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Abstract-The present paper analyses models describing wave absorbing materials from a ther­modynamic point 
of view. This study deals with harmonic plane wave propagation through a viscoelastic homogeneous medium at 
the macroscopic scale. The dynamic behaviour of the studied medium is modelled using two distinct complex 
functions related to the bulk and to the density, respectively. It is shown that the complex density function results 
from viscous body forces. This paper aims to discuss the thermodynamic constraints on these acoustic models for 
a general one­ dimensional (ID)-harmonic plane wave system. The dynamic intrinsic dissipation of the studied 
viscoelastic medium is defined and evaluated. Using the second law of thermodynamics, conditions are found to 
define consistent functions modelling the dissipative effects. The classical rigid open porous model used to describe 
many sound absorbing media is taken as an example for such a harmonic viscoelastic model. It demonstrates that 
the main dissipative phenomenon can be described using a complex density function. 

I. INTRODUCTION 

For many industrial problems, the computational methods elaborated to predict acoustic 
and vibratory responses of complex structures (aircraft panels, building walls, vehicle 
interiors . . .  ) use constitutive laws which have to realistically model the dynamic behaviour 
of concerned materials. These models are usually developed in the framework of the linear 
viscoelasticity and, therefore, elaborated in the frequency domain. In order to take into 
account particular damping effects, a complex (in the mathematical sense) mass quantity 
is readily introduced into the numerical procedure. 

This paper discusses the thermodynamic constraints on such viscoelastic models descri­
bing the dynamic behaviour of wave absorbing materials at the macroscopic scale. Many 
studies on thermodynamics of viscoelastic laws can be found, but few have been developed 
on the harmonic aspect of the thermodynamic analysis. Caviglia and Morro (1991, 1993) 
show that inhomogeneities of the solid suggest to introduce complex mass density. However, 
the restriction of thermodynamic character is applied on the viscoelastic tensor and the 
main discussion is to analyse the decay of the wave. Dvostam (1995) proposed to take into 
account a damping effect, introducing adding frequency complex anelastic terms to the 
material modulus matrix of Hooke's generalised law. For that purpose, harmonic calcu­
lation of the entropy production is given. 

Models used to analyse the wave propagation through sound absorbing media, such 
as polyurethane foams or glass wools, are directly established in the frequency domain as 
presented in the well-known works of Zwikker and Kosten (1949), Attenborough (1982) 
and Allard (1993). For these acoustic studies, harmonic consideration leads to define two 
complex descriptive functions related to the viscous bulk rigidity and to a mass effect. These 
models are then assumed to be well defined from the point of view of mechanics of continua. 

*Author to whom correspondence should be addressed. E-mail: sylvie.gorog@gme.usherb.ca. 
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This paper attempts to analyse such acoustic models from the thermodynamic point 
of view. It is assumed, first, that the studied material is described as a homogeneous 
viscoelastic medium at the scale of the continuum and second, that its dynamic behaviour 
is given by a resulting harmonic response. Hence, the present work deals with the modelling 
of the complex descriptive functions and aims to give the thermodynamic restrictions 
needed to define a consistent viscoelastic harmonic model by applying the second law of 
the thermodynamics of irreversible processes (Maugin, 1992). It is chosen, therefore, to use 
the classical tools of the continuum mechanics in the frequency domain with the assumption 
of small motions. 

As a starting point, Section 2 presents two frequency dependent functions modelling 
the viscoelastic medium excited by a harmonic source of angular frequency w. The first 
complex function represents an effective density while the second function describes the 
viscous bulk effects. The time-viscoelastic constitutive law gives a linear frequency relation­
ship between stress and strain defining a complex rigidity function by use of the generalised 
Hooke's tensor (Hunter, 1960). 

