
HAL Id: hal-00111602
https://hal.science/hal-00111602

Submitted on 21 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Intelligent modeling of materials
Joseph Zarka, Pirouz Navidi

To cite this version:
Joseph Zarka, Pirouz Navidi. Intelligent modeling of materials. Mechanics of Materials, 1998, 28
(1-4), pp.61-82. �10.1016/S0167-6636(97)00063-X�. �hal-00111602�

https://hal.science/hal-00111602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Intelligent modeling of materials

Joseph Zarka ) ,1, Pirouz Navidi
Laboratoire de ´Mecanique des Solides, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

Abstract

Over several decades, many contributions have been made to understand the physics and to develop models of aggregates 
of metals and composites. Three books ‘Modelling small deformations of polycrystals’ eds. J. Gittus and J.Ž .Zarka and 
‘Modelling large deformations of solids’ eds. J. Gittus, J. Zarka and S. Nemat-NasserŽ . and ‘New approach of inelastic 
analysis of structures’ eds. J. Zarka et al.Ž . gave already a general view of the state of the art. Nemat-Nasser, particularly in 
his impressive book ‘Micromechanics: overall properties of heterogeneous materials’, improved and is still greatly 
improving our knowledge in this fundamental area. In this paper, which is dedicated to his 60th anniversary, we want to give 
again and for the last time, our own view of the problem based on may beŽ . not well known works and also some 
unpublished theses of some students which were done between 1964 and now. In the first part, we shall underline what the 
physical quantitative description of inelastic behavior of single crystals means for us by answering the following questions: 
1Ž . are the various glides on each crystal slip plane, as introduced in the multiple plastic potential theory, potential internal 
variables? noŽ .; 2Ž . can we build a real physical model for the crystal in correlation with the observations of the evolution of 
the crystalline defects, such as the dislocations, the vacancies, the precipitates ... and the thermally activated processes?
yesŽ .; 3Ž . can we define the physical hardening parameters yesŽ . and is the latent hardening higher than the self-hardening?
noŽ .; 4Ž . is it possible to reach a description which fits the experimental results? Žmay be! .. Then, in the second part, 
assuming a given behavior for the crystals, for the global inelastic behavior of polycrystals, we shall try to answer the 
questions: 5Ž . how many different orientations of crystals are necessary to reach the description of an initially isotropic 
polycrystal? three well selected ones!Ž .; 6 are theŽ . simplified models, such as the self-consistent model, sufficient to 
represent the interactions between crystals? yesŽ .; 7Ž . are the actual numerical simulations based on rate-dependant or 
rate-independent crystal plasticity, useful for the industrial applications? no, unhappily!Ž .. Finally, in the third part, we shall 
give our new general framework of ‘intelligent’ modelling of aggregates where we take into account not only the local 
behaviors of the crystals but also their size, their shape and their relative distribution. In this framework, it is needed: iŽ .  To 
build a data base i.e. to obtain some experimental, real or simulated, results where the experts identify all variables or 
descriptors which may relevant to the given problem. This is, at first, done with some primitive descriptors x which are 
usually in a limited number. Then, the data are transformed into intelligent descriptors XX in a larger number, using the 
existing knowledge and theories which are still always insufficient. The descriptors may be numbers, boolean, alphanumeric, 
name of files which gives access to data bases, or treatments of curves, signals and images. The results or conclusions may

Ž . Ž .be classes good, not good, ... or numbers Young modulus, cost, weight, life time, ... . Usually, the data base may contain
Ž .roughly 30 to 150 examples with 10 to 1000 descriptors and 1 to 20 conclusions. ii To generate the rules with any
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automatic learning tool. The intelligent descriptors help these learning algorithms. Each conclusion is explained as function 
or set of rules of some among the input intelligent descriptors with a known reliability or accuracy. If this reliability is too 
low, it implies that either there is not enough data or there are bad, missing descriptors or the problem was not well 
described. iiiŽ . To optimize at two levels Žinverse problems :. Ž1. Considering the intelligent descriptors as independent; it is 
possible to get the optimal solution satisfying the special required properties and allowing the discovery of new mechanisms; 
2Ž . considering the intelligent descriptors linked to primitive descriptors, it is possible to obtain the optimal solution which is 
technologically realizable. So, not only a practical optimal solution is obtained, but also the experts may learn the missing 
parts, may build models or theories based only on the retained intelligent descriptors and guided by the structures of the rules 
or relationships. We shall illustrate our framework by treating step by step the problem of the global elastic behavior of 
concrete with a cement matrix and soft or hard inclusions. This problem has been the subject of several papers, providing 
simplified models, simple bounds of the elastic moduli and sophisticated theories ... were produced. Our aim is to give the 
results to the engineers in such a practical way that they could: 1Ž . estimate the elastic properties within a few percent of 
error for any concentration, any shape, or distribution of the inclusions; 2Ž . select the preparation of the aggregate to reach any 
pre-assigned elastic properties even at the lowest cost or weightŽ .. 

1. Physical modeling of metallic single crystals

1.1. Theoretical model Fig. 1( )

It is well known that experiments have shown that:
1Ž . Irreversible plastic strains, in metallic single crystals, are induced by the motions of some structural 

defects; for example, during the slip mode, which is the most important one, the crystal structure characterized 
by a lattice, remains unchanged and the strains are delayed viscousŽ . and often very large.

2Ž . Reversible elastic strains are linked to the mean lattice; the strains are instantaneous and generally very 
small.

