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A NEW METHOD FOR THE SEPARATION OF WAVES.
APPLICATION TO THE SHPB TECHNIQUE FOR AN

UNLIMITED DURATION OF MEASUREMENT

HAN ZHAO and GERARD GARY 

Laboratoire de Mecanique des Solides. Ecole Polytechnique. 91128 Palaiseau, France 

The measuring duration of an SHPB (Split Hopkinson Pressure bar) set-up is limited by the length of the 
bars so that there is a limitation of maximum measurable strains in material testing applications. This 
paper presents a new two-gauge measurement method which takes account of the correction for wave 
dispersion effects, which cannot be ignored for long time measurements. Using bars of equal dimensions. 
it allows a quasi-unlimited measuring duration which can be up to 100 times longer than the classical one. 

Analyses of the sensitivity of results to the imprecision of experimental data show that the method is 
robust and reliable. It is applied to the testing of soft materials like foam (metallic or polymeric) in the 
complete range of their response (nominal strains up to 80%) not only at high strain rates but also at 
medium strain rates (5 s-' < i  < 50 s- ' ) , with a measuring accuracy comparable with that of the SHPB. It is 
also successfully used to perform large displacement tests such as crushing of metallic tubes. 

Keywords: A. dynamics, B. stress wave, B. viscoelastic material. C. Kolsky bar, C. impact testing. 

1 .  INTRODUCTION 

The SHPB (Split Hopkinson Pressure Bar) is a standard experimental technique 
nowadays for performing tests under dynamic loading. Its success is mainly due to 
the accuracy of its measurements. The technique finds its origin in the work of 
Hopkinson (1914) who used it to measure a pressure-pulse profile using a Jong thin 
bar and it has been weJI established since the critical study made by Davies ( 1948). 
The practical configuration with two Jong bars and a short specimen between them, 
widely used today, was introduced by Kolsky (1949). This technique, initiaJly 
developed for compression tests, has been applied to tensile loading (Harding et al., 
1960) and to torsional loading (Duffy et al. 1971). To improve its precision, wave 
dispersion effects (Davies, 1 948; Yew and Chen, 1 978; Follansbee and Franz 1983; 
Gorham, 1 983), three-dimensional effects (Davies and Hunter, 1 963; Klepaczko. 
1 969 ; Dharan and Hauser 1 970; Bertholf and Karnes, 197 5 ; Malinowski and 
Klepaczko, l 986) and transient effects (Lindholm, 1 964; Conn, 1 965; Bell, 1966: 
Jahsman, 1 971) in the specimen have been studied in the past dew decades. 

The measuring technique using bars relies on the knowledge of the two elementary 
waves propagating in opposite directions. Once they are known, they can be time 
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shifted to the desired cross-section (bar specimen interfaces, for example) to calculate 
all the mechanical values, but the directly measurable quantities such as strains or 
velocities everywhere in a bar are the sum and the difference of the two elementary 
waves. The SHPB technique uses long bars and a short loading pulse so that a cross
section exists where the total incident pulse and the first part of reflected waves (of 
the same duration) can be recorded separately. A maximum observation duration 
then exists depending on the length of the bar and the measuring duration Ii T of a 
classical SHPB set-up is limited (Kolsky, 1963) to !iT::::;; L/C, C being wave speed 
and L the length of the bar. Consequently, the total relative displacement !ii between 
the two bar-specimen interfaces is limited for a given loading speed V (M::::;; V!iT). 

For material behaviour testing at a given average strain rate, the maximum measurable 
strain is limited (Bmax::::;; MT). For instance, the measurable duration does not exceed 
400 µs for an SHPB set-up made of 2-m long steel bars ( C � 5000 m s-- 1 ) and the 
measurable maximum strain is then limited to 20%, for a test performed at an average 
strain rate of about 500 s-1 (and only 1% for 25 s-1). 

The SHPB technique fails in two testing situations because the maximum strain 
attained is insufficient. One case is when the desired maximum strain (or total relative 
displacement) is very important. For example, in the study of the dynamic behaviour 
of polymeric or metallic foam, the desired maximum strain is often up to 80% to 
investigate the densification phenomenon of those materials. A large displacement 
during the test is also required for the study of the dynamic buckling of thin metallic 
tubes. In fact, specimens are effectively submitted to the desired strains (because of 
their low resistance) during the total time remaining after the observation window, 
but measurements are no longer possible after this time limit in a standard SHPB. 
Another case is when the desired strain rate is in the medium rate (5-50 s-1). The 
technique cannot be applied because the maximum measurable strain becomes too 
small. 

