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Abstract. A new evolution scheme is presented, memorizing the extreme (best and worst) 
past individuals through distributions over the binary search space. These distributions are 
used to bias the mutation operator in a (µ + .X) Evolution Strategy, guiding the generation
of newborn offspring: different mimetic strategies are defined, combining either attraction, · 

indifference or repulsion with respect to the two distributions. These distributions are then 
updated from the best and the worse individuals in the current population. Experiments 
on large size binary problems allow one to delineate the niche of each pf these mi�etic 
strategies. 

1. Introduction

The powerful process of natural evolution indeed produced biological chefs d'oeuvre. The field 
of artificial evolution is concerned with transposing and mastering the strengths of evolution 
within the machine world (24, 45, 12, 28]. A number of applications, ranging from optimization 
and design problems to adaptation and evolvable hardware, fully demonstrates the efficiency of 
the approach. 

In its first period, artificial evolution was almost exclusively inspired from biology (adap­
tation (24], diploidy (19], introns (29], Baldwin effect (23] ... among others) and most authors 
praised artificial evolution as a universal tool [18]. Nowadays, it is widely acknowledged t,h�t 
one should take into account the specificities of the problem at hand, through the representation 
of the search space and the design of the evolution ope;rators. The advantages of using •"ex­
pert" representation and operators are illustrated for instance in the .domain of combinatorial 
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optimization [36] or shape design [44] (see [35] for general recommendations about representa­
tion/ operators). 
As noted by Janikow [26], this transition is quite similar to what happened in the field of ar­
tificial intelligence (see [41] for a survey): at first, people were fascinated by the generality of 
the principles at hand and they aimed at universal tools, e.g. the General Problem Solver [33]. 
Afterward, they realized that the difference between being able to solve the problem and actually 
solving it, was a matter of knowledge - and this led to developing knowledge-based systems 
(KBS) [7]. 

The history of artificial intelligence has perhaps one further lesson to offer artificial evolution. 
The KBS approach met many successes as ·more accurate ways of representing and using knowl­
edge were designed. However, where does knowledge come from in the general case? As noted 
by E. Feigenbaum, the main bottleneck of artificial intelligence was eventually the knowledge 
acquisition phase; this gave birth to a new field of Al: machine learning [31]. To put it into a 
nutshell, the history of artificial intelligence suggests that any advanced information processing 
tool needs knowledge, and that the only practical way to have knowledge is to acquire it, that 
is, to devote some efforts to learning. So what could be the role of a learning module within 
artificial evolution ? 

To keep clear distinctions between evolution and machine learning, the knowledge to be 
automatically acquired by artificial evolution is referred to as memory of evol�tion, and the 
way it is learned is referred to as memorization. Memory and. memorization are peripheral 
concerns for artificial evolution, though many works concerned with the control of evolution 
could be rephrased in these terms (more in section 2). Indeed, memory is not much present in 
natural evolution, barring the genetic material itself. And natural evolution still is the dominant 
paradigm for artificial evolution; one is prone to dismiss concepts and heuristics which are too 
far away from what one understands to be evolution1. 

On the other hand, as emphasized in [9], the "specifications" for natural evolution might be 
rather different from that of artificial evolution. Notably, natural evolution explores a changing 
fitness landscape while artificial evolution considers a fixed fitness landscape most of the times. 
When the context changes, recording the past of evolution does not make much sense: even if it 
were feasible, this would provide irrelevant or, even worse, misleading information� An accurate 
memorization process should then keep a cautious balance between memorizing and forgetting. 

The . situation is much more straightforward when the world does not· change: in princi­
ple, evolution could plainly and soundly use its history to avoid the repetition of previous tri­
als/ errors, in the line of Tahu Search (16]. The question no longer regards the utility of memory, 
but rather its technical feasibility. 

We propose a categorization of the possible memories of evolution, and the way these can 
be used in section 2. No wonder this categorization is close to that :proposed for the control 
of evolution [22], as memory and control of evolution are tightly related. We introduce a fur-

1 It is worth noting that our understanding of evolution is by no way complete, and could therefore prove 
misleading. In the same vein, much time has been lost in constructing flying machines based on our at-that-time 
models for birds [41). 
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ther distinction, as to whether the memory allows for the distinction between new offspring 
and previously generated individuals. If the distinction is possible, the memory can be used 
to favor the exploration of brand new individuals: evolution becomes irreversible. To do so, 
memory-based control can either proceed by incentives or inhibitions. The Population Based 
Incremental Learning {PBIL) [5, 4] algorithm proceeds by incentives: it constructs the memory 
of the past best individuals encountered during evolution, and use this memory as an attractor 
of the offspring. Evolution by Inhibitions {Ebl) [47, 48] proceeds by inhibitions: it constructs 
the memory of the past worst individuals of evolution and use this memory as a beacon to draw 
the population away from the dead-ends. 

In this paper, both approaches are combined: we investigate how evolution can take advan­
tage of incentives and inhibitions altogether. Only binary search spaces ( {O, 1 }NJ are considered.
The memory of best/wor�t individuals does then belong to the continuous space [O, l]N; it cor­
responds to a "virtual individual", or model. Individuals are provided with the two models 
memorizing the best and the worst past individuals, respectively termed the Leader and the 
Repoussoir2. Each individual uses the models as reference points, to decide where it should go 
next, i.e. where to localize its offspring. The offspring are generated as to be closer to, or farther 
away from, a model. Metaphorically, the individual imitates or rejects the models: its "social 
strategy" dictates the distribution of its offspring. For instance, one natural strategy is to reject 
the Repoussoir and imitate the Leader (termed Sheep strategy); another one, termed Lone Rider 
strategy, is to reject both the Leader and the Repoussoir. 

The presented scheme of evolution, termed Mimetic Evolution, thus abandons the biology 
paradigm, and rather finds its metaphors in the field of sociology. Mimetic evolution involves a 
single evolution operator, termed mimetic mutation, which replaces both standard mutation a�d 
crossover. The material in each individual is modified according to the models, and depending 
on the social strategy of the individual. We restrict ourselves to consider a single social strategy 
for all individuals during all evolution. 

The paper is organized as follows. Next section discusses the possible roles of memory 
depending on whether the fitness landscape changes or not. It briefly reviews sortie related work 
concerned with the control of evolution, and focuses on irreversible control. 

Section 3 details the Mimetic Evolution scheme combining P BIL and Evolution by inhibition. 
This scheme involves mimetic mutation as single evolution operator. Like standard mutation, 
mimetic mutation considers one individual at a time. The choice of the bits to mutate is based on 
the memories and can achieve the diversification or the recombination of individuals depending 
on the chosen social strategy. 

Experiments on large sized binary problems are presented in section 4. These show that the 
Sheep and Lone Rider strategies are relevant to many problems -· not all, as could have been 
expected. Interestingly, the best strategy for a problem gives some insight into the difficulty 

2 Repoussoir is a French word intended for: the person you would not like to be, or look, like. 

3



of the problem: the Sheep strategy shows more adapted to climb simple slopes, in a gradient­
like manner; the Lone Rider strategy primarily preserves the diversity of the population, and 
thus escapes more easily from local optima. The paper ends with some perspectives for further 
research. 

2. Memory in natural and artificial evolution

Obviously, artificial evolution only constitutes a coarse simplification of natural evolution. Our 
claim is that even greater simplifications are possible by taking advantage of the steadiness of 
t he artificial milieu. 

Simplifications are obtained through a better use of the available information in each step. 
We assume in the remainder of the paper that the optimization problem at hand is sufficiently 
difficult, so it is worth spending a reasonable time looking for short cuts. 

This section discusses earlier work related to the control of evolution. Concretely, control 
is a way of shifting the information processed by evolution from a low-level description (e.g. 
the current genetic pool, or description in extension of the problem) to a more abstract level: 
operator rates [8, 38], beliefs [39), rules [37], gradients [48] or even more directly, the distribution 
of the offspring [4], which can be viewed as a description in intension of the problem. 

2.1. Changing versus Fixed Worlds 

Our understanding of evolution is far to be complete, as the ends can only be conjectured 
[53]. However, there is a wide acceptance that natural evolution is "designed" for changing 
environments, and aims at adaptation [24]. As emphasized by [9], this means starting with 
a "rather good" initial population (avoiding the bootstrap problem [34]), and measuring the 
success from both the cumulated performance of the individuals, and the chances for a sufficient 
fraction of the population to survive a further change of the milieu. 

�pecifications for artificial evolution are different: most of the times, the goal is to find the 
optimum of a fixed fitness function. The success is only measured from the performance of the 
best individual. 

In both contexts, the leading individuals are ceaselessly replaced by more fit individuals. 
But within naturai evolution, these more fit individuals are not necessarily new individuals, as 
previ01,is out. can come back to outperform the actual leaders. This is never true in a fixed 
environment. 

' . 

The consequences for this are manifold. Natural evolution must somehow preserve whatever 
has been re�evant in the past, for it can become useful again later. In the meanwhile, the relevance 
of all infor�ation must be periodically re-evaluated as the milieu changes. As ,the evaluation 
proce,dure o�ly concerns individuali:;, any relevant information must be coded within the genetic 
material, i.e. in extension. Moreover, evolution cannot draw any negative conclusions, as to 
which material can be soundly discarded. 
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2.2. Challenge for an informed evolution 

Let us go back to artificial evolution. Assuming that the world does not change allows - in 
principle - dramatic simplifications of evolution: re-evaluating an individual does not provide 
any further information, and can therefore be omitted. 