Ž .3 This fundamental fact has allowed to differentiate the elastic strains and plastic strains at any time by
™

™introducing two families of triads, F and e which are defined with the following properties:K a
™

Ø F are three macroscopic vectors which characterize the total transformation.K
™

Ø e are three microscopic vectors linked to the mean lattice which characterize the elastic deformation.a

Fig. 1. Different states of the crystal.
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Ø At time ts0, chosen as an initial unloaded and natural state, relative to a fixed Cartesian frame of
™

™ ™ ™ ™K K i iŽ . Ž . Ž .reference g and at the point M X d , the components of these vectors are F 0 sd g and e 0 sd g ,i i K K i a a i

where d K , d i and d i stand for the Kronecker symbol.i K a

Ž i.Ø At the actual time t and at the point m x ,the image of M in the total deformation, the components of the
™

™ ™ ™i K iŽ .above-mentioned vectors are F s E x rEX g and e sx g .K i a a i
Ž i K . Ž Ž K .Ž L ..Ø Fs E x rEX is the classical deformation gradient; es 2 e sd yd EX rE x EX rE x is thei j i j K L i j

total strain tensor which, similar to the total rotation, is generally large.
Ž i . X Ž X a b .Ø Es x gives the elastic deformation; e s 2 e sd yd x x is the small elastic strain tensor.a i j i j ab i j

ŽØ The elastic strains may be instantaneously recovered by a total unloading the temperature being here
.assumed constant and with the help of a convenient rotation to reach an intermediate unloaded state in which

™X ™ ™Ž .the vectors of the microscopic triad e are equipotent to the initial e 0 or g but in which there is a newa a i
� 4distribution of defects relative to the initial state; let us define by y a family of internal parameters, which

describes this actual distribution of the defects.
Ž ab . ŽØ By the classical elastic theory, it may be possible to calculate the global stress tensor P P referred

™ .to the frame e or the Cauchy stress tensor,a

1
i j i j abs s s x x P .a biž /det xŽ .a

X � 4Ø When we impose e for the actual given defect distribution y , since in the presence of the defects, the
crystal is an inhomogeneous medium.

Ø The total deformation can not be characterized so easily; it is necessary to follow the crystal step by step
and to split the velocity gradient Õ

i into the elastic part Õ
X i and the plastic part Õ

Y i: Õ
i
'Õ

X iqÕ
Y i which givesj j j j j j

E x irEX K
'Õ

iE x jrEX K and x i
'Õ

X i x j .˙ ˙j a j a

1.2. Physical model

Indeed, it is necessary to build a physical model to get the elastic and plastic parts of the velocity gradient, ÕX ij

and Õ
Y i, explicitly. Here we only recall how we obtain the plastic part:j

Ø We know that for metallic single crystals, the plastic strains result from slips on some crystallographic
planes and along some crystallographic directions, these planes and directions being fully determined in the

™frame e which represents the mean lattice.a
™

™iŽ . Ž .Ø We know that if we denote by h h , the unit vector along the slip direction, by n n , the unit normalj
™

vector to a slip plane which contains atoms, and by g the relative velocity along h between two planes which
are unit length apart, the velocity gradient is then given by:

Õ
Y ishin gj j

Ž .and that when there are several such active slip systems r , the velocity gradient is expressed by:

Y i iŽ r . Ž r . Ž r .
Õ s h n g .Ýj j

Ž .r

™
™ ŽØ During this transformation, the frame e remains fixed and the frame F are transformed strain anda K

™. Ž .rotation ; the vector Burgers vector which links two atoms, will have constant components in the frame e ,a

™

b
™ ™

™ ™ ™a a i ibsb e sb x g ´hs sh g ,a a i ib
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™
™athe normal N to a plane which contains atoms, will have constant covariant components in the frame e ,

™

N
™y1

™ ™ ™ ™i ax g , NsN e sN g ´ns .Ž .a i a i i N

Ž .Ø But we need to know when a slip system r is active and what is the amplitude of the relative velocity
Ž r . Žg and here is the starting point of all the various proposals, each person claiming that he has the best model

.as do the authors of this paper ; usually, based on Schmid’s law, symbolically, we introduce

Ž r . Ž r . Ž r . i j Ž r . Ž r . Ž r . � 4t 'h n s ; f 't yg y G0Ž .i j

Ž r . Ž r . Ž r .Ž Žk .and in view of the fact that g results from delayed motions of the defects, we assume g 'g t ,
� 4. Ž Ž r .. � 4y Y f where Y is the Heaviside function; during these motions, some parameters among the y family
may evolve,

Ž r . Žk . Ž r .� 4 � 4y ' G t , y Y f .Ž .˙ Ž .Ý
Ž .r

1.3. Face-centered cubic single crystal

1.3.1. Simplified model for room temperature
Ž .In Zarka 1968 , we proposed a model where we took into account the dislocation distribution based on a

Ž .schematic representation Fig. 2 of the classical electron microscope images of the observed microscopic
physical phenomena.

At room temperature and for quasi-static loadings, an idealized model was proposed as follows: We defined a
Ž .mechanism r of dislocations by grouping the set of randomly distributed small segments of dislocations which

™
™Ž r . Ž r . Žk . Žk .have the same Burgers vector b and parallel slip planes with unit normal n ; NN , l are respectively the

Ž Žk . Žk .mean number per unit volume of segments and their mean length the product NN l is the total length of
.such dislocations per unit volume which means a quantity which may be measured at any time .