To increase the measuring duration of SHPB, some earlier workers have analysed 
the multiple reflections in bars. Campbell and Duby (1956) have reported a method 
on the basis of one·dimensional elastic wave theory. Lundberg and Henchoz ( 1977) 
have also proposed a simple explicit formula (within the one-dimensional wave propa
gation assumption) to separate the two elementary waves and to measure the particle 
velocity after the observation window, using two signals recorded at two different 
cross-sections in a bar. Recently, this method has found new application (Lundberg 
et al. 1990) in the prediction of wave propagation in a bar with a non-uniform 
impedance (due to a temperature gradient, for instance) and has been successfully 
used in high temperature SHPB testing (Bacon et al., 1991, 1994; Lataillade et al., 

1994). However, as indicated by those authors (Campbell and Duby, 1956; Lundberg 
and Henchoz, 1977), such a method is valid only if the wave dispersion effect can be 
neglected. This situation is found when the bar is thin and the measuring duration is 
short (the duration in those works is about l ms for a bar of I 0 mm diameter). 

This paper presents a new measuring method on the basis of a similar analysis but 
without the above limitations. An iterative formula allowing for the calculation of 
the two virtually separate elementary waves for the total desired testing duration is 
presented in Section 2, using two signals recorded at two different cross-sections in 
each bar. It takes into account the wave dispersion effects which are very important 

2



for accuracy in the case of a long time measurement. Some testing results on polymeric 
foam for a maximum strain up to 80% and on metallic tubes for a large crush are 
given in Section 3. The sensitivity of the present method to experimental perturbations 
is analysed in Section 4. It is found to be reliable in practical situations for a duration 
at least 1 00 times longer than the classical case. Tests on polymeric foam at medium 
strain rates (5-50 s- ') are then possible and performed with a new testing set-up (here 
called the "slow bar" technique). 

2. SEPARATION OF WAVES PROPAGATING IN OPPOSITE DIRECTIONS
IN A HOPKINSON BAR 

2.1 . Two-strain-gauge wave separation method 

The classical measuring technique using bars is based on the mechanics of elastic 
wave propagation in bars and on the superposition principle. (i) According to the 
elastic wave propagation theory, the stress, the strain and the particle velocity associ
ated with a single wave are proportional to each other (with a sign depending on the 
propagating direction for the particle velocity). (ii) The knowledge of a single wave 
at a specific cross-section implies that it is known everywhere in the bar. (iii) Using 
the superposition principle in an elastic bar, the stress, the strain and the particle 
velocity at any cross-section can be considered as the algebraic sum of those values 
associated with the two elementary waves propagating in opposite directions at this 
cross-section. 

Considering the two elementary waves in a bar, the wave propagating in the positive 
direction (arbitrarily defined) is named the "ascending" wave and the other one the 
"descending" wave (to avoid confusion with the classical SHPB, the terms "incident 
wave" and "reflected wave" are not used here). The strain i:(t) at each section is the 
sum of the contribution of the elementary "ascending" wave i;asc(t) and that of the 
elementary "descending" wave l:ctcs(t), and the velocity v(t) is proportional to their
difference : 

i;(t) = l:asc(l) +t;des(t), 

v(t) = Co(i:asc(t)-i:c1csU)), (I) 

where C0 is the wave speed.
At the section where the strain is measured, a prior knowledge of the contribution 

of one elementary wave will allow for the calculation of the other one. 
Two strain gauges are cemented to distinct points A and B of the bar, as shown in 

Fig. 1. The strain histories at these two points, i:A(t) and i:8(t), are recorded. Since the 
bar is loaded at one end (by the projectile for the input bar and by the specimen for 
the output bar) while the other end remains at rest, the recorded signal at the first 
measuring cross-section A is due to a single elementary wave until the reflection at 
the other end comes back. The "ascending" wave at A, i;ascA(t) (because of the positive 
direction of the z-axis) is then equal to the measurement at point A, for the period 
t < RA- It can be said for the same reason that the "descending" wave at point B. 
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Fig. I. Scheme for the separation of the waves. 

