (t) de®ned by Eqs. (56) and (57) will be denoted in the
sequel by F '(T1, T2, S; t), Ra(T1, T2, S; t) and Rb(T1, T2, S; t) (T1R tRT2). It should be
noted that there exists a constant C(e) depending only on e such that:

8t 2 �T1;T2�; kF 0�T1;T2;S; t�kR S

T2 ÿ T1
C�e�: �58�

Now, the intervals [1/(bm + 1), 1/bm[, where m is an arbitrary integer, de®ne a partition of the
interval ]0,1[. For every m in N, we de®ne the function S'(t) on [1/bm + 1, 1/bm[ by:

S 0�t� �
2 if t 2

�
1

bm�1
; 1
bm�1

b� 1
2

�
0 if t 2

�
1

bm�1
b� 1
2

; 1
bm

� �59�

Hence, the function S'(t) is de®ned all over the interval ]0,1[, it is clearly measurable, bounded
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and therefore integrable. Let S(t) be the absolutely continuous function de®ned by:

S�t� �
�t
0

S 0�s� ds: �60�

The function S(t) is easily seen to belong to W1,1(0,1; R), to be positive and such that
S(0) = 0. Moreover, one has:

8m 2 N; 8t 2 1

bm�1
b� 1

2
;
1

bm

� �
; S�t� � 1

bm
: �61�

Similarly, we de®ne the function FT'(t) on the interval [1/bm + 1, 1/bm[ by:

F 0T�t� �
0 if t 2

�
1

bm�1
; 1
bm�1

b� 1
2

�
F 0
�

1
bm�1

b� 1
2

; 1
bm ;

1
bm ; t

�
if t 2

�
1

bm�1
b� 1
2

; 1
bm

� �62�

Fig. 2. Evolution of the two solutions constructed in lemma 3.
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The function FT'(t) is de®ned all over ]0,1[. From Eq. (58), it is bounded:

8t 2�0; 1�; kF 0T�t�kR
2b

bÿ 1
C�e�: �63�

Since FT'(t) is clearly measurable, it is integrable and FT(t) will be de®ned by:

FT�t� �
�t
0

F 0T�s� ds: �64�

FT(t) clearly belongs to W1,1(0, 1; R2) and is such that FT(0) = 0, and _FT(t) = F'T(t) almost
everywhere in [0, 1]. Finally, Ra

T(t) and Rb
T(t) are de®ned by:

Ra
T �
�0; 0� if t 2

�
1

bm�1
; 1
bm�1

b� 1
2

�
Ra

�
1

bm�1
b� 1
2

; 1
bm ;

1
bm ; t

�
if t 2

�
1

bm�1
b� 1
2

; 1
bm

� �65�

Rb
T�t� �

�
1

bm�1
e

1ÿ e2
; 0

�
if t 2

�
1

bm�1
; 1
bm�1

b� 1
2

�
Rb

�
1

bm�1
b� 1
2

; 1
bm ;

1
bm ; t

�
if t 2

�
1

bm�1
b� 1
2

1
bm ;

� �66�

where Ra (T1, T2, S; t) and Rb (T1, T2, S; t) are the functions de®ned by lemma 3. RT
a (t)

and RT
b (t) are readily seen to belong to W1,1(0, 1; R2). Moreover, one checks that

RT
a (0) = Rb

T(0) = 0 and also that one has:

ÿ _RT�t� ÿ _FT�t� 2 A�t� � RT�t� for a:a: 2 �0; 1�; �67�

where RT(t) may be either RT
a (t) or RT

b (t). RT
a and RT

b lead to two solutions of problem P'2 with
the particular form of Eq. (46) of the sti�ness matrix and the particular choices of the
functions FT and S(t) constructed above. These solutions are distinct since:

8m 2 N; Ra
T

1

bm

� �
� �0; 0�; Rb

T

1

bm

� �
� 1

bm
e

1ÿ e2
; 0

� �
: �68�

Using this result and proposition 1, one may easily construct two distinct solutions of problem
P3 with the particular form of Eq. (46) of the sti�ness matrix. Let UN

a (t), UN
b (t), UT

a (t), UT
b (t),

RN
a (t), RN

b (t) and FN(t) be the functions de®ned on ]0,1[ by:
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Ua
N�t� �Ub

N�t� � 0;

Ua
T�t� �Ra

T � FT;

Ub
T�t� �Rb

T � FT;

Ra
N�t� �Rb

N�t� � ÿ
1

m
S�t�;

FN�t� � 1

m
S�t� � eFT1�t�; �69�

where FT1(t) is the ®rst component of FT(t). De®ning F(t) by F(t) =FN(t)eN+FT1(t)eT1+
FT2(t)eT2 and Ua, Ub, Ra, Rb, similarly, one gets two distinct solutions in W1,1(0, 1; R3) of
problem P3 with the particular form of Eq. (46) of the sti�ness matrix. These two solutions
exist for any value of the friction coe�cient in the interval ]0, 1/e[.
Therefore, the solution of a quasi-static Signorini problem with Coulomb friction is

not unique, in general, at least in the functional framework W1,1(0, T), [and therefore in
W1, p(0, T)].
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