Fig. 2. Crude schematization of the distribution of dislocations.
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Ž .Then by using simple hypothesis as initiated by Taylor, Stroh, Saada, Cambell, ... , we were able:
Ø To compute the interactions between mechanisms of dislocations as:

1r2Ž r . Ž r . Ž r . Ž r . Žk . Žk .
FF sFF qmb b NN l ,Ž .ÝPN Žk .

Ž .k

where m is the elastic shear modulus and b Ž r . was explicitly obtained after very long calculations, to beŽk .

° Žk .b s1r8, for self- hardening,Žk .

1r16, for r / k but with parallel slip plane,Ž . Ž .Ž r . ~b sŽk .
1r20, for r / k but with same Burgers vector,Ž . Ž .¢1r12, for all other mechanisms r / k .Ž . Ž .

ŽIt was possible to provide a physical basis for this formula. The formula, however, may be taken as a
. Ž .phenomenological extension of the Taylor’s model. The formula shows that what we call the self-hardening is

more important than the latent hardening i.e. it is easier, after the activation of the principal slip mechanism to
Ž .move a dislocation which belongs to another slip system. Note that experiments Nowacki and Zarka, 1971 ,

seemed to confirm this point, although many other researchers have reported contrary results!
Ž r . Ž r . Ž r . Ž r . Ž r . Ž r . i j ŽF sb t 'b h n s is the applied force per unit length on the dislocation Peach–Koelheri j

. Ž r . Ž r .formula ; F must be greater or equal FF in order to move the dislocation, i.e., to activate the mechanism
Ž .r .

ŽØ To compute some mean times of realization such as, for example, the mean time to cross over another
. Ž² Ž r . Ž r .: Žk . Žk . Žk .. Ž² :dislocation which were written in the form t s t F yFF , F , NN , l being the Heavisidem m

.function .
Ø To give the full incremental evolution of the crystal deformation using the following hypothesis during the

small increment of time d t,
Ž . Ž . Ž . Ž r .i for each active mechanism r , some r dislocations are sources and they emit dNN loops of

dislocations per unit volume; the loops with the mean length, 2p LL , sweep the mean area p LL
2 by easyŽ r . Ž r .

glide before being stopped on the dislocations which pierce their slip plane;
Ž . 2 Ž r .ii with the aid of some probability laws, it was possible to evaluate p LL , dNN as functions of theŽ r .

dislocation distribution and the applied forces F Žk .:

g Ž r . d tsb dNN Ž r .p LL
2 ,Ž r .

d NN
Ž r .l Ž r . sdNN Ž r .2p LL ,Ž . Ž r .

x Ž r . x Ž r .
2p LL , ' ,Ž r . XŽk . Ž .rÝ n rŽk .

d t
Ž r . Ž r . Ž r .dNN ,w NN ,

Ž r . Ž r .x tGD

cc
Ž r .
0Ž r .t s ,GD Ž r . Ž r .² :F yFF

XŽk . Ž .where rŽ r .sÝ n is the density per unit surface of all the dislocations which pierce the slip plane of r ,Žk .

x Ž r . is the number of jogs on the new loop, and wŽ r . is the fraction of dislocations which may be sources and
Ž .may be taken as constant there is no cross-slip or climb in this approximation .
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( )1.3.2. Viscoplastic Potential Rice, 1970
By examining the above formulae, we obtain for the glide velocity relative to each mechanism:

wŽ r .
NN

Ž r .
Ž r . Ž r . Ž r .² :g ,b F yFF ,

Ž .rŽ r .C r0

which expresses that this velocity is, by the intermediacy of F Ž r ., only a function of the applied shear stress,
™

™Ž r . Ž r . Ž r . i j iŽ . Žt sh n s on the mechanism r the mean pressure s does not take part when h and n arei j i
. Ž . Ž .orthogonal . Thus, as shown by Rice 1970 , by putting for each r ,

wŽ r .
NN

Ž r .
2Ž r . Žk . Žk . Ž r . Ž r .² :TT s , NN , l ' F yFFŽ . Ž .rŽ r .2C r0

and for the crystal

Ž r .
TTs TT ,Ý

Ž .r

the plastic part of the velocity gradient can be written
Ž r . Ž r . Ž r .ETT ETT ETT EF

Y i iŽ r . Ž r . Ž r .
Õ s s s ' h n g .Ý Ý Ýj jri j i j i jž / ž /ž / ž /EFEs Es Es� 4y sconst Ž . Ž . Ž .r r r

Ž 9 6The virtual variations of the Cauchy stress tensor s are taken in R , and not in R , although the real stresses
6 i j i j .are in R due to the symmetry s ss . TT is the Rice’s viscoplastic potential of the single crystal.

Ž 9. ŽIn the virtual generalized stress space R , the equipotential surfaces TTsconst)0 are regular without
. Ž r . Ž r .any singular point and the surface TTs0 corresponds to the elastic surface since we have F FFF . In this

space, the vector Õ
Y i is always normal to the equipotential surface which is defined by the actual value of sj

Ž .Fig. 3 .