BctesB(t) is equal to zero for the period t < RB (Fig. I) : 

BascAt) = sAt) if t < RA, 

SctesB(t) = 0 if l < RB. (2) 

In order to exhibit "ascending" and "descending" waves from measurements at A 
and B which become afterwards mixtures of both elementary waves, an iterative 
process is built. Strain measurements sA(t) and sit) are divided into small pieces s� 
(t) and sk(t) of a constant time length M, as shown in Fig. I. This interval Mis twice 
the time needed by the waves to travel between the two gauges. In other words, d 
(t), d(t) ... s',At) and s1(t), s1(t) ... sk(t) are obtained through the characteristic func
tion of the intervals [(i- I )M, iAt] (i = I, 2, 3, . . .  ) : 

i 
() 

- {BAt) RA+(i-2)At::::; t::::; RA+(i-l)�t 
SA f -

0 otherwise 

; (
) 

_ {sB(t) R8+ (i- l)At::::; t::::; R8+i�t 
SB f -

0 otherwise 
(3) 

This operation can be applied to both virtual elementary "ascending" and "descend
ing" waves at points A and B to obtain B�scAt), s�scB(t), B�esAt) and BdesB(t). According 
to (2), the "ascending" wave at A for i = I (RA-At::::; t::::; RA), B�scA(t) is known. 
Knowing how the waves propagate, the "ascending" wave at point B can be found 
from the "ascending" wave at point A by applying the shifting function 

(4) 

Using (I) at point B for i = 1 (RB::::; t::::; RB+M), the corresponding part of the
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 "'descending" wave at point B is 

(5) 

The same process is performed to calculate the "ascending" wave at point A for 
the next interval from a knowledge of the "descending" wave given by (5). In this
way. an iterative formula is constructed and both "ascending" and "descending'' 
waves can be calculated for all the time intervals. 

2.2. Introduction of the wave dispersion correction in the iteratil1e process 

Even for a classical SHPB set-up (where measured waves are at most shifted one 
length of the bar), the one-dimensional wave propagation theory has been shown not 
to be accurate enough (Davies, 1 948; Follansbee and Franz 1 983; Gorham, 1983; 
Gong et al., 1 990; Safford, 1 992; Lifshitz and Leber, 1 994). If the wave dispersion 
effects are not taken into account, the accuracy of the two-strain measurement method 
becomes rapidly insufficient with increase in the propagation distance, as indicated 
by Lundberg and Henchoz (1977) (see also an example in Section 2.3). Consequently. 
a more accurate propagation theory must be used, as it has already been introduced 
in the SHPB to improve the accuracy of the shifting process, taking account of so
called wave dispersion effects. 

The analytical solution of the propagation of longitudinal waves in an infinite 
elastic bar obtained by Pochhammer (1 876) and Chree (1 889) has been used in 
different cases (Bancroft, 1 941 ; Davies, 1 948 ; Yew and Chen, 1978 ; Follansbee and 
Franz 1 983; Gorham, 1 983; Gong et al., 1 990; Lifshitz and Leber, 1 994; Zhao and 
Gary. 1 996). This solution has been extended to bars made of a linear viscoelastic 
material (Zhao and Gary, 1 995). Such bars (made of nylon or PMMA) are needed 
to achieve an improved impedance ratio when soft material such as polymeric foam 
is studied. Even though Davies (1 948) emphasized that the infinite bar theory is not 
exact, it has been verified in the usual SHPB set-up that it gives very good results. 

It is therefore natural to use this wave propagation theory. Such an approach relies 
on the assumption that waves in the bar are harmonic so that all the associated 
mechanical variables can be described by their harmonic components. For instance. 
the strain �(z. t) can be expressed as follows:

(6) 

where the upper asterisk denotes frequency components of corresponding temporal 
functions. 

The dispersion relation�= �(w) between the wave number� and the frequency w. 
describing the propagation of each frequency component . is defined through the 
so-called frequency equation derived from the solution for three-dimensional wave 
propagation in an infinite bar. 

The signal t:A(t) or t:s(t) at section A or Bis considered as the component t:= of the 
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strain tensor f along the axis of the bar (z-axis). For any elementary wave, we have:

aAt) = B0(zA, t) = f �: a.'."(w)ei[�(wJ=A _,,,] dw, 

(7) 

The wave shifting between A and B (separated by the distance �z = z9- zA) consists 
in multiplying frequency components by a term depending on the dispersive relation 

(8) 

Approach in the.frequency domain. Since the wave shifting is defined in the frequency 
domain, it seems naturally easier to imagine a separating scheme in this domain. 
Indeed, the linearity of (I) shows that the frequency components of the strain can be
expressed as the sum of the components of "ascending" and "descending" waves: 

B�(w) = a:scA(w) +a�esAw), 

(9) 