· 

The steadiness of the milieu induces a partition of the individuals into four subsets, 

A The set of the individuals which are outperformed; they do not need be considered again 
as their time has past and will never come back. These are the dead individuals. 

B The set of the currently fit individuals, which do not need be considered either but are 
somehow used to produce offspring; these are the living individuals. 

C The embryos include those candidate offspring given the current experience/state of evo­
lution, which have not yet been evaluated. 

D All other individuals3.

The only set which needs be evaluated and must therefore be characterized in extension, is the 
set of embryos [CJ. The only set which cannot be characterized in extension is the set [AJ of dead 
individuals, as the time and space complexity would be intractable after the first generations. 

Along evolution, the size of [A) grows (there are more and more dead individuals) and that 
o_ [D) decreases; the size of [BJ remains more or less constant, except for the loss of genetic
diversity. 

By construction, the offspring generated in each generation are distributed among the em­
bryos [CJ and the past individuals, either living [BJ or dead [AJ. But the only interesting offspring 
are in [CJ. This leads to two approaches of the control of evolution, depending on whether the 
stress is put on the expected quality of the offspring, or on their novelty. These approaches are 
respectively referred to as reversible and irreversible control. 

2.3. Reversible control 

Control is most generally concerned with biasing the distribution of the offspring, to favor the 
discovery of interesting individuals. 

Obviously, we only can make conjectures about where the interesting individuals lie; oth­
erwise, a deterministic approach would be recommended. Such conjectures regard the way the 
distribution of the offspring should depend on the current state of the system: some parame­
ters or structures of control are identified. The goal is to determine relevant contents for these 
parameters or structures of control. 

Several criteria have been proposed to distinguish between the great many controls investi­
gated in the literature [49, 22J. 
A first criterion considers whether the contents of the control is determined on-line or off-line 
[49]. Off-line control is adjusted via some preliminary analysis or experiments (see for instance 

3It would be more exact to consider the notion of candidate offspring as a distribution (one individual has
more or less chance to appear at a given step). Still, as no theoretical analysis will follow, and for the sake of 
simplicity, the notion of candidate offspring is taken boolean. 
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[20]) , and is used within a static or dynamic schedule. For instance, the mutation rate can be 
set to a constant value, or decreased via a hyperbolic schedule [3]. As off-line control obviously 
is not concerned with the specificities of the run, it makes no part to the memory of evolution 
and is not considered thereafter. 

On-line control, also termed adaptive control, can operate at different levels of evolution: 
the environment, the population, the individuals, or the genes [22]. The contents of control can 
either be deterministically adjusted depending on some predefined indicators (explicit control) ; 
or it can be carried by individuals themselves, and adjusted "for free" by evolution (implicit 
control) . 

2.3.1. Explicit control 

Examples among others of explicit control are the I/5th rule [38], the adjustment of the operator 
rates a la Davis [8], the early EP mutation [13], the constitution of pheromone trails [10], and 
the adjustment of penalty factors [11]. 

, 

In [38, 12] the control only responds to the current state of evolution (the fraction of the 
mutation success, the relative fitness of an individual) ;  this can be viewed as a reflex control. 

In [8, 11, 10, 39, 37], the control rather takes into account the whole past of evolution and 
proceeds by reinforcing the good options or the relevant choices (reinforced control) . 

2.3.2. Implicit control 

Implicit control lets evolution itself adjust the contents of the control. This is most usually done 
by coding the parameters of control within the individuals, such as the mutation step size in 
self-adaptive mutation (45, 1] or the type or mask of crossover in genetic algorithms (43, 49]. 
Practically, the control-related part of the individual is first evolved, then used to derive a 
genotype. The offspring is then composed of the current control part, and the derived genotype. 
Though evolution can only evaluate the genotype, it expectedly optimizes both the genotype 
and the control-related part of the individuals. This does not rely on any magic of evolution: 
rather, individuals carrying anfrrelevant �ontrol part disappear as their genotype is most likely 
to be unfit or non viable. 

Hybrid 'control, interleaving global deterministic and local non-deterministic indicators, has 
also been prop·osed [21]. 

2.4. Irreversible control 

In all above approaches, the time of evolution is reversible: one could obtain the parents of give11 
offspring by applying the same operators as used to build the offspring from the parents. Basic 
genetic operators indifferently produce ascendants, or descendants, of the current individuals4. 

4This is particularly clear in boolean search spaces: e.g., by applying a given crossover mask, one can derive 
two offspring X' and Y' from two parents X and Y OR derive the parents X and Y from the offspring X' and 
Y'. 
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The offspring might actually be new embryos (from set [C]), or old individuals (living or dead). 
Still, the fact that the world does not change implies that the only worth offspring are new 

individuals. This can be used as a constraint to prune the set of candidate offspring, in the 
spirit of the Tahu search [16]. The advantage is that biasing the distribution of offspring toward 
the embryos (set [ C]) effortlessly (so to speak) increases the efficiency of the search,. everything 
else being equal. As a matter of fact, memory could in principle tell whether an offspring is a 
new individual, as all necessary information has been available at some point in the past. On 
the opposite, no mechanism (except evaluation) could tell whether an offspring will turn out to 
be fit. 

Irreversible control enforces the novelty of the offspring, at the cost of memorizing the past 
of evolution. 

2.4. 1. PBIL 

Population Based Incremental Learning - PBIL [5, 4] takes advantage of the similarity between 
evolutionary algorithms and generate-and-test methods (see [31] for a survey of Machine Learn­
ing (ML)). In both cases, the system generates questions (individuals in the artificial evolution 
context, examples in the machine learning context); these questions are answered by the oracle 
(individuals are evaluated, ex;;i.mples are labeled); the answers are used in turn by the system to 
refine its current hypothesis and generate next questions. The target "hypothesis" is an accurate 
description of either the distribution of the optima or some explanatory concept. 

One key difference between generate-and-test methods and artificial evolution lies in the level 
of description of the internal state of the system. Generate-and-test methods handle high-level 
representations; the current hypothesis is described in intension [31]. On the opposite, artificial 
evolution handles the individuals themselves: its "hypothesis" is described in extension, through 
the population. 

PBIL achieves artificial evolution by learning a single high-level genotype: a distribution M 
= (M1, . . .  MN) over the search space {O, l}N. Each component Mi stands for the probability 
that biti is 1. PEIL initializes M to the most general distribution (Mi = . 5). Mis alternatively 
updated by relaxation from the best current offspring (section 3.2), and used to generate from 
scratch a new population . . .  M can be viewed as the memory of the past best offspring. ,  

P BIL thereby sidesteps all evolution operators and selection needed to transform a popu­
lation into another one. The diversity and novelty of the offspring can be directly enforced by 
means of the selectivity and the fading of the memory M (see section 3.2). 

2.4.2. Evolut ion by inhibitions 

Symmetrically, Evolution by Inhibitions (Ehl) gradually constructs the memory n of the past 
worst offspring (48]. The difference with PBIL is that R does not provide enough information 
to generate the offspring from scratch. Rather, it tells where the offspring should not be: they 
should not be close to n. 
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Eb! thus uses its memory to ensure that the offspring are sufficiently different from out­
performed individuals, and by extension, fall outside previously explored regions of the search 
space. It thereby directly enforces the novelty of the offspring. 

2.5. Directions for the current study 

Both above schemes involve an explicit memory of evolution, but they use it in different ways. 
In P BIL, the memory is interpreted as a distribution over the search space: it replaces the 

genetic pool of evolution as it can be used to generate a population from scratch. Much attention 
is paid to prevent the premature convergence of the mechanism, by controlling the selectivity of 
the memorization process (section 3.2. 1). One main limitation of PEIL is that it deals with a 
restricted space of distributions, assuming the independence of the genes. In other words, P BIL 
efficiently processes a high-level information, but within a language which might be insufficient 
to fit complex fitness landscapes. Some evidence for this remark has been presented in [47], 
considering the Long Path problem [25]: the distribution, even close to one point of the path, 
hardly meets the narrow optimal region, the path. 

Eb! actually transmits the genetic material from one individual to its offspring; but it uses 
its memory to constrain the generation of the offspring. The memory can here be viewed as a 
gradient, in the sense that it gives preferred directions of move. This approach can fail in two 
ways: it can suffer from the loss of genetic diversity in the current population, like standard 
evolution; it might also get irrelevant if the the memory gets too rigid and induces deterministic 
behaviors, like P BIL. 

These approaches can be combined in different ways. A loose coupling is obtained by gen­
erating two subpopulations, one from each algorithm. Another possibility is to extend P BIL 
to accommodate both memories, that of the best and of the worst individuals. Actually, some 
PEIL variant already memorizes some information from the worst offspring [4] (section 3.2). 

The approach investigated in the remainder of this paper rather extends the mechanism of 
Eb! and preserves the transmission of the genetic material from one individual,to its offspring. 
This choice is motivated the fact that indeed, the population can follow any fitness landscape, 
more accurately than any predefined-shaped distribution, - provided the population remains 
diversified. 
The generation of the offspring is extended to account for the two available memories, reflecting 
the past best and worst individuals. 