By taking into account viscous body forces in the equation of motion, it is shown that 
a complex density function can be defined in the frequency domain. It is assumed that both 
functions result from a phenomenological approach at the scale of the microstructure. For 
instance, in the case of the sound absorbing materials, the microstructure is modelled as an 
open porous network saturated by the ambient air. Therefore, the density function takes 
into account the internal viscous fluid flow. Hence, at the scale of the continuum, the 
complex density function is presented here as the result of a second constitutive law related 
to body forces. It is also shown that the pair of the mechanical descriptive functions can be 
replaced by the two classical acoustic parameters, the characteristic impedance and the 
wave number (Morse and lngard, 1968). For a three-dimensional (3D)-description of 
solids, the present paper proposes to define the characteristic impedance using an impedance 
vector. 

The aim of the work presented is to evaluate the dissipated energy of a viscoelastic 
wall submitted to an acoustical or vibratory source. For the sake of simplicity, a one­
dimensional propagation system (Section 3) is proposed to develop the thermodynamic 
analysis. It concerns an acoustic wall of finite thickness, excited on both sides by normal 
incident harmonic plane waves. It is assumed that both media on both sides of the studied 
wall are viscoelastic and well known. Moreover, it has been decided to describe these 
external media by the proposed model using two complex functions. It is equivalent to 
study the dynamic behaviour of a layer in a viscoelastic stratified structure during the wave 
propagation. 

To apply the second law of thermodynamics, it is necessary to define the energy 
dissipated through the studied medium. The intrinsic dissipation is deduced from the energy 
balance (Section 4) related to the propagation system. Using the thermodynamic definitions, 
an internal frequency dependent dissipation is defined in relation to the theorem of the 
virtual work rate (Maugin, 1992). This energy balance is applied on the studied continuum 
modelling the wall. 

Section 5 presents the calculation of the intrinsic dissipation for the harmonic system 
under consideration. It is shown that the two descriptive functions representing different 
viscous effects permit to highlight two kinds of dynamic dissipations. 

Applying the second law of thermodynamics, the positivity of the calculated dissipation 
is discussed in Section 6. It gives thermodynamic restrictions applied to the chosen model. 
For all frequencies, the main results are firstly, that real parts of both descriptive functions 
have to be positive and, secondly, that the imaginary part of the density function must be 
negative whereas the imaginary part of the bulk function has to be positive. 

As an illustrative example, it is proposed to apply the present formulation using a 
model established by Allard (1993) which describes an open porous medium with a rigid 
skeleton (Section 7). Such a model is consistent with all thermodynamic conditions. This 
example demonstrates that the main dynamic dissipative effect can be described using the 
density function. 

Finally, Section 8 is devoted to the conclusions. 
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2. VISCOELASTIC MODEL AND HARMONIC MOTION 

Let u(x, t) be the displacement vector of the particle located at the point x of the 
homogeneous viscoelastic medium under consideration. The particle acceleration is denoted 
by a(x, t) = ii(x, t). The classical equation of motion is given by: 

div cr(x, t) + f(x, t) = pa(x, t), (1) 

where cr(x, t) represents the internal stress tensor, p the density of the medium, and/(x, t) 
the body force vector. 

It is assumed that the body forces result from the description of a physical phenomenon 
such as the conduction fluid flow for an open porous medium (Coussy, 1995). It follows 
that the vector f(x, t) can be dependent on velocity and/or on acceleration of the particles, 
such that/(x, t) = f(it(x, t), ii(x, t)). This description can be understood as a second consti­
tutive law related to kinetic or inertial internal effects. Hence, using for instance a filter 
function A.(t) modelling an internal motion resulting from an external influence, the body 
force can be expressed as follows in the time domain : 

f(x, t) = A.(t) O u(x, t) (2) 

where O designates the convolution operator. 
Applying the harmonic time convention such that u(x, t) = u*(x) exp [}wt] with 

j2 = -1, and, using the Fourier transform, the dynamic behaviour is described in the 
frequency domain. Asterisks denote complex quantities. Including the harmonic body 
forces in the right hand side of eqn (1), the frequency equation of motion takes the following 
form: 

divcr*(x) = p*(w)a*(x). (3) 

Function p*(w) represents a complex density function which results from the spectral 
transform of the body force. For instance, using eqn (2), the density function becomes: 

p*(w) = p-jA.*(w)/w. 