Using (8), we can substitute the "descending" wave at A by that at Band also the 
"ascending" wave at B by that at A so that (9) leads to: 

(10) 

However, it has been found difficult numerically to obtain sufficient accuracy with 
this method. On the one hand, a reliable evaluation of the high frequency components 
of the strain measurement, a�(w) and aZ(w), needs a fast sampling rate whereas the 
evaluation of low frequency components needs a long observing duration. This leads 
to important data treatment. On the other hand, the denominator in (I 0) could
become zero when an elastic bar is used [for �(w)�z =kn, �(w) being a real number].
It also nearly becomes zero for a viscoelastic bar. This problem is related to the 
inability of the set-up to "see" waves having a wavelength equal to the distance 
between two gauges. For all the frequencies near these singular points, it is difficult 
to obtain accurate results. 

Approach in the time domain. For the time separating scheme presented in Section 
2.1, the shifting function used in (4) is obtained with this wave propagation theory
(8) and evaluated numerically using the Fast Fourier Transform (FFT): 

(11) 
It is noted that the time separation scheme becomes theoretically inexact because 

of the incompatibility between the temporal cuts and the infinite stationary wave 
propagation theory. For example, the interval of duration M has been previously 
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defined as "twice the time needed by the waves for a travel between two gauges" but 
a common value with respect to the frequency components of l:!..t cannot be defined 
because the wave velocity now depends on the frequency. It is proved in Section 2.3 
that such a separating scheme leads to a satisfactory result in our case. 

Imprecision of calculations is unavoidable in the two methods and a major reason 
to prefer the time separation approach lies in the way results are affected. In the 
frequency separating scheme, errors are distributed everywhere in the time domain 
with an unknown local amplitude. The result, even at the time origin, could contain 
unknown and perhaps important errors. On the other hand, the temporal separating 
scheme produces cumulative errors so that the quality of the results only decreases 
with the distance virtually covered by the waves. The result within a certain distance 
is quite accurate (see Section 2.3), as can also be seen in Section 4.2, this point is very 
important in a real situation when perturbations of recorded signals are unavoidable. 

2.3. Validations 

Numerical simulations are used to show that the method itself and the associated 
numerical technique do not introduce significant errors and can be safely applied to 
real situations. Indeed, strain signals at A and B can be calculated from any given 
arbitrary ascending and descending elementary waves using the infinite bar propa
gation theory. With the present separation method, it is then possible to deduce 
ascending and descending waves from calculated signals (at A and B) and to compare 
them with initially given ones. The results of this approach do not show significant 
differences between initial and rebuilt signals (Zhao and Gary, 1 994). 

In order to test the overall efficiency of the method in a real situation, a bar with 
three strain gauges is used. Figure 2(a) shows the strain recordings at points A and B 
of a viscoelastic nylon bar. Using this new separation method, we can recover the 
strain history at any point of the bar. Figure 2(b) illustrates the comparison at C 

between the measured value and that recovered with the method ( C was here chosen 
as the midpoint of the bar). 

The nylon bar is only slightly viscous and the recorded signal is similar to what 
would be obtained with an elastic set-up. However. the one-dimensional elastic wave 
approximation (Lundberg and Henchoz, 1 977) does not offer results of sufficient 
accuracy. Comparison between the recovered signal obtained within the one-dimen
sional elastic approximation and the measured signal is shown in Fig. 2(c). It proves 
that a more accurate description of the wave propagation is indeed necessary in this 
case. 

3. APPLICATIONS TO SHPB TECHNIQUE TO IMPROVE MEASURING
DURATION 

3 .1 . Behaviour of polymers and polymeric foam under dynamic loading 

Recently, a knowledge of the behaviour of low impedance materials (like foams) 
under crash situations has been needed in the automotive industry (Gary et al., 1 995) 
and has appeared as an important goal. 
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One particular feature of foam testing is the need for a large maximum strain (up 
to 80%) in order to study the densification part of the response, associated with a 
significant increase in the stress. In a conventional SHPB test at quite high strain rates 
of about 300 s - I, it is not possible to measure such strains, even if they are easily 
reached after the measuring phase because of the very low resistance of foam. The 
difficulty associated with a limited measuring duration is solved with the wave sep
aration method presented here. 