3. Mimetic evolution

This section starts with an outline of the global scheme proposed, termed Mimetic Evolution, 
then details and discusses its different components. 
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3.1. Outline 

Basically, mimetic evolution alternatively evolves the population using its memories, and up­
dates the memories from the remarkable individuals of the current population. These memories 
denoted .C (for Leader) and R (for Repoussoir) respectively summarize the best and the worst
individuals encountered by evolution. 

These memories are used to guide the reproduction of individuals, as follows. Let M be a 
given memory, and consider all possible offspring Y obtained by flipping a given number of bits 
in X. These offspring can be ranked with respect to their probability of being generated from 
M, noted p(YIM): 

N 
p(YIM) = II (1 - IYi - Mil)

i=l 

If M is considered desirable, one will prefer offspring Y maximizing p(YIM); if on the 
contrary, M is considered undesirable, one will prefer offspring minimizing p(YIM). In other 
words, M induces a polarization of the search space which constrains the moves of X depending 
on its interpretation of M. Metaphorically, X will decide to imitate or reject the memory, or 
model: its reproduction depends on its social strategy. 

Practically, mimetic evolution uses a single evolution operator, termed mimetic mutation, 
to evolve the current population (section 3.4). Mimetic mutation depends on the individual at 
hand, the chosen social strategy, and the two memories .C and R.

Let us first detail how the memories are constructed. 

3.2. Memorization and models 

In mimetic evolution as in PBIL and Eb!, the memory of past remarkable individuals in {O, 1 }N
is represented as an element of [O, l]N. The terms of model and memory are indifferently used 
in the following. 

The models can be used in two ways. 

3.2 .1 .  Requirements for a distribution-like model 

In PBIL, the model is used to generate new individuals from scratch. Indeed, any element M 
in [O, l]N can be interpreted as a distribution on {O, 1 }N: 

Proba(Xi = 1) = Mi

At one extreme lies the uniform (or most general) distribution (Mi = .5  for i = 1 . . . N); at
the other extreme lie degenerate (or most specific) distributions, when M is in fact a boolean 
individual5. 

5From a mathematical point of view, no Mi ever takes the value 0 or 1, which means that the probability
for generating any boolean individual according to distribution M is never null. From a computational point of 
view, however, evolution never recovers its diversity when M gets too close to a boolean individual. 
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PEIL has investigated two heuristics to prevent the premature convergence of M [4]. One
is to update M from the two best offspring, instead of the best one6. The second one is to add 
small gaussian perturbations to a srriall percentage of the Mi; this way, the distribution of the 
offspring is durably perturbed. 

3.2.2. Requirements for a gradient-like model 

In Evolution by Inhibitions and Mimetic Evolution, the interpretation of M is radically different: 
the goal is to modify a given individual X, that is, to find a relevant climbing direction (the 
question of the climbing step will be addressed in section 3.4). M is more to be seen as a 
gradient than a distribution. 

Assume that M represents a region to avoid. One thus wants the offspring of individual 
X to be as far away from M as possible. This leads to preferably mutate the bits that do 
not discriminate X from M (IXi - Mil is comparatively small). Inversely, if M represents a 
desirable region, one preferably mutates the bits discriminating X and M, thereby producing 
offspring closer to M than was X. 

The offspring of an individual X are thus constrained from model M, and the "interpreta­
tion" of M by X, or social strategy of X.  The social strategy defines � direction of evolution, 
as. it induces a preference on the moves of any individual. However, this direction might turn 
irrelevant either at the individual, or at the population level: 

• The direction deduced from a model and a social strategy is irrelevant when it draws .the
individual away from the optimum. For instance, imitating the Repoussoir is a priori (and also 
experimentally) irrelevant: think of climbing a gradient on the wrong side. 
A social strategy can also becomes irrelevant in particular circumstances. For instance, imitating 
the Leader when evolution stagnates causes premature convergence. The flexibility of the 
Leader depends on the progress of evolution: the less flexible the model, the more deterministic 
the moves, and the less evolution can progress. 
In the same vein, rejecting the Repoussoir can cause oscillations around the optimum. The 
Repoussoir pushes the individual in the right direction as long as the individual is "between" 
the Repoussoir and the optimum. If the individual passes the optimum, rejecting the Repoussoir 
will draw the individual away from the optimum - until the Repoussoir is behind again. 

• The direction might also be irrelevant at the population level. This happens when the
population is symmetrical with respect to the model. Any move based on the model (either to 
imitate or to reject it) in fact exchanges the individuals without much modifying the population. 
For instance, assume the population belongs to the two schemas 01 * * * . .  and 10 * * * . . .  Assume 
that M reflects this symmetry, with Mi rv M2 rv . 5, and assume further that at least two 
bits must be modified (see section 3.4). If the strategy is to reject M, bits 1 and 2 will not be 
modified - and the offspring still belong to the same schema as it parent. But, if the strategy 
is to imitate M, bits 1 and 2 are both modified - and the offspring again belong to the initial 

6This way, Mi is generalized for all bits i where the best two offspring differ. It is also possible to use the 
I 

worst offspring, in order to specialize Mi for all bits where the best two offspring differ from the worst one. 
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schemas: the model will remain symmetrical, until the symmetry is broken by some external 
factor. 

But all such deadlocks and cycles are less likely to occur, if two models are considered: 
the influence of each model acts as a perturbation with regard to the other, and enhances the 
diversity of the offspring when the other model gets stuck. In other words, the more models, 
the more specific they can harmlessly be. 

3.2.3. Updating the 'models

From these considerations, we construct rather specific models: the Leader model [, is con­
structed by relaxation from the best offspring in the current population and the Repoussoir 
model n is constructed from the worst two offspring in the current population. 

Relaxation is commonly used (e.g. in neural nets) to ensure smooth. updates and prevent 
numerical oscillations. It reads: 

(1) 
where M is the model, a E [O, 1] is the relaxation factor, or memory fading; �M is computed 
from the current state of the system, defining the selectivity of the memory. 

Table 1 illustrates on a simple 5-bits example how £ and n are respectively updated from 
the best and the two worst offspring. 

1 2 3 4 5 Fitness 
x 1 1 0 0 0 high [,Hl = (1 - a)£t + aX
s 0 0 0 1 0 low 

n,t+l = (1 - a)nt + adnT 1 0 1 1 1 low 
dR 0.5 0 0.5 1 0.5 

Table !:Individuals and Models 

The same relaxation factor a is used to update both the Leader and the Repoussoir, though 
the worst offspring are likely more diversified than the best one. However, complementary 
experiments (not reported in the paper) show that using different relaxation factors for the 
Leader and the Repoussoir does not make any significant difference. 

3.3. Mimetic mutation 

Let X and m thereafter denote the current individual and the nu�ber of bits to mutate in X 
(details on the setting of m in section 3.4). 

3.3.1. Social strategies based on one model 

Assume first that Xis evolved from a single model M. 
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For each bit i ,  the probability Pi of mutating bit i depends on whether Xi is close to to Mi,
and whether M is considered positively or negatively. As already stated, if M is desirable, Pi
increases with IXi - Mil: the more xi differs from Mi, the more xi should be modified. If, on 
the opposite, M is not desirable, Pi decreases as IXi -Mi l increases. 

In preliminary experiments with a no-memory setting (a= 1) [47], we used a roulette wheel
to select the bits to mutate, with Pi being proportional to IXi - Mil ·  But the roulette wheel 
selection shows inefficient when M actually memorizes several generations of worst offspring 
(a < 1), and for large sized problems: after a few hundreds of generations, most Mi are close to 
O or 1 up to 10-5. In such a context, no general and accurate way to compute Pi from IXi - Mi l , 

was found. 
We therefore use a selection by tournament among bits: each bit to mutate is selected as 

the bit ij optimizing IXi - Mil among T bits drawn with uniform probability in {1 . . .  N}. By 
the way, the same mechanism can be used to find offspring imitating M (by mutation of bits 
maximizing IXi -Mi l) or rejecting M (by mutation of bits minimizing IXi - Mil ). 

for each 1 = 1 . . m II number of bits to mutate 
Select T bits i1 . . .  ir uniformly in 1 . . .  N c 

Mutate xij with ij = Arg optimum {IXi k -'Rik 1, ik = i1 . . .  ir}

3.3.2. Social strategies based on two models 

Consider now the two models constructed by evolution, the Repoussoir and the Leader. A most 
natural social strategy, referred to as the Sheep strategy, is to imitate the Leader and reject the 
Repoussoir. This strategy can be accommodated within the above tournament selection, now 
based on the maximization of IXi -.Ci l  - IXi - 'Ril · 
But, more generally, one can choose to imitate, reject, or even ignore independently each model. 
The selection of the bits to mutate then again proceeds by tournament, now optimizing criterion: 

c5LIXi - .Cil + c5RIXi -'Ri l  
. 

where c5R (respectively c5L) indicates whether X is to imitate, reject or ignore 'R, (respectively 
£): 

• c5M > 0 means that X imitates M;
• c5 M < 0 means that X rejects M;
• c5 M = 0 means that X ignores M;

A social strategy can thus be represented as a pair of coefficients ( c5 R, c5 L). A particular 
case, termed Ignorant strategy, ignores both models (c5R = c5L = 0). For all other strategies, 
the parameters (c5R, c5L) can be normalized by requiring c5h + c5z = 1, without modifying the 
tournament-based selection. Every strategy except the Ignorant one, is thereafter represented 
as angle(} in [O, 27r], with (c5R, c5L) = (cos(}, sinO) . 