At the chosen descriptive scale of the continuum, this complex density is interpreted as a 
model of internal viscous mass effects for sound absorbing media (Allard, 1993). 

In the frequency domain, the viscoelastic constitutive law gives a linear Hooke's 
relationship between the complex strain tensor t:*(x) = �(gradu+ 'gradu) and the complex 
stress tensor cr*(x) (Hunter, 1960): 

cr*(x) = G*(w): t:*(x), (4) 

where the tensor of the fourth order G*(w) is the generalised Hooke's tensor taking into 
account the viscous damping related to the bulk rigidity of the medium. 

As a result, a class of harmonic behaviour models can be defined using the following 
two independent complex functions : 

G*(w) = G'(w)+}Gi(w), (5) 

p*(w) = p'(w)+jpi(w). (6) 

These functions express two different kinds of viscoelastic phenomena, the delayed mech­
anical response and the internal inertia effects, respectively. For elastic behaviours, the 
imaginary parts of these functions disappear. 
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The two classical parameters used to describe the harmonic wave propagation through 
a medium are, firstly, the characteristic impedance and secondly, the wave number (Caviglia 
and Morro, I 992). Using the law eqn (4), the equation of motion eqn (3) becomes: 

G*(w) '. VVu*(x) = -w2p*(w)u*(x) (7) 

whose the general solution for an infinite plane wave propagation is: 

u*(x) = Apexp [-jk*·x] (8) 

where A is the wave amplitude and p the normalised polarisation vector of the propagating 
wave. The wave number is a complex vector k* whose direction is given by the normalised 
vector K and whose real and imaginary parts characterise celerity and decay of the wave, 
respectively. 

For an infinite 3D configuration, we propose to define the characteristic impedance as 
the impedance vector z in the time domain such that: 

-CJ•p 
z=--u·p (9) 

For harmonic motions, this impedance vector is complex and becomes (Gorog, I995): 

(10) 

where ® denotes the tensorial product. 
As a result, it is equivalent to describe the viscoelastic medium either with the pair of 

functions (G*(w), p*(w)) (mechanical description) or with the pair of functions (k*(w), 
z*(w)) (acoustic description). According to harmonic motions, let us use the asterisks only 
for the wave number and the quantities directly defined by eqn (5), (6) and (10). Note that 
the classical viscoelastic models lead to define complex wave vector and impedance without 
complex density function. To study the thermodynamic constraints applied to the visco­
elastic model presented, it is chosen to define a ID system of wave propagation. In that 
case, unit vectors defined in eqn (8) are identical such that p = K = x where x denotes the 
ID direction. 

3. SYSTEM OF WAVE PROPAGATION 

Let us consider the plane wave propagation along the x axis as illustrated in Fig. I. 
This general ID-system models an acoustic wall of thickness I excited at normal incidence 
by two harmonic sources located at x = - h and at x = d. The first source is taken as the 
reference. Therefore, the propagation system is defined using three media: the forward 
medium (f), the studied medium (s) and the transmitted medium (t) related to subscripts 
f, s and t, respectively. 

It is assumed that each of these three media (f), (s) and (t) is described by using the 
harmonic viscoelastic model given by eqns (5)-(6). Our aim is to analyse the energy 
dissipation through the medium (s) during the harmonic plane wave propagation. Hence, 
both media (f) and (t) are assumed well known. 