1.3.3. Multiple plastic potential
When all the ratios wŽ r .rC Ž r . are very large and the strain rates are rather small, the differences0

² Ž r . Ž r .:F yFF for the active systems are thus always very small. This means that, at any time, the actual stress
Ž .state s is very near the elastic limit surface and that the viscosity may be neglected classical plasticity . For

Ž . Ž r .Ž . Ž r .Ž . Ž . Ž r .Ž . Ž r .Ž .each active system r between t and tqd t, we have: F t ,FF t for any active r or F t FFF t

Fig. 3. Schematization of the viscoplastic potential surfaces.
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Ž . Ž r . Ž r .Ž . Ž . Ž r .Ž . Ž r .Ž . Ž .for all r then, at time t, F ,FF t for potentially active r and F tqd t FFF tqd t for all r

with G0.
This may be explicitly written in the form

1r2Ž r . Ž r . Ž r . i j Ž r . Ž r . 2 Ž r . Žk . Žk .F sbh n s sbt ,FF qmb D NN lŽ .Ýi j PN Žk .
Ž .at all k

by using s2g Žk .rbLŽk . we obtain

Ž r . Ž r . Žk .t ( H g with g G0 .˙ Ž .Ý Žk . Žk .
Ž .at active k

So, indeed, we find that
Žk .Et

Y i Žk . Žk . Žk . Žk .
Õ s g s h n gÝ Ýj i ji jEsŽ . Ž .at active k at active k

Ž . Žk . Ž Žk . .and that the increase of the limit for any system r is a linear function of g g G0 of the active systems
Ž .k .

Ž r . Ž r . Ž Žk . Žk ..1r2 Žk . Ž .But the classical interaction matrix: H 'mD r NN l L as introduced by Taylor 1934 , Koıter,¨Žk . Žk .
Ž .Mandel 1965 in the multiple plastic potential theory, and used thereafter by others, is here found explicitly. It

is clear that this matrix is not constant and is not symmetric. This is linked to the fact that large changes of the
dislocation distribution are occurring during the deformation.

Ž r . Ž r . Ž r . Žk . ŽIt is evident that, although D GD for r/k, since L 4L for r/k the density of dislocations rŽ r .Ž r . Žk .

which pierce the actual principal slip plane stays constant, while the other densities rŽk . have considerably
Ž r . Ž r . Žincreased, we obtain H FH this is called by most of the researchers, except the authors of this work, theŽ r . Žk .
.self- and latent hardening .

Ž . Žk .Then, there is the very important problem of how to determine the active systems k and to calculate g
Ž r . Ž .when we impose the objective stress rate, or t , on each system r . By using as the new intermediate˙

variables

Ž Ž r ..it is easy to show that, since the matrix D D is symmetric and is strictly positive for any number of systemsŽk .
˙ Ž r .lower than 8, we have a quadratic minimization problem with the linear constraints X G0 which has one

unique solution. This may then be solved easily with the help of many classical mathematical programming
algorithms.

1.3.4. Simulation of tensile experiments
Generally, only experiments with tension or compression are performed on single crystals. These experi-

ments are very difficult to realize and to interpret, chiefly owing to the large changes in the geometry.
During the test, usually, a constant ramp velocity is applied and only the applied force Q and the crystal

Ž .length D are measured, but the tensile curves are often given in the plane t , G where t is the applied shear
stress and G is the glide on the principal slip system; this is a strict mathematical fiction, except when there is
only one active slip mechanism.

We built two different programs: the first one was based on the direct explicit integration of the evolution
Ž .viscoplastic equations; the Treanor algorithm which is similar to the order 4 Runge–Kutta with an adaptive

7



Fig. 4. Geometrical representation of a tensile test on the crystal.

time increment, was found to be very efficient; the second one was based on the multiple plastic potential and
then we used an implicit scheme of integration and the quadratic programming algorithms. We integrated for
various initial conditions of the tensile axes and the initial states. We were able to interpret not only the two

Žimportant stages of work-hardening which are stage I and stage II, but also the transition stages since here,
.cross-slip and climb are neglected in this approximation, stage III is not reached . We were able to get the

dependence on the initial orientation of the tensile axes without adding any phenomenological constant, and to
understand what happens during the straining, explicitly. We compared the theoretical curves obtained based on

Ž .the model to the experimental results; the tendency was very well represented Figs. 4 and 5 .
Although we still consider our model as the only real physical model which truly preserves the rational 3D

Ž Ž . Ž . .hypothesis and which differs from Havner 1972 , Asaro 1983 , ... , we think that its main interest is at the
fundamental level and it can not be directly used for engineering applications: it concerns the single crystal; too

Žmany parameters have to be taken into account and moreover a better experimental fitting less than a few
.percents needs to be reached.

Fig. 5. Global tensile responses with the orientation of the crystal.
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 2. Physical modeling of metallic polycrystal

2.1. AÕeraging methods

A polycrystal which is considered as a continuum point, contains several crystals at a microscopic scale.
According to the stress gradient and the rate of loading, different representative volume elements may be
introduced for which global behavior is defined based on the local behavior of the crystals and their relative
interactions.

Ž .In Nemat-Nasser and Hori 1993 , the reader may find a perfect comprehensive review of the state-of-the-art
in the averaging homogenization techniques, bounds, theorems and simplified methods for the elastic or
inelastic behavior of the RVE which may contain cracks. This state results from all the works by several
hundred authors.