Figure 1 represents all social strategies but the Ignorant on the unit circle. By convention, 
angle 0 is associated to (c5R = 1, c5L = 0), that is, imitating the Repoussoir and ignoring the 
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Leader. Angle rr /2 corresponds to ( 8 R = 0, 0i = 1}, that is, imitating the Leader and ignoring
the Repoussoir. 

Some social strategies have been given nicknames for the sake of convenience. We distinguish 
mainly : 

• The Entrepreneur imitating the Leader and ignoring the Repoussoir (angle rr /2);
• The Sheep imitating the Leader and rejecting the Repoussoir (angle 3rr / 4);
• The Phobic rejecting the Repoussoir and ignoring the Leader; mimetic evolution with a

phobic strategy just reproduces Evolut ion by Inhibitions (angle rr);

• The Lone Rider reJecting both the Leader and the Repoussoir (angle - 3rr / 4); 
• The Rebel rejecting the Leader and ignoring the Repoussoir (angle - rr /2).

Entrepreneur 

imitate Leader 

imitate Rep ussoir 

Lone Rider flee eader 

Rebel 

Figure 1. Social Strategies 

The Leader and the Repoussoir together with the current individual, can be thought of
as a system of coordinates. A social strategy is a direction in this system of coordinates: the
corresponding angle constrains the trajectory of the individual, intended as its possible offspring.
The constraint can be made more or less severe, making the trajectory more or less deterministic,
by tuning the tournament size T; this parameter controls the variance of mimetic mutation,
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i.e. the predictability of the trajectory in a given situation. The ignorant strategy, setting no 
constraint on the offspring, serves as reference to determine the relevance of the other strategies. 

In the remainder of the paper, we restrict ourselves to considering a single social strategy for 
all individuals, fixed along evolution and with fixed tournament size T. At first sight, making 
all the population follow a single fixed direction, with the same degree of predictability, dictates 
the system a poor evolution. Still, this direction is defined with respect to the individual and 
the system of coordinates, which itself evolves together with the population. 

3.3.3. Single-Model Dynamics 

Consider first a single model M, and let M denote the boolean individual closest to M. Let S
be the set of bits candidate to mutation in the current individual X. The dynamics of mutation 
depends on how S varies using the feedback provided by the model. 

When X imitates M, two kinds of bits are preferably mutated: the bits which discriminate 
X from M (Xi f; Mi), and the most general bits in M(Mi close to .5). The discriminant 
bits were good candidates to be mutated in the previous steps; this is only possible if Mi was 
relatively general. Inversely, Mi can be general only if individuals with Xi f; Mi were recently 
considered to update M. In summary, the more a bit was recently mutated, the more it is 
mutated. 

The set S of bits that are candidates to mutation does not depend on the individual, but 
rather converges to a fixed set, making mimetic mutation unable to explore the· whole search 
space (violating the ergodicity requirement [35, 40]). 

If M stands for the Leader (Entrepreneur strategy), the population converges toward M. 
Incidentally, mimetic mutation here resembles the BSC operator of Syswerda [50]: but BSC 
actually uses the average of the current population to evolve the individuals, instead of the 
memory £. 
If M stands for the Repoussoir, the loss of genetic diversity does not occur as the population 
cannot converge toward M; rather, the strategy oscillates between optima closest to M. 

When X rejects M, the bits preferably mutated are such that Xi= Mi, and Mi is as specific 
(close to 0 or 1) as possible. Thereby, mimetic mutation modifies all bits which have not been
recently modified, neither in the individual nor in the model. In any case, the set S of bits 
candidates to mutation is much larger than in the imitation strategy: almost all bits Mi get 
more specific in each generation (all bits except at most 2 x m, that is, the maximum number of 
individuals used-to update M times the maximum number of bits modified in each individual), 
and the more specific a bit, the more likely it is mutated. 

There is one only case where S converges: when M recommends a move and the resulting 
offspring are considered neither to update the model nor th� population7. As the mechanism is 
then deprived from any feedback, it can only persist in its wrong decision. 

7This occurs when the offspring are not fit (otherwise they would be retained in the population) and the model 
is the Leader (otherwise, the bad offspring would be accounted for in the model). 
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The reject strategy enforces the genetic diversity of the population, for the following reason. 
A bit which discriminates some individuals of the population is unlikely to be mutated: recent 
moves on this bit have been registrated; hence the corresponding Mi is more general than for 
the other bits. 

The weakness of the reject strategy thus comes from the fact that it prevents the recombi­
nation of current individuals and the convergence of the population. 

3.3.4. Two-Model Dynamics 

When both models are considered, they altogether provide any desired feedback on the previous 
moves: unsuccessful moves are memorized within the Repoussoir, successful moves are mem­
orized w�thin the Leader and the population. Three categories of bits might then be roughly 
identified, and the succes,s of evolution relies on a sufficient turn-over among these categories: 

• To preserve exploration, one must be able to mutate bits which have not been recently
modified. Such bits are characterized by both £i and ni specific. Mutating these bits im­
plies that either one or both models must be rejected (avoid the strategies in the quadrant
(0, tr /2]). Typically, no bit should stay in that category for too long!

• The bits which have been recently modified successfully (i.e. the resulting offspring have
been kept in the population) are characterized by both £i and Ri general. Mutating such
bits is desirable as far as recombining the individuals is desirable, i.e. when the building
blocks hypothesis holds. In this case, the social strategy must incorporate some imitation
of the Leader (prefer the quadrant [tr/2, tr]).

• The bits which have been recently but unsuccessfully modified (the offspring have not
survived), are characterized by £i specific and ni relatively general. The decision of
mutating these bits depends on the gap between the current optimum and the next basin
of attraction.
If there are large gaps between local optima, some obstinacy is required: one must be able
to consider again bits which have been recently unsuccessfully modified. Practically, the
social strategy must to some extent reject the Leader (prefer the quadrant [tr, 37r /2]).
Otherwise, a shallow and hopefully faster exploration can be achieved by discarding the
bits which have been recently unsuccessfully modified (quadrant [7r /2, tr]).

Obviously, there exists nothing like a universal strategy; each strategy could prove the most 
adequate in some context. Furthermore, the social strategy is not the only factor ruling out 
the balance exploitation/exploration achieved by mimetic mutation: While mimetic mutation 
primarily concentrates on the choice of the bits to mutate, another key factor is the choice of 
the number of bits mutated in each individual. 

3.4. Mimetic strength 

Binary mutation traditionally uses a very low mutation rate [17), though good results obtained 
with high-rate mutation have also been reported [27, 32). However, as the only operator of 
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mimetic evolution is mutation, the mutation rate must certainly be high. Besides, the muta­
tion rate governs the balance between exploration/ exploitation achieved by mimetic mutation: 
exploration is encouraged for high mutation rates and exploitation for low mutation rates. Typ­
ically, mutating one only bit in any individual will cause evolution to get trapped in the nearest 
local optimum, though it is theoretically proved to be faster on unimodal problems [15]. 

In binary mutation, the probability of mutation is most usually constant (especially when it 
is very low). However, it can also be either dynamically adjusted, or adapted at the population 
level, or self-adapted at the individual level. Based on the different adaptation techniques used 
for mutation in evolutionary parameter optimization (again, see (22] for a survey), we have 
investigated the following heuristics to adjust mt, the mutation rate at generation t: 

• Constant scheme: mt is set to a constant value. The adjustment of m can be done by
considering mimetic mutations with different values of m as different exclusive operators;
their probability can be adjusted them a la Davis [8] by rewarding the val�es leading to 
good offspring.

• Hyperbolic scheme: mt decreases from an initial value m0 to 1, according to the hyperbolic
schedule borrowed from [3]. The value for mt for all individuals is

1 1 - 1 

mt = (- + t . ;:nu- ) -1 

mO T-1 

where Tis the maximum number of generations and t denotes the current generation. 

(2) 

• 1/5th rule: Following [38], mt is geometrically increased (resp. decreased) by a factor 1.2
if the number of offspring more fit than their parent in the last 10 generations is greater
(resp. smaller) than 1/5.

• Self-adaptive scheme: m is encoded in the individual and evolved according to the Obalek's
rule described in [2]:

t+I (1 
1 - mt ) 0.5 

m = + 
mt. exp('Y. N(O, 1)) 

; 'Y = J2VN 
(3) 

In the three latter cases, the continuous value of mt was transformed into an integer value (as 
the tournament-based mechanism of mutation requires to know in advance the number of bits 
to mutate), either by taking its integer part, or by selecting an integer value m from a Poisson 
distribution of parameter mt (48] (it is well known that the binomial distribution B(N, m) tends
to the Poisson distribution P(>..) if Nm goes to >.. as N goes to infinity). 

In all cases, m is lower-bounded by 1 to guarantee that mimetic mutation is effective. 