Let As/ or, be the amplitudes of the waves propagating along the increasing x and Bs1or, 
the amplitudes of the waves propagating in the opposite direction. These wave amplitudes 
are complex quantities. Since reflected waves are taken into account, the harmonic displace-. 
ment us(x) related to the medium (s) along the x axis is written as follows: 
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u, (x) = A, exp[-Jk:x]-B, exp[+Jk:x], 

OU 
then e, (x) = 0; = -Jk:(A, exp[ -Jk:x] + B, exp[Jk:x]). (11) 

The exp[jwt] notation is omitted for sake of conciseness. Using the constitutive law given 
by eqn ( 4) , the solution of the equation of motion eqn (3) is given by eqn (11 ). Therefore, 
the wave number k:(w) is defined such that: 

k:(w) = w 
p:(w) . 
G:(w) 

= ct(w)-JY(w) (12) 

where ct(w) � 0 (m-1) is related to the phase velocity, and y(w) � 0 (m-1) is the decay of 
the wave. 

In addition to the wave number, the characteristic impedance z*(w) defined by eqn 
(10) gives a comprehensive description of the dynamic behaviour: 

wz:(w) = k:(w)G:(w) then z:(w) = J p:(w)G:(w) = z; (w)-jz� (w). (13) 

The boundary conditions express the continuity of velocities and stresses on both sides 
of the studied medium (s) : 

oj(O) = <J, (O)}
vr(O) = v, (0) 

x = 0, (14) 

(15) 

The constitutive functions and the wave propagation system have been presented. To 
define the intrinsic dissipation related to medium (s), it is proposed to give the energy 
balance related to the wave propagation. 

4. ENERGY BALANCE 

The energy dissipated through medium (s) is that part of the incident energy which is 
neither reflected nor transmitted. �he incoming energy impinging the studied wall at x = 0 
is defined using the incoming power provided from the source located at x = - h . For the 
present 1 D-problem, real parts (noted�( )) of complex powers are active powers in watt/m2 
and designate energy flux intensities (Caviglia and Morro, 1992). Hence, the chosen incident 
intensity §inc is (bar over variables denotes complex conjugate): 

(16) 

Towards this incident energy, the energy balance applied to medium (s) is written with 
adimensional energy coefficients lying between 0 and 1. The reflection coefficient R gives 
the part of the reflected energy propagating in the medium (f). The transmission coefficient 
T gives the transmitted energy propagating in the medium (t) and does not include the 
energy from the second source located at x = d. Therefore, the total intrinsic dissipation 
coefficient D is given by the following acoustic energy balance: 

D = 1 - R - T. (17) 

Following the principle of the virtual work rate, the energy balance related to the 
bounded studied medium (s) is obtained in terms of complex powers .9'!1(w), &�1(w) and 
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&>;cc( w) related to the internal forces, to the external forces and to the inertial forces, 
respectively (Gorog, 1995). These quantities are defined on a time-period and therefore, 
the energy balance is written as follows: 

(18) 

with 

Y'!1(w) = �( -u, (O))v, (0)-�( -u, (l)v, (/), (19) 

(20) 

(21) 

In eqn (18), real parts are identified as dissipated energies while imaginary parts 
are interpreted as exchanged energies. The first and the second principle of continuum 
thermodynamics (Maugin, 1992) allow to exhibit an internal dissipation term in relation 
to the strain power. According to this result, an internal dissipation related to the bulk 
internal response during the wave propagation through the medium (s) is defined using a 
non-dimensional dissipative coefficient E such that:

(22) 

The method presented consists in calculating the coefficient E using the energy balance 
eqn (18) with eqns (19), (20) and (21) and the boundary conditions eqns (14) and (15). 

5. DYNAMIC DISSIPATION 

Using the definition of the total intrinsic dissipation given by eqn (17), the dissipative 
coefficient E (eqn (22)) is obtained as follows: 

where 

Gi lk*l2 iz*l2 
E=l-R-T-A=2 s s f x<-l, 

wzj IDrl2 

. 1 lz'l<l2 
A= 2wp' _ _ J _ ,,,<+l 

s 2 A. ' zj ID11 

-1 1 
x<-l = � U + - V, U = 11112 exp [-4y� -1 + (1-11112) exp [ -2y�,

y ct 

1 1 
x<+l = - U + - V, V = 2 exp [ -2y� {11;(1-cos 2ctl) +11' sin 2ct/},

y ct 

(23) 

(24) 
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Quantities Nr0,� and D10,� denote numerator and denominator of fractions defining r1 or IJ, 
respectively. The present results are given for any boundary condition defined by 11· The 
frequency dependent functions x(-) and x(+) can be interpreted as particular lengths associ­
ated with the wave propagation. 