Under some regularity hypotheses, particularly for homogeneous uniform boundary tractions or linear
boundary displacements, it was shown that the macroscopic or global stress, the global strain and the global
stress-work for the RVE, are direct volume averages of the respective microscopic quantity:

1
² :Ss s dÕs s ss ,H

V V

1
² :Es ´ dÕs ´ s´ ,H

V V

² :S Es s´ ss´ .
X Ž .But, even for small deformations, if we split the local strain ´ into its elastic ´ 'Ms or ssL´ and

plastic ´ Y
'´y´ X component, and we perform the decomposition for the global strain E'EXqEY with

X Ž .E 'MS or SsL´ , more complex formulae are found by defining the concentration tensors with s'AS
or ´sBE, it may be shown that:

1 1 1
X X Y YE' ´A dÕ , E ' ´ A dÕ , E ' ´ A dÕ.H H H

V V VV V V

The same concentration tensors allow us to express the global elastic tensors as

1 1
Ms MA dÕ or Ls LB dÕ.H H

V VV V

One of the main problems for the global analysis of the polycrystal is the determination of the concentration
Ž .tensors. Several simplified models Sachs, Voigt, 1889; Taylor, 1938; Lin, 1971 and particularly the

Ž .self-consistent model Kroner, 1958; Budiansky and Wu, 1962 were proposed to solve it.¨
In the case of local elastic isotropy, when the shape of the crystals are approximated by a sphere, the

self-consistent model gives a simple formula to compute the interaction between crystals:

ssSq2m 1yb EYy´ YŽ . Ž .

Ž . Ž .where b is a constants2 4y5n r15 1yn , m is the shear modulus and n is the Poisson ratio.
The model was extended to anisotropic elasticity by various authors which drives to a modified interaction

Ž .formula Bui, 1969

Y YssA Sq2m 1yb E y´Ž . Ž .
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or to take into account the elastoviscoplastic stress relaxation:

ssSq2m 1yb EYy´ Y l S , EY , PŽ . Ž . Ž .

Ž Y . Ž .with explicited A and l S , E , P Zaoui, 1970 .

2.2. Physically based model

Since many researchers are still working in this area, we only give here the results that we obtained for the
global behavior of FCC polycrystals for small deformation, based particularly on some unpublished work with

Ž . Ž .Compere 1973 and Engel 1975 . In fact, we underline the use of the single crystal model, the relation in a
RVE with the self-consistent model, simplified methods, or the more sophisticated finite element method; we

Žunderline also the use of the direct explicit time integration of the evolution viscoplastic equations Treanor’
.algorithm or the implicit scheme of time integration of the plastic equations based on quadratic programming

algorithms.

2.2.1. Uniaxial tension
We consider a polycrystal RVE which has an infinite size and with an infinite number of crystals with initial

™ ™ ™

Žrandom orientation characterized by 3 orthogonal vectors X, Y, Z. In a fixed frame of reference following the
™ ™ ™ ™Ž .. Ž .notations of Zaoui 1970 , x, y, z, with u being the axis along the intersection between the two planes x, y

™ ™
™™ ™ ™ ™ ™Ž . Ž . Ž . Ž .and X, Y , we define the angles Cs x,u rotation with z axis us z,Z rotation with u axis and ws u, X

™

rotation with Z axis.
Ž .To cover all the orientations, it is just sufficient to limit the variations of the 3 angles C , u , w to:

sin w sin uG0, cos uFsin w sin u , sin u cos wG0, cos uG0, cos uFcos w sin u

Ž .which define in the space w, cos u , C a cylinder parallel to C , bounded by the 2 planes Cs0 and Cs2p ,
as indicated in Fig. 6. In a tensile test, the angle C is not taking part.

We have then addressed the following questions:
Ž .1 How many different orientations of crystals are necessary to reach the description of an initially isotropic

polycrystal? We have used our fcc single crystal model for the local behavior. We have also used the simple

Fig. 6. Limits on the angles for the isotropic polycrystal.
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Fig. 7. Differences with the number of crystals for the global response.

Žself-consistent model. We have selected 3, 24, 36, 54, 117 orientations uniformly distributed in the plane w,
.cos u .

Ž .We did not notice great differences between them Fig. 7 . Then, we concluded that 3 well selected
orientations were sufficient for the simulation.

Ž .2 Are the simplified models, such as the self-consistent model, sufficient to represent the interactions
between crystals? We have taken the previous model of the polycrystal but in the same time, we performed the
finite element numerical analysis. At that time, it was necessary to develop a program for rate-dependent or

Ž .rate-independent crystal plasticity the program was also written for large transformations .
We took a polycrystalline specimen containing 216 tetrahedral elements crystals with distributed orientation

as in Fig. 8.

Fig. 8. Finite element meshes for the numerical simulation.
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Fig. 9. Differences between local and global simulations.

Notation for the orientations of the crystals

A B C D E F
w 22.58 37.58 37.58 52.58 52.58 67.58 ,
u 82.58 82.58 67.58 82.58 67.58 82.58

1 2 3 4 5 6
.

c 08 608 1208 1808 2408 3008

Ž .Repartition per layer of 9 cubes A1 meaning ws22.58, us82.58 and cs0
A1 E2 B3 C6 D1 A2 D3 C2 F1 F2 B1 E6

™ 1 to 9 , ™ 10 to 18 , ™ 13 to 27 , ™ 28 to 36 .Ž . Ž . Ž . Ž .D6 C5 F4 B5 F6 C1 A4 E5 B6 E1 A6 D5
F5 B4 E3 E4 A3 D2 C3 D4 A5 B2 F3 C4

We did not find great differences between the two kinds of analysis and we concluded that the simple
Ž .self-consistent model, without any other improvement, was sufficient for the analysis Fig. 9 .