3.5. The algorithm 

Mimetic mutation is embedded into a (>.. + µ) evolution strategy [45]. Besides the method used 
to set mt, mimetic evolution includes five parameters: 
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• The population size µ and birth rate ,\
• The relaxation factor a used to update .C and n
• The tournament size T
• The social strategy (}

Here is the pseudo code of the algorithm. 

Mimetic Evolution 

Parameters: µ, A, a, T, Strate gie 

Initialize µ parents X1 ... Xµ in {O, l}N 
' Compute F(Xi), i = 1 . . . N. 
Set Li = ni = . 5, i = 1 . .. N 
Repeat 

for each Xi = X1 ... Xµ 
for each j = 1 .  . .  ,\/ µ

Off spring = Mimetic Mutation( Xi, .C, n) 
Compute Fitness(Offspring) 

End while 
Sort parents + off spring 

inN 
in [O, 1] 

in N 
in [O, 27r] 

Update the models 
d£= best of {parents + offspring} 
.C = (1 - a).£ + a.d.C
dn= average of the two worst {parents + offspring} 
n = (1 - a)n + adn

Update the population 
Parents = best µ individuals in { parents + offspring} 

Until Stop 

Mimetic Mutation(X, .C, n) 

y = x
For i = 1 . . . mO

ki = Tournament(X, .C, n) 
yki = 1 - yki

End for 
return Y 

m() returns the number of bi ts  to mutate
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Tournament(X, .C, R) Depends on the global social strateg y () 

For j = 1 ... , T
select kj randomly in {1, . . .  N} 
p(kJ) = cos(fJ) x IXki -nkil + sin(fJ) x IXki - .Ckil

Return kj = argmax { p(k1 )  . . .  p(kr) } 

4. Goal of experiments

As no optimization scheme could possibly dominate all other schemes (54], any new evolution 
algorithm should be presented together with its "niche". 

Mimetic evolution was designed for large-sized problems, for the following reason. It is
based on a structure of control, ordering the possible moves of the individuals. As any control, 
this entails some computational overhead that can only be balanced if selecting the moves at 
random is very  often unsuccessful. This occurs iff the size of the space is large enough; otherwise, 
exploring the neighborhood of the individuals at random might do as well. 

In this large-space context, we shall focus on the two main choices of mimetic evolution: 
how to adjust the mimetic strength and how to choose a social strategy. After early preliminary 
experiments, these two points are briefly discussed, and the experimentation goal is then defined. 

4.1. Mimetic Strength: Simple options are retained 

Preliminary experiments showed that the on-line adjustment of the mimetic strength mt was
not robust. Rather, all heuristics used (section 3.4) including the Davis-like approach, the 1/5th 
r�le and self-adaptation, were found to fail: all rapidly lead to set mt= 1, causing the premature
convergence of evolution. 

In retrospect, this failure can be explained from the fact that on-line adjustment rewards 
options bringing the most improve:rnents, rather than the most significant ones (9]. The above 
heuristics thus show risk-adverse and favor the conservative option mt = 1., which produces
the most improvements on the whole. Favoring conservative options might still bring improve­
ments in a continuous search space. But in binary search spaces, the strong causality principle 
is violated (there is nothing like a "very small" mutation), and conservative options simply are 
inactive. No wonder then that the convergence results of evolution strategies [45, 1] cannot be 
transposed. 

Furthermore, fixed-step mutation (mutating exactly mt bits for all individuals at time t) 
shows more effective than variable-step mutation (mutating on the average mt bits in the pop­
ulation, distributed on the individuals according to a Poisson law). 
This is unexpected, as fixed-step mutation severely restricts the distribution of the offspring 
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from the current population. Traditionally, mutation must be able to make arbitrarily large 
steps [35], to prevent evolution from being trapped in some local minima. In the meanwhile, 
making large steps can be beneficial as short cuts can be discovered. 

However, experiments demonstrate that fixed-length mutation does not cause evolution to 
stop during the observations (limited to 200,000 evaluations) - this was unexpected. Everything 
happens as if interesting offspring can always be found at a given distance of some individual of 
the population! In the meanwhile, fixed-step mutation appears faster than variable-step muta­
tion: if it prevents from discovering short cuts, it also saves a lot of bad moves. 

In the experiments, two possibilities have then been investigated. One is to set mt to a
constant value chosen in {1, 3, 5, 7, 9} ; the other is to adjust mt according to a hyperbolically 
decreasing schedule (section 3.4), starting from m0 = N/2 and reaching m = 1 at the end of
evolution. 

4.2. Social Strategies and Significance of Models 

Mimetic evolution will thus be experimented on large sized problems, with fixed or hyperbolic 
mimetic strength, and compared in this context to reference genetic algorithms, evolution strate­
gies, and P BIL. 

Experiments are designed to answer the following questions: 

Ql Relevance of the models. 
A particular test is to compare mimetic evolution based on actual models, with what 
happens with void models. Whenever the Ignorant strategy (using no models, or void 
models), outperforms all other strategies, this means that the models hinder, more than 
guide, evolution. 

Q2 Robustness of the scheme. 
Assuming that there exists a social strategy outperforming the ignorant strategy, the next 
question regards the robustness of mimetic evolution: does there exist a wide range of social 
strategies valid for a given problem; does there exist a social strategy valid for a range 
of problems; how do they compare to reference algorithms (canonical genetic algorithms, 
evolution strategies, PBIL). 

Q3 Optimal control of the scheme. 
This question regards what is the optimal strategy for a given problem. Hopefully, prob­
lems having the same optimal strategy present other similar features. Hence the optimal 
social strategy for a problem could then be used as a difficulty criterion. 

5 . Experiments

We first describe the problems considered and the reference algorithms. The experiment setups 
are then detailed. A global overview of the results over all functions is presented and the 
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general trends are discussed. The section ends with some conclusions on the "niche" of Mimetic 
Evolution. 

5.1. Problems 

All experimentations consider the optimization of functions of 100 continuous variables, dis­
cretized through a binary or a Gray coding. Function F2 is taken from [4] . The Griewank,
Rosenbrook and Rastrigin functions have been thoroughly studied in the literature up to 20 or 
50 continuous variables [55] .

• Function F2 (maximization). Search space {O, 1 }900 . 
The domain of each continuous variable Xi is set to [-2.56, 2 .56] ; Xi is coded on 9 bits.
The optimum is 107, reached for Xi = 0.

YI = XI 
Yi = Xi + sin(Yi- I ) ,  i = 2 . . .  100 

F2 (xi , . . .  x100) = _5 �100 IO + i=l IYi l

• The Griewank function (minimization). Search space {O, 1 }1400 .
The domain of each continuous variable Xi is set to [- 100, 100] ; Xi is coded on 14 bits.
The optimum is 0, reached for Xi = 0.

1 IOO 100 
Griewank(xI , . . . x100 ) = 1 + 4000 ?= xr - p cos ( x�) 

i=I i=I v i  

• The Rosenbrook function(minimization). Search space {O, 1 } 1400 .
The domain of each continuous variable Xi is set to [-30, 30] ; Xi is coded on 14 bits. The
optimum is 0, reached for Xi = 1.

100 
Rosenbrook(xi , . . .  x100) 2:[1oo(xr - xi+I ) + (1  - xi )2]

i=I 

• The Rastrigin function. Search space {O, 1 }I400 .
The domain of each continuous variable Xi is set to [-5. 12 ,  5 . 12] ;  Xi is coded on 14 bits.
The optimum is 0, reached for Xi = 0.

100 
Rastrigin(xI , . . .  x100) 2:[xr + 10( 1  - cos(21rxi ) )] 

i=I 

In the following, the Gray and binary encodings of a same function will be considered as 
different optimization problems, termed e.g. · F2-binary and F2-Gray. 
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5.2. Reference algorithms 

The following algorithms will be considered to give the reference results to which the results of 
mimetic evolution will be compared. 

• SGA. The first reference algorithm is a simple GA. Several setups have been considered
(see below) . However, these experiments were rather control experiments, as in the range
of setups considered, SGA was consistently outperformed by PBIL - as reported in [4] .

• PBIL. The second reference algorithm is Baluja's PEIL, with same setup as in [4] : pop­
ulation size 100, update of the model based on the two best offspring with relaxation
factor a, with possible reinforcement from the worst offspring with relaxation factor a/2.
Parameter a was varied as detailed below.

• ES. The third reference algorithm is a (µ + ).) evolution strategy, where the mutation
probability per bit follows a hyperbolic schedule with initial value 1/2 and final value
1/N. This deterministic schedule was chosen after [3] , which concludes that the hyperbolic
schedule seems more efficient and more robust than both the self-adaptive scheme described
in section 3.4, and the fixed mutation rate of k.  The population size µ and natality ). are
varied as detailed below.

• Ignorant. The last reference algorithm is a (µ + ).) evolution strategy, where the number
m of bits mutated in each individual is constant. This actually corresponds to a mimetic
evolution following the Ignorant strategy (i.e. without any memory involved) . Parameter
m is varied as in other mimetic evolution schemes .

The results of both ES and the Ignorant strategy will be examined together as these reference 
algorithms only differ by the setting of their mutation rate. 

5.3. Experimental settings 

Each run is allowed an arbitrary number of 200,000 evaluations of the fitness function (in order 
to compare with the results of [4] in the first place) . 