Two acoustic boundary conditions are usually used. Firstly, the studied medium is 
rigidly backed by an impervious wall. In that case, there is no transmission and a rigid 
termination (RT) occurs at x = l such that: 

r, = 0, z�-> oo, T= 0 then17 = 1. (25) 

Secondly, there is no source located at x � !. Therefore the transmission tends to infinity 
and the medium (s) is defined as a free material (FM): 

and B, = O=>r1 = 0 
z�-z; 

thenry =�·
z,+z, 

(26) 

The presented result eqn (23) shows that the total intrinsic dissipation D defined by 
eqn (17) comes from two different kinds of viscous dissipative effects according to the two 
dissipation coefficients E and A such that: 

D=E+A. (27) 

The definition given by eqn (17) results from the energy balance related to the system of 
wave propagation (acoustic description) while the definition given by eqn (27) results from 
the evaluation of the internal dissipation related to the energy balance applied to the studied 
medium (s) (mechanical description). 

Using eqns (21) and (24), coefficient A is defined as follows 

(28) 

and, according to eqns (18) and (17), the energy coefficient D becomes hence: 

(29) 

The first kind of dissipative effect is related to the viscous bulk since the coefficient E 
eqn (23) is directly commensurate to the imaginary part of the viscous modulus G; (eqn 
(5)) .  The second dissipative coefficient A defined by eqn (28) shows the importance of the 
viscous mass effects in the dynamic description of the medium. This coefficient (eqn (24)) 
is directly commensurate to the imaginary part of the complex mass function p; (eqn (6)). 

The direct calculation of eqns (19)-(21) gives : 

or 
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and 

m;* - ilAl2 2 *''* .th * - U ·v ;or ext - -2 W z, /.., Wl X - + J , 

f!JJ" = -�IAl2w2z*(1k*)x<-J {JJ* = - �IAl2w21·wp*''<+l mt 4 s s ' ace 4 s /.., ' 

and permits to verify eqn (18). 
Different coefficients have been defined to calculate the intrinsic dissipation during the 

wave propagation. The problem is now to verify the laws of continuum thermodynamics 
to define a consistent model. 

6. THERMODYNAMIC ANALYSIS 

The second law of thermodynamics imposes that the total intrinsic dissipation D ( eqn 
(27)) must be positive: 

D = E+A;:;:; 0. (30) 

Since two distinct viscous dissipative effects have been defined with coefficients E (eqn 
(23)) and A (eqn (24)), this thermodynamic condition is app lied to each of them. This 
means that each energy coefficient must be positive to verify eqn (refeq: positive D): 

E ;:;:; 0 and A ;:;:; 0. (31) 

Let us note that eqn (20) with eqn (4) on the one hand and eqn (21) on the other hand 
can be rewritten : 

Therefore, using the definitions eqn (22) and (28), respectively, conditions are found 
to verify the two thermodynamic constraints of eqn (31). First, coefficient E ( eqn (23)) is 
positive if and only if the imaginary part of the viscous modulus is positive. Second, 
coefficient A (eqn (24)) is positive if and only if the imaginary part of the complex density 
is negative. 