Ž . Ž r .3 Is it necessary to modify the values of the coefficients of the interaction matrix D between slip systemsŽk .

which were explicitly computed with the physical model of the crystals?

Fig. 10. Influence of the absolute value of the interaction matrix.
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Fig. 11. Influence of the relative value of the latent hardening.

In Figs. 10 and 11, we have performed a number of different simulations using various assumed values for
Žthe interaction coefficients as from a phenomenological point of view, these coefficients may take different

.values and even that artificially, the latent hardening could be more important than the self-hardening.
ŽThis may allow a greater flexibility to reach a better agreement with the experimental results we were able

.to represent rather well the tensile behavior of copper .
In Fig. 12, we have also simulated the case where the density of dislocations for any slip system reaches a

limiting value following the idea that the mean distance D between 2 dislocations can not be smaller than a
critical value.

2.2.2. Multiaxial loadings
We have also analyzed the global behavior of the polycrystal during biaxial loading along the z and y axis,

particularly, when there is a viscoplastic potential V when the crystals admit viscoplastic potentials TT as
Ž .shown by Rice 1970 ,

1
Vs TT dÕ.H

V V

We have simulated the evolution of the elastic yield surface, Vs0 and the potential surface, Vs10y9 of

Fig. 12. Phenomenological introduction of a saturation state.
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Fig. 13. Elastic yield surface with the axial strain.

Fig. 14. Viscoplastic potential surface with the axial strain.

Fig. 15. Viscoplastic potential surface with the axial strain.
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the polycrystal, during a loading along the z-axis. When the initial yield surface looks like the Tresca criterium,
it quickly changes with its size is considerably reduced. On the other hand, when the viscoplastic surface
initially looks like the Mises criterium, its subsequent evolution consists of a rotation, a translation and a
distortion, which are functions of the amplitude of the actual axial strain Figs. 13 and 14.

Finally, in Fig. 15, we also examined the effect of the elastic anisotropy of the crystals and their plastic
rotation, using the modified self-consistent formula.

2.2.3. Final remark
We have shown that, to represent the global physical behavior of the polycrystal, it is sufficient to use only 3

orientations of the crystals for both rate-dependent or rate-independent crystal plasticity and the simple
self-consistent model. Although we have obtained a reasonable fit to the experimental data, we do not think that
the method can be used in industrial applications; the calculations require at least 72 parameters!

3. Quasi-physical modeling of aggregates

A more useful method was developed by retaining the main features of the microscopic approach, but using
Ž .simple and elementary analysis inter and intra crystalline couplings and the construction of explicit relations .

This led to a new approach of analysis of modelling materials which ensures a much better fit to the tests and
chiefly drives to elementary analysis of structures where only elastic computations give practical bounds of its
response to many complex loadings. We refer the reader to this book for its complete description. Here, we shall
just underline the main points.

3.1. Hypothesis

Our aim is to consider the simplest model which is still able to represent the experimental results instead of
the exact physical model.

Ž . Ž . Ž .Based on some works by Mandel 1971 and Nguyen 1973 or Halphen and Nguyen 1975 , we assume that,
at a local scale, there are some inelastic elementary mechanisms which are the sources of producing

Ž .Ø instantaneous plastic strains with a threshold as in the glide of a dislocation ;
Ž .Ø viscous strains without a threshold as in the thermally activated diffusion of a point defect or precipitate ;

Ž .Ø visco-plastic strains with a threshold as in the thermally activated crossing between two dislocations .

3.2. Basic equations

The basic equations associated with this quasi-physical modeling involve
Ø some internal parameters say,

a
T bx s

g

which are linked to the local inelastic strains of each of the mechanisms, local sources of inelasticity.
Ø The local stresses associated with on each of these mechanisms are expressed as

As aa ˆa

A ˆs bs Sy sASyy,bb

s A ĝg g

15



where S is the global applied stress tensor, s , s , s , are the respective local stresses, A , A , A are thea b g a b g

elastic stress localization tensors and y stand for the transformed internal parameters.
Ž .Ø These transformed internal parameters similar to eigenstresses are linked to the internal parameters by

â a
b̂ bys sB sBx

gĝ

where B is a non-negative symmetrical matrix with only the following two possible properties:
Ž .i B is strictly positive; there is then a one-to-one relation between the transformed internal parameters and

the internal parameters;
Ž .ii B is singular; the transformed internal parameters y must belong to a subspace of compatibility.
Ø The evolution laws for each of these inelastic mechanisms are written as
Ž . Ž .i agEC s for the instantaneous irreversible strains with a threshold;˙ C a

˙Ž . Ž .ii bs f s for the viscous strains where f may be taken as a quadratic function;b

Ž . Ž .iii gsEV sg rEsg for the delayed irreversible strains with a threshold and V is the viscoplastic˙
potential.

Ø The global inelastic strain rate is taken as

˙Y T T ˙ T TE sA aqA bqA gsA x˙ ˙ ˙a b g

and the global elastic strain rate as

X˙ ˙E sMS

3.3. Remark

We have shown that, using the above outlined modelling approach, it is possible to represent all the observed
experimental results during monotonic or cyclic multiaxial loadings with a very limited number of internal
parameters. Moreover, we have shown that, when using these relationships in numerical simulations of complex
structures, it is easy to obtain evaluation of the response with only a very limited number of linear elastic
analysis which may reduce the execution time of the computer by a factor of 20 to 1000.