Two steps of experiments are then performed: First, few runs ( 1 1) of a large numbers of 
parameter settings are launched. This allows us to evaluate and discuss the general trends (sec­
tion 5.4) . The best settings of all algorithms are then retained, and are studied in more detail 
(section 5 .5) .  

The range of setups considered is as follows: 

• For SGA, the population size is set to 50 or 100, with uniform or 2-point crossover, at rate
0.5,  0.75 or 1.0, and mutation rate of k,  i or _t .  As SGA is outperformed by the other
reference algorithms, its results will not be discussed any further.

• For PBIL, the relaxation factor a is taken in { .5 ,  .2, . 1 ,  .05, .02 , .01} .  Only the results
obtained with values 2, . 1 ,  or .05 are then detailed as the other values gave lousy results
(except for the Rosenbrook function see section 5.5) .
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• For all schemes based on (µ + >.)-ES (ES, Ignorant and Mimetic Evolution) , the population
size µ and natality >. are taken in ( 1  + 30) , ( 1 + 50) , (7 + 30) , (7 + 50) .

• For the Ignorant and Mimetic Evolution (section 3 .3) ,  the mimetic strength m takes values
1 ,  3 ,  5, or 7; the relaxation factor of the models is set to .01 and the tournament size T is
set to 50 to keep reasonable the number of options.

• The strategy of Mimetic Evolution is varied in 0, 45, 90, 135, 180, 225, 270, 315 (section
3.3) ; however, only the Sheep, the Phobic and the Lone Rider strategies (respectively
corresponding to angles 135, 180 and 225) gave any good results and will be mentioned in
the detailed study.

5.4. Global Overview 

This section presents and discusses the offiine performance of all algorithms, from the results of 
11 runs of each of the settings described in the preceding section. The six algorithms are SGA, 
PBIL, ES + Ignorant, (the reference algorithms) , and the Sheep, the Phobic, and the LoneRider 
mimetic strategies. 

In the following plots (Figures 2 to 5) , each dot represents the off-line performance of a single 
run, i.e. the best fitness reached after 200000 fitness evaluations. The X-axis is simply the rank 
of the run among all runs for that algorithm, whatever the parameter settings (only the 100 
best runs are shown, for readability reasons) . Each curve shows how the scheme behaves at its 
best (beginning of the curve) , and the sensitivity of the performance to the setting (the slope) . 

Binary and Gray coding of a same function obviously result in quite different landscapes, 
which may either hinder or favor evolution [35, 52) . On three out of four functions (F2 ,  Griewank 
and Rosenbrook) the Gray coding shows more suited to evolutionary optimization than the 
binary coding. On the last one (Rastrigin) , binary and Gray coding lead to similar results. 
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(a) Binary coding (b) Gray coding 
Figure 2 Maximization of function F2 , general overview 

On function F2 , the best performances are obtained for the Phobic and the Lone Rider mimetic 
strategies for both encodings. These strategies perform equally well, and consistently better 
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than all other strategies. In the meanwhile, functions F2-binary and F2-Gray can be considered 
difficult , as the best results are still very far from the optimum (7 for F2-binary and 10 for 
F2-Gray vs 107 for the actual optimum) . 
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Figure 3 Minimization of Griewank function, general overview 
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Qn the Griewank function, whatever the coding, the best performances are obtained for the 
Sheep strategy, the Ignorant strategy performing almost as good. Functions Griewank-binary 
and Griewank-Gray can be considered easy, as the optimum is almost reached (beware of the 
log-scale: 10-4 for Griewank-binary and 0 for Griewank-Gray vs 0) . Typically, the best 40 runs 
for the Sheep and the best 15 runs for the Ignorant fall below the bottom line of the drawing. 
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(a) Binary coding (b) Gray coding (logarithmic scale) 
Figure 4 Minimization of Rosenbrook function, general overview 

On the Rosenbrook function, the best scheme and the difficulty depends on the coding. The 
Rosenbrook-binary problem is difficult: no algorithm gets to values lower than 100. The best 
strategies are the Sheep and the Phobic, that strike this barrier value many times. On the 
other hand, such a barrier does not appear on Rosenbrook-Gray, for which the best strategy 
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is the Ignorant, that reaches values around 10-2 • Note that, apart from the 10 best runs, the
Sheep performs almost equally well, and can even be considered more robust with respect to 
the parameter settings. 
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Figure 5 Minimization of Rastri gin function, general overview 
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The Rastrigin problem is difficult for both encodings: no algorithm gets to values lower than 
100. However, the picture is different in both cases: On Rastrigin-binary, the best strategies are 
the Ignorant and the Lone Rider, closely followed by the Phobic. Again, the Ignorant strategy 
seems less robust with respect to the parameter settings. On Rastrigin-Gray, the best strategy 
is by far the Ignorant, followed by PEIL, whereas all mimetic strategies perform equally bad. 

According to the respective performances of the schemes, one distinguishes three categories 
among the eight test problems considered here: 

• Problems on which the Sheep strategy performs comparatively well. Such problems
(Griewank-binary, Griewank-Gray, Rosenbrook-Gray) tend to be rather easy: the problem
can be solved by iteratively memorizing the optimum and sampling its neighborhood.

• Problems on which the Lone Rider strategy performs well. Such problems {F2-binary, F2-
Gray and Rastrigin-binary) tend to be difficult : Indeed, following the Lone Rider amounts
to somehow fleeing the past optima; if this shows appropriate, the problem is in some sense
deceptive.

• Problems on which the Ignorant strategy performs well. Such problems {Rastrigin-binary
or Rastrigin-Gray) are difficult too, but the way memory is used (e.g. by mimetic evolution)
seems to rather mislead than guide evolution.

5.5. Detailed comparisons 

The previous section gave a general idea of how the different schemes behave at their best . 
We now study in more detail the best settings of mimetic evolution and compare them with 
the best reference algorithms on each problem. Each evolution scheme is evaluated from the 
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average or median best performance out of 21 runs. As recommended by [14] , the median 

should be preferred to the average whenever the :fitnesses involved show very different orders 

of magnitude (e.g. when the results get close to the optimum at 0) . The criterion used here 

was to present the average and standard deviations in general, and to use the median whenever 

the standard deviation was high (not significantly smaller than the average value) . When the 
standard deviation was small, the average and the median results were close in all cases presented 
here anyway. 

5.5. 1. Function F2 

Table 2 below presents the offiine reference results for F2 problems, while Figure 6 shows the 
median online evolution for ES and Ignorant algorithms. Table 3 and Figure 7 show the same 
results obtained by the mimetic algorithms. 

PBIL ES IGNOR 
.05 . 1  .2 (Hyp) 1 3 5 7 

Bin. 3.73 { .34) 4.63 { .40) 3.99 ( .32) 4.40 { .43) 3 .07 { . 19) 4.31 { .32) 4.25 { .35) 3.98 ( .25) 
Gray 4.07 ( .27) 5.35 ( . 24) 4.66 ( .30) 5.65 ( .35) 3.87 ( .24) 5 .96 ( .27) 5.41 ( .35) 4.99 ( .35) 

Table 2: Reference results for F2; Average offiine results {standard deviation} over 21 runs of 
200, 000 evaluations. 

On this problem, the best reference algorithms are PBIL and the Ignorant . For PBIL, the 
result is very sensitive to a. For the Ignorant, it is sensitive to the number m of bits to mutate. 
As expected, m = 1 leads to bad results (for m = 1 ,  the Ignorant resembles a standard Hill­
Climber) . Best performances are obtained for m = 3 for both encodings. The performances do 
not depend much· on the population size µ and natality ,\. 

Mutation 1 3 5 7 Hyp. 
Binary Sheep 2 .91 ( . 16) 2.48 (.33) 3 .79 ( .30) 3 .91 { .35) 3.90 ( .33) 

Phobic 3.01 ( .20) 4.68 { .35) 4.77 ( .51)  4.60 ( .38) 4.56 ( .41)  
Lone Rider 3 . 16  ( .23) 4.97 ( .52) 4.99 ( .39) 4.51 ( .34) 4 .51 ( .37) 

Gray Sheep 4.31 ( .26) 6.34 ( .48) 6 . 10 ( .44) 5 .84 ( .43) 5 .76 ( .40) 
Phobic 4.28 ( .30) 8.38 ( .77) 7.09 ( .54) 6.57 { .40) 6.93 ( . 50) 
Lone Rider 4.20 ( .2) 8.43 ( .58) 7.25 ( .46) 6.32 ( .41) 6 .78 ( .61 )  

Table 3: Mimetic results for function F2; Average offiine results (standard deviation} over 21 
runs of 200, 000 evaluations. 
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The best mimetic strategies are the Lone Rider and the Phobic, which behave equally well 
on both problems, as in the general overview. The results similarly depend on m ,  with best 
results obtained for m = 5 (with binary coding) and m = 3 (with Gray coding) . The overall
performance is more sensitive to the population size and natality µ and ,.\ than for the Ignorant 
strategy. 
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Figures 6 and 7 show some similarities, especially regarding the behavior of the Hyperbole 
(m follows a hyperbolic schedule decreasing from N /2 to 1 ) .  After a bad start (mutation is too
active in the early generations) , the hyperbole curve soon catches up all other curves and passes
them. But in the second half of evolution, the hyperbole curve gets stuck (almost horizontal) ,
and is passed by some fixed schemes. This is due to the fact that the actual strength of mutation 
1s one. 
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However, a clear effect of the mimetic strategies is to increase the slope of all curves - and 
this is even clearer for the 1-bit and Hyperbole curves, which definitely end horizontally for 
the ignorant strategy (Figure 6) while slowly but steadily increasing for the mimetic strategy 
(Figure 7) .