A test on polymeric foam (a specimen of 40 mm length and 40 mm diameter) using 
a common nylon SHPB with two 3 m bars of diameter 40 mm is taken as an example. 
Two strain gauges (instead of one) are cemented onto the input and output bars. The 
four strain histories are recorded and shown in Fig. 3(a) (gauges 1 and 2 are on the 
input bar, gauges 3 and 4 on the output bar). One can recognize from the signal of 
gauge 2 that a common quasi-rectangular incident wave is launched by the projectile 
and that this pulse makes periodic round trips in the input bar. 

The input and output velocities calculated from these signals are illustrated in Fig. 
3(b). The measurable duration is about 1 2  ms, which is 1 0  times the initial SHPB 
measuring duration (about 1 .2 ms) for this set-up. In terms of measurement duration, 
it is then as if two bars 30 m long had been used. 

The deduced average stress-strain relation is shown in Fig. 3(c). The material 
behaviour is measured up to a strain three times larger than for a conventional SHPB. 
Since we have a periodic loading due to the round trip of the incident wave in the 
input bar. four loading-unloading cycles are observed. Unloading and reloading 
curves do not follow exactly the same path, which is in agreement with known material 
characteristics and gives confidence in the accuracy of the measurement. This ability 
to obtain dynamic loading-unloading cycles could be interesting for other viscoelastic 
materials or materials that accumulate damage. If the unloading has to be avoided, 
one just has to use a different and better adapted loading device. as indicated, for 
example, in Sections 3.2 and 4. 

3.2. Buckling of metallic tubes under dynamic loading 

Metallic thin tubes are widely used in the automotive industry, essentially as energy 
absorbers. Crush tests of tubes are usually made with a falling mass testing device. 
The deceleration of that mass is measured by an accelerometer. The associated force 
and displacement are then deduced, but the measuring precision is not always very 
good due to vibrations in the weight and its suspension system. Comparison between 
results for identical specimens tested by different devices of that type sometimes 
reveals differences of about 1 00% (Wierzbicki, 1 995). More accurate results are 
obtained with a very long Hopkinson bar set-up (more than 1 00 m, Albertini et al., 
1993) but most laboratories do not have the space to do this. 

It is thus of interest to use an SHPB system, known for its measuring precision. to 
test these kinds of structures. However, this application requires an SHPB bar with a 
large diameter to cover the tube section. In our laboratory, a large diameter (80 mm) 
SHPB system has been equipped to test geomechanical specimens such as rocks and 
concrete and is used for this application. In its classical version, this set-up with a 6 
cm long input bar made of aluminium provides an observable applied displacement 
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of about 1 0  mm for an impact of I 0 m s-1• Using the new method presented in Section 
2, tests of mini-structures can be performed with a large applied displacement. 

Figure 4 shows test results on an aluminium 50 mm x 50 mm square tube (thickness 
2 mm). A steel projectile of 3 m is used to produce a more important loading duration 
without unloading (the impacting side of the input bar remains loaded for a long time 
because the impedance of the projectile is greater than that of the input bar). The 
present method provides an observed crushing displacement of about 60 mm, six 
times greater than the displacement observed with the usual SHPB window. 

Oscillations after the limit of the classical SHPB measurement are observed in the 
final force-displacement relation (the force--displacement relation shown in Fig. 4 is 
a raw result without any smoothing). Nevertheless, the precision in our case is much 
better than that obtained with a falling weight set-up. 

However, the accuracy appears not to be as good as in the case of nylon bars. This 
could be due to the wave dispersion feature, more difficult to take into account here. 
Indeed, in a viscoelastic bar, the high frequency oscillations are progressively damped 
during propagation, whereas the wave dispersion effects in an elastic bar tend to 
increase the oscillations. Since the iterative recovering procedure is mainly based on 
the difference of two signals, the elimination of those increasing oscillations requires 
a more and more accurate shifting function with increase in shifting distance. 

4. "SLOW BAR" TECHNIQUE

4.1 . Experimental arrangement of "slow bars" 

In studies related to passive security in the automotive or rail industry, strain rates 
involved in a crash situation are approximately situated between 5 s-1 and 1 OOO s - 1, 
and mostly in the low part of strain rates. It is important to have experimental data 
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at medium strain rates (5-50 s-1). For foam-like materials, tests in this range from 5 
to 50 s-1 are generally performed with a fast hydraulic machine where a suitable 
measuring technique, often very expensive, is needed to obtain signals reflecting reality 
(Holzer, 1 978). 

The use of the SHPB measuring technique is thus proposed in this paper to perform 
tests at these medium strain rates. The method presented here theoretically has no 
limitation of duration. If a loading device can offer a sufficiently long push at a 
suitable quasi-constant velocity, tests at medium strain rates can be performed with 
satisfactory accuracy. 