HoweÕer, in our Õiew, this was not yet sufficient for real practical industrial applications.

4. Intelligent modeling of elastic aggregates

4.1. Principles

Recently, we have developed an approach based on automatic learning and optimization techniques, which
can use the entire body of the existing knowledge of the experts, the experimental results, computational
simulations, and produce practical results for engineering applications.

For this approach, it is necessary:
Ž .i To build a data base, i.e., to obtain some experimental, real or simulated results, where the experts of each

particular problem identify all variables or descriptors which they think should be essential for the solution of
the considered problem. This is, at first, done with some primitive descriptors x which are usually limited in

Ž .number. Then, the experts transform the data into a generally much larger number of intelligent descriptors
Ž .XX. These descriptors represent the actual existing knowledge and all the relevant but often insufficient
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theories. Each descriptor may be a number, boolean, alphanumeric, name of files to provide access to data
Ž .bases, or curve, signal, or image. The results or conclusions may be classes good, not good, ... , or numbers

Ž .Young modulus, cost, weight, life time, ... . Usually, the data base may contain 20 to 50 examples with 10 to
1000 descriptors and 1 to 20 conclusions.

Ž .ii To generate the rules with any automatic learning tool. The intelligent descriptors help these learning
algorithms. Each conclusion is explained as a function or a set of rules of some among the input intelligent
descriptors with known reliability or accuracy. If this reliability is too low, it implies that there is insufficient
data or there are bad, missing descriptors, or that the problem was not well described.

Ž . Ž .iii To optimize at two levels inverse problems :
Ø Considering the intelligent descriptors as independent; it is possible to obtain the optimal solution

satisfying some specially required properties and allowing the discovery of new mechanisms.
Ø Considering the intelligent descriptors linked to primitive descriptors; it is possible to obtain the optimal

solution which is technologically feasible.
ŽSo, not only a practical optimal solution is obtained since good interpolations and extrapolations for new

.cases are made but also the experts of the problem may learn the missing parts, may build models or theories
based only on the retained intelligent descriptors and guided by the structure of the rules or relationships.

4.2. Application to an elastic aggregate

Ž .We refer particularly to the chapter in the book by Nemat-Nasser and Hori 1993 on elastic solids with
inclusions. Several models for approximated values or bounds of the global elastic tensors were proposed.
Almost all these classical models are based on only the volume fraction Õ sVrV of the inclusions.i i

Here we consider a special RVE which contains randomly distributed aligned fibers with the same
Ž .rectangular section plane strain problem . The fibers are along the z-direction. Since this RVE has a finite size

V, we have a special distribution which implies a general orthotropic material instead of a transversely isotropic

Fig. 16. Inclusionsrfibers in the representative volume element RVE: finite element mesh.
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one; see Fig. 16. We want to obtain the values of the effective moduli of a particular finite sized RVE, using
random distributions of the fibers. For each case, a special distribution needs to be defined. Some mathematical
morphological tools are available for this purpose.

Here, let us assume that this distribution may just be defined by the following parameters: Õ , the volumei

fraction; n , the number per unit volume or cross-section; l rh , the relative aspect ratio of the cross-section ofi i i

fibers; C , C , the relative coordinates of the center of inertia C of the fibers; R , the radius of the circlei x i y i max

with center at C which contains all the cross-sections of the fibers; d , the minimum distance between twoi min

centers of cross-section; dis1, the mean distance between two centers of cross-section; and dis2, the mean
distance between a center and the center of inertia C .i

4.2.1. Building the data base
Let us assume that we have a data base of examples where the distribution of the fibers, and the local and

global elastic properties are given. These global elastic coefficients may have been measured during tests or, as
a less interesting case, they may have been computed numerically using for example a finite element program.

Since our illustrative example has only a pedagogical interest here, we have created the data base numerically
in plane strain. We applied an homogeneous boundary displacement field:

usaxqby° ¶
™ ~ •Us Õscy¢ ß

w'0

which implies the global strain tensor

E sa E sbr2 0x x x y

´Es S E sc 0y y� 0
S S 0

or equivalently the global strain vector

E sE sa° ¶1 x x

E sE sc2 y y

E s0™ 3~ •
´Es .

E s04

E s05¢ ßE s2 E sb6 x y

ŽWith any linear finite element program Navidi and Azhdari used respectively CADSAP from Algor and
.NIKE-2D from Laurence Livermore Laboratory , we compute the local stress field s and by directly

averaging, we define the global stress tensor

1
Ss s dÕH

V V
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or equivalently its vector form

S sS° ¶1 x x

S sS2 y y

S sS
™ 3 z z~ •Ss .

S sS '04 y z

S sS '05 x z¢ ßS sS6 x y

Then the effective global elastic coefficients are defined by

° ¶L L L 0 0 011 12 13

S L L 0 0 022 23

S S L 0 0 033
Ls .