5.5.2 .  Griewank Function 

As in the preceding section, Table 4 and 5 below below presents the offiine results for Griewank 
problem, while Figure 8 and 9 show some plots of online median results. 

On this problem, the best reference algorithms are ES and the Ignorant. For both codings, the 
lower m the better: surprisingly, best reference results are obtained for m = 1 .  The hyperbolic 
ES catches up the Ignorant with some delay. This, added to the fact that the Ignorant almost 
finds the optimum, suggests that Griewank-binary is actually rather easy. The performances of 
the Ignorant are rather sensitive to µ and >.. 

PBIL ES IGNOR 
.05 . 1  .2  (Hyp) 1 3 5 7 

Bin. 127 (9) 14.3 (5.3) 4.95 (*) 0.028 (* ) 0.022 (*) 0.95 (*) 2.79 (*) 21 .5 (9.3) 
Gray 119 (3.5) 29 (8.4) 2.3 (*) 1 .47 (* ) 1 .23 (*) 2.96 (* ) 3 (* ) 5 .15  (2.5) 

Table 4: Reference results for Griewank function; Average offiine results {standard deviation} 
over 21 runs of 200, 000 evaluations, except for cases {*) where the averages and standard 

deviations are non-significant; the figure is then the median of the 21 runs. All figures have 
been multiplied by 100. 

Mutation 1 3 5 7 , Hyp. 
Binary Sheep 16.85 (* ) 3 .15 (*) 1 .36 (*) 0.13 (*)  0.76 (* ) 

Phobic 16.78 (* ) 19.43 (3.64) 68.44 (9.01) 105.68 ( 1 .21) 2 .49 (*) 
Lone Rider 7.64 (*) 48.46 (8.86) 97.73 (6. 10) 1 13 .16 (2.37) 5 .78 (* ) 

Gray Sheep 1 .97 (* )  2 .97 (* ) 0.0018 (* ) 0.85 (* ) 1 .23 (* ) 
Phobic 1.23 (* ) 1 .  78 (*) 2.86 (* ) 8.44 (* ) 0.99 (*) 
Lone Rider 0.002 ( *) 1 .20 (* ) 3.48 (*) 10.57 (* ) 0.99 (* ) 

Table 5:  Mimetic results for Griewank function; Average offiine results (standard deviation) 
over 21 runs· of 200, 000 evaluations, except for cases (*) where the averages and standard 

deviations are non-significant; the figure is then the median of the 21 runs. All figures have 
been multiplied by 1 00. 

As already mentioned in the general overview, these problems are comparatively easy. On both 
problems, the Sheep gets the best results .  On Griewank-binary, the Sheep is slightly behind 
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the Ignorant and optimal results are obtained for high values of m (optimum at m = 7 for the 
Sheep on Griewank-binary) . On both problems, too, the Lone Rider is one order of magnitude 
better than the Phobic - though slightly worse that the Sheep in the binary case. 
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What is surprising is that the best results are obtained with a high m for the Sheep and 
for m = 1 for the Lone Rider. The fact that the Sheep can afford much larger mutation steps 
than the Ignorant can be explained from the memory: intuitively, more (good) information 
allows to find short-cuts in the fitness landscape. On the other hand, the mandatory small steps 
of the Lone Rider might be explained from the balance between exploration and exploitation: 
Increasing the value of m favors exploration over exploitation. Moreover, using the Lone Rider 
instead of the Sheep similarly favors exploration (fleeing away instead of imitating the previous 
optima) over exploitation. Using the Lone Rider together with a large mutation step might 
result in too strongly bias toward exploration. 

For all mimetic strategies, the performances are more sensitive to the population size µ and 
natality A than for the Ignorant strategy. 

As in Figures 6 and 7 (function F2) ,  the hyperbolic curve shows higher slope that the fixed 
schemes in the first half of the plots of Figure 9. Afterward, it behaves as a 1-bit mimetic 
evolution (but the logarithmic scale makes the hovering less visible) . In Figure 8, where the 1-
bit mimetic scheme is the best one, the hyperbolic scheme simply catches up that best behavior 
a little after 100000 evaluations. 

Another striking fact in Figure 9 is the outstanding best value for the mutation strength (7 
for Binary, 5 for Gray) . However, complementary experiments show that no further improvement 
is brought by increasing the value of m. 
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5.5 .3.  Rosenbrook Function 

Again, the results on Rosenbrook problems are presented in Table 6 and 7 below for the offiine 
results, and in Figure 10 and 1 1  for some sample median online plots. 

PBIL ES IGNOR 
. 1  .2 .5 (Hyp) 1 3 5 7 

Bin. 816 (*) 963 (*)  905 (*)  552 (*)  1752 (*) 638 (*)  437 (*) 427 (*) 
Gray 1 146 (289) 259 (78) 75 (33) 154 (50) 5.25 (*) 115 (67) 258 (53) 409 (60) 

Table 6: Reference results for Rosenbrook function; Average offiine results (standard deviation) 
over 21 runs of 200, 000 evaluations, except {*) where the very different orders of magnitude of
the fitnesses makes again averages and standard deviations non-significant: the given figure is
then the median of the 21 runs. Also note the range of parameter a for P BIL differs from all

other similar tables. 

On this problem, the best reference algorithm is the Ignorant . However, the different codings 
seem to shape very different fitness landscapes. 

For Rosenbrook-binary, the best performance is obtained for rather high values of m (m = 7) 
and optimization ends very far from the actual optimum (427 vs 0) . 

On the opposite, for Rosenbrook-Gray, the best performance is obtained for m = · 1 (i.e.
with a simple Hill-Climber) , and optimization reaches 5.25. Also the best results of PBIL were
obtained for a = 0.5, i.e. with rapidly changing distribution. 

This suggests that indeed the binary coding creates more local optima and difficult barriers 
(e.g. the so-called Hamming cliffs) than Gray coding [52] , requiring larger steps to overcome
these difficulties. The characteristic stair-like shapes of the plots of Figure 10 witnesses such 
sudden changes (whenever some cliff is over-passed) .
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Mutation 1 3 5 7 Hyp. 

Binary Sheep 1368 (*)  1223 (*) 325 (*) 418 (* ) 380 (* ) 
Phobic 700 (*)  628 (*)  2275 (487) 9280 (3017) 914 (*) 
Lone Rider 380 (*)  511  (*)  652 (* ) 694 (*) 815 (* ) 

Gray Sheep 1 1 .6 (6.8) 126 (57) 167 {79) 225 (77) 183 (59) 

Phobic 12.8 (6.8) 265 (58) 308 (49) 416 (69) 279 (52) 
Lone Rider 14.3 (6 .7) 238 (57) 319 (59) 453 (63) 298 (65) 

Table 7: Mimetic results for Rosenbrook function; Average offiine results {standard deviation) 
over 21 runs of 200, 000 evaluations, except {*) where the very different orders of magnitude of

the fitnesses makes again averages and standard deviations non-significant: the given figure is 
then the median of the 21 runs. For instance, the Sheep strategy on the binary coding with 

one bit mutation has an average of 14000+ and a standard deviation of 21000+! 
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As for Griewank problems, the Sheep appears the more suited mimetic strategy: it behaves 
well with both encodings. Moreover, the situation for the binary problem is quite similar to 
that of the Griewank binary problem: the Sheep outperforms all other strategies (including the 
Ignorant) when using 5-bits mutation, while the Lone Rider performs a little worse, but with 
1-bit mutation only. 

However, the Rosenbrook Gray problem shows a picture quite different from the Griewank 
Gray: All strategies get their best results with a 1-bit mutation, and are slightly outperformed 
by the Ignorant . It seems that no useful information can be obtained from the past evolution, 
no short can be found. Even worse, the memory might give false indications, resulting in worse 
results than the Ignorant strategy. 
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On Figure 1 1-a, the stair-like shape of the 7-bit curve, and the very poor performance of the 
1- and 3-bits curves (not visible!) again suggests the existence of barriers in the fitness landscape. 
In the same line, the Hyperbole switches from the behavior resembling the 7-bit curve to values 
close to those of the 5-bit curve before getting stationary as the mutation strength reaches 
smaller values. 
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On Figure 11-b, it can be seen that the 1-bit mutation needs some time before finding a 
quick way toward good values. On the other hand, the Hyperbole never finds such way down, 
probably trapped by its first steps in some completely different region of the search space. 

5.5.4. Rastrigin Function 

For Rastrigin problems, only the off-line results are presented in Table 8 and 9. Indeed, the 
on-line behavior of all algorithms does not provide much useful information: almost the same 
comments than for function F2 can be made. 