Using these results, it is obtained that the thermodynamic constraints impose the 
following conditions to verify eqn (30) and eqn (31) : 

Cl. Cl. 
Vw, G; ;:;:; 0, G� ;?; 0 and p; ;?; 0, p� � O,'VIJ, U < O, - 1u1 � v � - I U I , 

x<-J;:;:; o, 

y y 

x<+) � o,
z' CJ. 
� ;:;:; - ;:;:; 0. 
z� y 

(32) 

These conditions have to be verified for any boundary conditions and for all angular 
frequency. They are the thermodynamic restrictions needed to define a comprehensive 
harmonic viscoelastic model. It is worth emphasising that it shows that the imaginary part 
of the complex density function eqn (6) results from the correct modelling of the viscous 
body force as recovering force at the descriptive scale of the continuum. 

In a general thermodynamic time domain description, dissipative behaviour is 
explained with internal variables f3 which express the irreversible response of the medium 
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(Maugin, 1992). Hence, for a viscoelastic medium of volume n, the intrinsic dissipation is 
written as follows: 

where crirr denotes the irreversible stress tensor and Y the thermodynamic force associated 
with internal variables {J. 

For the presented frequency analysis, the first term corresponds to the phase delay 
between stress and strain because of the viscous modulus. It is a viscous dissipation 
depending on the bulk rigidity. Therefore, this term is related to the energy coefficient E. 
The second term depends on internal variables {J. As a result, it is connected to the dynamic 
term A. At the scale under dissipation, this means that the dissipative inertia terms can be 
modelled using internal hidden variables. 

Hence, it remains to describe the evolution laws of these variables and also to define 
the thermodynamic dissipative energy function. The main difficulty consists in dis­
tinguishing the different terms of the dissipated energy function in the time domain. In fact, 
Caviglia and Morro (1992) indicate that there exist inequivalent choices of energy density 
and flux for viscoelastic media. Using a model with internal variables (Maugin, 1992), the 
problem consists in defining the evolution laws of the internal variables associated with 
an internal dissipation potential. This potential is used to formulate the thermodynamic 
dissipation energy function. 

7. EXAMPLE 

Some sound absorbing materials such as slight glass wools or foams are described as 
open porous media with rigid skeleton. From the acoustic point of view and using a 
harmonic phenomenological approach, these absorbing porous media are modelled as 
homogeneous viscoelastic equivalent fluids at the macroscopic scale. This model describes 
the dynamic behaviour in the frequency domain according to both harmonic functions 
eqns (5) and (6). These functions are defined using microscopic properties related to the 
porous network and to the ambient saturating air. As an example, we have chosen the 
Allard's (1993) model in studying a polyurethane foam of thickness I= 0.1 m for which 
the experimental results agree with the porous model. 

with 

Therefore, the studied medium is a viscoelastic continuum characterised by: 

G:(w) = -:;, YPo y-(y-1) 1 + . er G�(B2w) , 
1 { [ / <P 

]- I}- I 

'I' ]WB2port. 

The function G 1 of positive real part describes the viscous air flow through the porous 
network. A, (J and A' , 0'1 are characteristic parameters related to viscous and thermal effects 
at the scale of the pores. c, <P and a are geometrical parameters of the porous network. IJ, 
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x=-h 

(z* k*) 
f f 

x=O x=l 
Fig. 1. System of wave propagation. 

(z* k*) 
t t 

p0, y, B2 and P0 are characteristic coefficients of the saturating air. p, is the density of the
solid part. These parameters take the following values: 

I'/= 1.84x 10-5kg m-1 s-1, y = 1.4, B2 = 0.71, P0=1.0132x105Pa, 

Po= l.3 kg/m3, </> = 1, CJ= 9000 kg m-2 s-1, A= 1.92x 10-4m, 

p, = 16 kg/m3, a= 1, CJ'=998.26 kg m-2s-1, A'=3.84xl0-4m. 