S S S L 0 044

S S S S L 055¢ ßS S S S S L66

Indeed due to our hypothesis of plane strain, only 6 of these coefficients are identified: L , L , L , L ,11 12 22 66

L , L .13 23

The description of each example contains:
Ž . Ž . Ži The classical primitive descriptors E , n elastic constants of matrix , E , n elastic constants ofm m i i

. Ž .inclusion , Õ concentration of inclusions or volume fraction from which we compute for the matrix: Laméi
Ž .Ž . Ž . Ž .coefficients l sE n r 1qn 1y2n , m sE r2 1qn and K sE r3 1y2n and the same coef-m m m m m m m m m m m

ficients for the inclusion: l , m and K .i i i
Ž .ii The intelligent descriptors of the inclusions distribution within the particular volume as described earlier:

Ž .n , l rh, C , C C coordinates , R , d , dis1, dis2.i i i x i y i max min
Ž . Žiii The intelligent descriptors which represent, in principle, the best actual knowledge of the experts for

Ž .simplification reasons, here, we only take the predicted values given by Behrens 1967 but one of the
Hashin–Shtrikman bounds or exact Nemat–Nasser’s bounds or improved Willis bounds, could have been taken,
keeping in mind, however, that the simplest one is usually the best one; we do not want expensive descriptors

.which may need cumbersome computations or complex testings .
The values are only given for the transversely isotropic medium and only for the concentration of inclusions

or volume fraction, with

2m qlm m XAsm ql qm , Bsm ql ym yl , Csm ym , qs , A sm ql qli i m i i m m i m i i mmm

A CÕiP PL sL s 2m ql qŽ . q11 22 m m XAyBÕ A yC ÕŽ .i i

l yl 2m ql ÕŽ . Ž .i m m m iP PL sL sl q13 23 m AyBÕi
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2
l yl Õ 1yÕŽ . Ž .i m i iPL s2m ql q 2m ql y2m yl Õ yŽ .33 m m i i m m i AyB

CÕiPL sm 1q66 m 1rq
m yC ÕŽ .i i

B C
PL sl q 2m ql Õ yŽ . q12 m m m i XAyBÕ A yC ÕŽ .i i

The data base has then the following structure:
Ž .Ø 18 input descriptors; filename only as reference , y_inc, p_inc, y_mat, p_mat, volfrac, nb_incl, aspect,

C.y, C.z, R, dis1, dis2, dmin, and the 4 Berhens decriptors L11P, L31P, L12P, L66P.
Ø 6 output descriptors or conclusions; L11, L22, L12, L66, L13, L23.

( )4.2.2. Learning Fig. 17
Using the numerical option of LES from LMS of X 2 we can learn each of the six conclusions.

ŽThis automatic learning when using all the input descriptors and special learning control parameters then
.taking the Berhens intelligent descriptors may give for the first conclusion L11:@a L11 s

4.715796561017032ey01)y_matq4.557336454329526ey01)L11Py7.575868226106983ey03)y_incq
4.760595153407522ey01)L31Pq6.069191287762840ey01)y_inc)volfracy4.600487272203139ey
01)volfrac)L11Pq1.262632291054333ey06)p_inc)L12P))2y1.879706062534128ey06)y_mat))2
)volfracq 4.151452553084349ey 07)C.y)L12P))2y 1.219946907404129ey 17)L31P))2)L12P))2
with the errors: standard-deviation: 1.33=106, skewness: 0.895992, kurtosis: 2.78957.

Ž .The direct automatic learning without the introduction of the Berhens descriptors gives for the same
conclusion: L11 s 3.88E y 01)y_mat y 9.21E q 03)aspect q 3.12E y 06)y_inc)y_mat y 7.82E y
01)y_inc)p_matq1.76Eq00)y_inc)volfracq8.46Ey01)p_inc)y_matq2.14Eq00)y_mat)p_maty
1.41Eq00)y_mat)volfracq2.24Eq05)p_mat))2y8.45Eq04)volfrac))2,
but the errors are much higher: standard-deviation: 9.85=106, skewness: 1.46374, kurtosis: 5.89781.

We can also use other automatic learning techniques particularly those which are based on neural networks
such as NEUROSHELL 3.

So, we can predict for any mixture and any distribution of inclusions the effective properties with a
reasonnable accuracy, i.e., we can conclude.

However, what is more important in our personal view, is that we may try to find the special mixture and
distribution which will satisfy a priori given requirements using for example, the functionality OPTIMIZE of
LES of X or the program GENEHUNTER of Ward Systems, which are both based on genetic algorithms. Here,

Ž .we may find the composite material with the lowest weight the objective function , which will have however
some required bounds for its elastic moduli knowing that the materials for the matrix and the inclusions belong

2 The LES system was developed at the Laboratoire de Mecanique des Solides de l’Ecole Polytechnique. The software is given to the´
participants of the intensive workshop Intelligent Optimal Design of Materials and Structures organized regularly at Ecole Polytechnique
Ž . Ž .France and at University of California San Diego USA . It is also distributed by CADLM, 9 Rue Raoul Dautry, 91190 GifrYvette,

ŽFrance. Tel.: q33-1-69072922; fax: q1-33-1-69072809; e-mail: cadlm@wanadoo.fr. The system has a symbolic option by Dr. M. Sebag
. Ž .and M. Schonauer and a numeric option by Mr. M. Terrien .

3 This system is developed and distributed by WARDS Systems Group, Inc., Executive Park West, 5 Hillcrest Drive, Frederick, MD
21703, USA. Tel.: q1-301-6627950; fax: q1-301-6625666; e-mail: wardsystems@msn.com.
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Fig. 17. Learning of the 6 conclusions and coupling with optimization within EXCEL.

to some classes with bounded elastic properties. But any new objective may be given and the results are
Ž .obtained instantaneously Fig. 17 .
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