PBIL ES IGNOR 
.05 . 1  .2 (Hyp) 1 3 5 7 

Bin. 202 ( 14) 158 (20) 158 (15) 158 (17) 254 (23) 156 (23) 152 (18) 177 (21) 
Gray 191 ( 16) 172 (14) 162 (15) 162 ( 14) 211  (14) 144 ( 1 1) 138 (14) 140 (16) 

Table 8: Reference results for Rastrigin function; Average offiine results (standard d�viation) 
over 21 runs of 200, 000 evaluations. 

The unique characteristic· of these results is that all reference schemes behave almost the 
same whatever the coding of the problem. Further, there is not much difference between ES, 
the Ignorant and PBIL. 
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Mutation 1 3 5 7 Hyp. 

Binary Sheep 248 (21) 195 (17) 170 ( 17) 197 ( 18) 195 ( 19) 
Phobic 231 (28) 165 ( 19) 148 ( 17) 150 ( 19) 156 ( 16) 
Lone Rider 230 ( 16) 173 (22) 154 ( 12) 154 ( 14) 151 ( 14) 

Gray Sheep 217  ( 17) 205 ( 18) 200 (22) 188 ( 17) 210 ( 17) 
Phobic 242 ( 14) 224 (22) 194 ( 17) 170 ( 19) 179 ( 18) 
Lone Rider 235 ( 15) 219 ( 13) 196 { 13) 171 { 15) 185 ( 16) 

Table 9: Mimetic results for the Rastrigin function; Average offline results {standard deviation) 
over 21 runs of 200, 000 evaluations. 

The best performances are obtained for the Phobic and the Lone Rider, both with rather 
high values of m (m = 5 or 7 for Rastrigin-binary, and m = 7 for Rastrigin-Gray. Nevertheless,
the mimetic strategies give results similar to the Ignorant strategy for the binary case, and are 
slightly outperformed on the Gray problem - though no algorithm gets any close to the global 
optimum. 

5.6. The niche of Mimetic Evolution 

As a summary of the results of the previous section, consider Table 10 below, ranking all strate­
gies on each of the test problems. 

Function 1st 2nd 3rd 
F2-b Lone Rider (3,5) Phobic (3) Ignorant(3) 
F2-G Lone Rider (3) · Phobic(3) Sheep (3) 
Griew-b Ignorant (1)  Sheep (7) Lone Rider(l) 
Griew-G LoneRider(l ) ,  Sheep(5) Phobic(l) ,  lgnorant(l) 

4th 
Sheep .(7) 
Ignorant ( 3) · 

Phobic (1)  

Rosenb.-b Sheep (5) Lone Rider (1)  Ignorant (7) Phobic (1 )
Rosenb.-G Ignorant (1 )  Sheep (1) Phobic (1)  Lone Rider (1) 
Rastr-b Phobic {5) Ignorant (5) · Lone Rider (5) Sheep (5) 
Rastr-G Ignorant (5) Lone Rider, Phobic (5) Sheep (7) 

Table 10: Rank of the different mimetic strategies over , all problems. 

On Griewank-binary and Rosenbrook-Gray, the Ignorant with m = 1 ,  i.e. an algorithm resem­
bling a simple Hill-Climber, is · the best option and falls clo�e to the optimum. Clearly, mimetic 
evolution brings no definite advantage as a memory-less evolution can do the job. These problems 
should be excluded from the scope of mimetic evolution, as too "easy" . It is most interesting, 
incidentally, that mutating a fixed number of bits in any individual appears more efficient than 
using a probability of mutation Pi per bit. This can be explained as, when probability Pi is low 
(around 1/N) , mutation happens to be very frequently inacti�e8 . 

On Rastrigin-Gray, the Ignorant with m = 5 shows the best option, though it falls far 
from the optimum. Such functions can be considert3d symmetrically as too difficult for Mimetic 
evolution: either mimetic evolution fails to construct a relevant memory, or it does n�t use the

8Typically, for N = 100, the probability of mutating no bit is (1 - 1/N)N , that is, circa 363.
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models in a proper way. Indeed, the use of models offers room for improvement, and some 
perspectives of further work on this point will be discussed in the next section. 

On the other problems, ,mimetic evolution brings some improvement over the reference al­
gorithms, with two different settings: the Sheep with rather high values of m (e.g. m = 5 
for Griewank-Gray and Rosenbrook-binary) , and the Lone Rider or. the Phobic with moderate 
values of m (m = 3 for F2-binary and F2-Gray, m = 5 for Rastrigin-binary) .

In the latter case, the fact that the Lone Rider and the Phobic strategies are the best ' ones 
gives some hints into the structure of the fitness landscape: either recombining the individu­
als is not relevant (e.g. macro-mutation would be more appropriate than crossover [27] ) ;  or 
maintaining the diversity of the population is more important than recombination. 

In the former case, the fact that the Sheep strategy outperforms the other ones symmetrically 
implies that a fast recombination-diversification of the individuals is relevant . This could be 
confirmed by the fact that large gaps can be viewed in the performances (Figure 3) : the landscape 
is composed of local optima with large basins of attraction. The population climbs toward the 
local optimum, then waits for finding the good direction toward another basin of attraction. 

Most surprisingly, mutating a constant number of bits shows sufficient to reach good perfor':' 
mances in many cases, which implies that bounded-mutation is sufficient to escape many local 
optima. This contradicts the intuition that mutation must be able to make very large steps, 
even with low probability, in order to prevent evolution from premature convergence 9 . But the
fact that many basins of attraction can be escaped with a small jump (0.53 of the tot�l number 
of bits) might come from the high dimension of the problems considered. Indeed, the size of the 
neighborhood grows exponentially with the dimension of the space, which modifies the rarity of 
local optima [51) .  

6. Conclusion and Perspectives

This paper is concerned with the possible forms and uses of memory in artificial evolution� 
and focuses on the role of explicit common memory. In the line of PBIL [5) and Evolution by 
Inhibition [48) , we investigate through the mimetic evolution scheme, how to use the memory of 
the past best and worst individuals generated in the previous generations. 

These memories can be. interpreted in various ways. They can first be considered as distribu­
tions on the search space. A restricted distribution space was considered here, Le. the variables 
are assumed locally independent. But richer distribution space can . be considered: This mech­
anism was recently extended to Genetic Programming (42) , continuous_ optimization . [46) ; and 
combinatorial optimization [ 6) . , , 

The memories can also be viewed as a self-adaptive system of coordinates in the search space, 
varying along evolution. The goal is to define the relevant direction (i.e. some gradient informa-

9For instance, [55] recommends the use of a Cauchy distribution instead of a Gaussian law to �volve the
auto-adaptive mutation rate in continuous Evolution Strategies. Making high steps more probable tha:r;i with 
a Gaussian distribution is observed to speed up evolution or prevent it from prei:nature convergence on many 
benchmarks functions. ' 

33



tion) with respect to this system of coordinates, or mimetic strategy. Only fixed strategies were 
investigated in this paper (section 3.3) . An open issue is to automatically adjust the relevant 
strategy along evolution, either at the population level, or at the individual level. Still, on the 
restricted set of functions studied in this paper, only three strategies are worth considering. 
Further, they appear useful in different situations: when diversity is important for the Phobic 
and Lone Rider strategies; when evolution has to jump many times from an optimum to another 
for the Sheep strategy - coupled with large mutation steps in that case. 

Indeed, dealing with a direction rather than with a distribution raises the additional question 
of how to set the strength of the mutation {the size of the mutation steps m) . _, Only fixed and
hyperbolic {decreasing m from N/2 to 1 )  settings have been considered so far. However, some 
hints are given by the experimental results: First, mutating a fixed number of bits m per 
individual should be preferred to mutating all bits with a fixed probability per bit - provided 
the optimum value for m is found, as in many case there is a clear optimum value (Figures 
6 to 9) ; Second, a decreasing schedule might prove beneficial - though the hyperbolic scheme 
proposed in [3] , decreasing from N /2 to 1 should be fine-tuned: if 1-bit mutation is not the 
optimum value, mutating one bit during the last half of the run is useless. Ongoing research is 
concerned with investigating other simple schedules for adjusting m, using either an hyperbolic 
decrease toward some mend > 1 ,  or an online adaptation mechanism. 

Of course the issue of determining the optimal values for the mutation strength remains 
open, and at the moment still relies on extensive numerical experiments for a large number of 
settings of mutation schedules and mimetic strategies. But on the other hand, such experiments 
might help to understand the very nature of the fitness landscape at hand, and an unexpected 
achievement might be a new background to assess problem difficulties - independently of how 
well mimetic evolution 

A last perspective of research is concerned with extending mimetic evolution to multi­
objective optimization. The objective would be to construct models sampling the Pareto front. 
In that context, the control of evolution shifts toward how to determine the natality of each 
model, and how to update the models from the current population (e.g. , should a non-dominated 
individual be used to update any model? how to determine match individuals and models . . .  ) . 

More generally, when considering an explicit memory, evolution shifts from the phenotype­
genotype paradigm [30] to the paradigm of distribution of phenotypes/ distribution of genotypes. 
This new search space is always larger, thus such approach should indeed be more powerful. 
But only if the following open problems can be solved: find adequate evolution operators in 
a distribution space; characterize the benefit of distribution-based evolution, i.e. the class - of 
functions relevant to a memory-based approach. 
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