It is verified that the descriptive functions are consistent with the thermodynamic 
conditions of eqn (32). The density function models the viscous mass motion related to the 
fluid flow while the bulk function takes into account the thermal exchange between the two 
phases. At the scale of the continuum, these dissipative effects appear as viscous damping. 
The two dissipative coefficients E (eqn (23)) and A (eqn (24)) are evaluated for both 
conditions eqn (25) (Rigid termination: Fig. 2) and eqn (26) (Free material: Fig. 3) for the 
frequency range from 0 to 10, 000 Hz. Both Figs 2 and 3 show that the main dissipativity 
arises from the viscous mass effects (A). The model shows that these effects are due to the 
air flow conduction. Therefore, the most important viscous dissipation comes from the 
viscous air flow through the porous network. This physical phenomenon is specifically 

0.8 

0.6 

0.4 

0.2 

(RT) 

... 

:' ".... _,,-··· ............................................. _______ _ ' ...... ----------------. . . 
. 

: 
. . 

: . . . 
: . . 

.......... ____ _ 
--------

10000 

f (Hz) 
Fig. 2. Intrinsic dissipation coefficients: E (- - -), i\ ( . . .  ), D (�). Rigid boundary. 
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0.8 

. . 0.6 . 

0.4 

0.2 

:··
' 

. . 

(FM) 

.. ----------------------------------------------------------

-------
-------

0 '--���..._��� ....... ����._.���...._��� ........ 

2000 4000 6000 8000 10000 

f (Hz) 

Fig. 3. Intrinsic dissipation coefficients: E (- - -), A ( . . . ), D (-).Free boundary. 

described in the complex density formulation and is understood here as restoring body 
force. 

8. CONCLUSIONS 

This paper presented the thermodynamic restrictions necessary to develop com­
prehensive models to study the harmonic plane wave propagation through absorbing 
viscoelastic media. The dynamic behaviour of the studied medium is described using two 
distinct complex frequency dependent functions related to the viscous bulk rigidity and to 
viscous body force, respectively. The frequency dependent complex bulk function results 
from the spectral transform of the viscoelastic constitutive law. It has been shown that the 
frequency dependent complex density accounts for the spectral transform of viscous body 
force. Such harmonic viscoelastic models are used to describe the frequency behaviour of 
sound absorbing materials. These materials are considered as homogeneous media at the 
macroscopic scale. 

A simple one-dimensional wave propagation system has been proposed to model an 
acoustic wall excited by normal harmonic plane waves. The method presented consists in 
calculating the dynamic intrinsic dissipation during the wave propagation. Within the 
framework of the thermodynamics of irreversible processes, it has been shown that two 
dissipations of different origins have to be distinguished. These two different viscous origins 
have been explained using the two kinds of descriptive functions related to the bulk response 
and to inertia effects. The classical continuum thermodynamics has been used in the 
harmonic context to propose a correct definition of the dynamic intrinsic dissipation. The 
example of the model of sound absorbing materials described as rigid open porous media 
has been shown that the dominant dissipative mechanism can be those modelled through 
the density function. 

The thermodynamic analysis proposed allows one to formulate a consistent model of 
the dissipative phenomena defined by a viscous rigidity and a viscous mass motion. 
Especially, this means that the dissipative mechanisms described through the complex 
density function must be understood as recovering body forces. These forces introduce a 
dynamic viscosity at the descriptive scale of the continuum but they provide from a physical 
phenomenon at the microscopic scale as, for instance, a fluid flow. The main difficulty 
consists in defining the model with internal variables to give a dissipation energy function 
using dissipation potential. 

This paper attempted to analyse harmonic models from a thermodynamic point of 
view. Extension to a three-dimensional description requires consideration of the vectorial 
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nature of the equation of motion. In that case, body forces are described by three scalar 
functions and, hence, it is suggested that several dissipative phenomena can be considered 
according to the different directions. It is worth mentioning that a vectorial definition of 
the characteristic impedance has been proposed. The total intrinsic dissipation will result 
from the sum of the two kinds of dissipation related to viscous rigidity and mass effects. 
Nevertheless, it appears to be not possible to conclude about each direction. The application 
of the thermodynamic restrictions can then lead to different conclusions about the sign of 
the descriptive variables. Moreover, the problem of the coupling between the propagating 
waves remains to be solved. 
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