The difficulty of building such a loading device lies in the simultaneous requirement 
of sufficient impact energy and of a relative constant medium velocity. If a falling 
mass technique is used [see, for example, Baraya et al. ( 1 965)], a huge mass is necessary 
to supply enough energy at a low velocity. If the technique of a cam driven by an 
engine (Loizou and Sims, 1 953) or a hydraulic jack system is used, a huge installation 
is also needed to obtain a relatively constant velocity. The low cost system proposed 
here is an improved hydraulic oil jack (Fig. 5). It is composed of a hydraulic oil jack 
and a reservoir of compressed air to maintain the pressure in order to push at a 
relatively constant velocity. 

Typical recordings of such a "slow bar" set-up are shown in Fig. 6(a). They concern 
a test without a specimen. The forces and the velocities at the bar-specimen interfaces 
calculated with the present method are shown in Fig. 6(b). The input values (force 
and velocity) are very close to the output ones, as it has to be for a test without a 
specimen. 

A test with a "Slow bar" arrangement on the same polymeric foam as shown in 
Section 3.1 is illustrated in Fig. 7. Unloading is avoided due to the improved loading 
device. 

4.2. Sensitivity to measurement noise; some results on polymeric foam 

In the case of the test without a specimen shown in Fig. 6, we have observed 
that the calculated velocity is quite sensitive to differences between the amplifying 
coefficients of the two gauges on the same bar. As a quasi-static state in the two bars 
(equal forces without oscillations) is almost reached at the end of the test, it is possible 
to calibrate these coefficients so that the amplitudes of the four signals are equal at 
this moment. Such a possibility will not be realized in a real test and it is important 
to investigate the sensitivity of the results to those eventual imperfections. 
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Fig. 6. (a) Recordings of four gauges of a "slow bar .. set-up. (bJ Input and output values calculated from 
four signals. 

In order to evaluate this sensitivity, a random perturbation with an average non
null amplitude is added to one of the two recordings of each bar. In this way, a 
quantitative evaluation can be obtained. The average amplitudes of the perturbation 
that were studied were 0.5%, 1 % and 3% of the current values of the signals. Such a 
choice is based on the consideration that an imprecision of 0.5% is hardly avoidable 
and an imprecision of 3% is commonly found. Figure 8(a) shows that the calculated 
force is not very sensitive to the perturbation. On the other hand, the calculated 
velocity is sensitive to it and a 0.5% perturbation introduces an important error. it 
must also be noted that the error on the calculated velocity is cumulative. During the 
first 40 ms, the velocity calculated from a signal with a 3 % perturbation is still 
acceptable. The method using two strain gauges on each bar is then robust in the case 

13



Stress CllPa) 
4 

3 

2 

1 

0 
0 40:1. 

Fig. 7. Strain rate effects on foam at medium strain rates. 

O.av10. UIS 

strain 

of the improved SHPB test presented in Section 3 where the duration is about 15 ms.
it is also valid in the case of the "slow bar" test shown in Fig. 7 (about 30 ms). 

In order to perform tests at even lower strain rates, another configuration of wave 
separation should be used. One can consider a natural configuration composed of a 
strain gauge and a velocity gauge. The separation scheme using a strain gauge and a 
velocity gauge is slightly different from that of two strain gauges but the theoretical 
basis is the same. It is expected that a direct measured velocity will prevent the 
calculated velocity from drifting. Using the recorded strain and a simulated velocity 
at the position of the other strain gauge, the force and velocity at the bar-specimen 
interfaces are again calculated, giving exactly the same result as when two strain 
gauges are used. 

In order to study the sensitivity of a perturbation in this configuration, the same 
procedure as that used previously is applied. Figure 8(b) illustrates that a perturbation 
of an average amplitude of 3% on the velocity (or on the strain) does not introduce 
a significant error either on the force or on the velocity. It is noted that the two 
elementary waves could be directly known at the measuring point if the strain and 
the velocity could be measured exactly at the same cross-section. Such an approach is 
not investigated here because it has not been found easy to build such an arrangement 
practically. 

A test on the same specimen as mentioned in Fig. 7 is performed at the same 
strain rate with the new arrangement of two strain gauges and two velocity gauges. 
Compared with results obtained with the four-strain-gauge arrangement, the local 
precision in such a configuration is not so good but the general result looks valid until 
the end of the test (Fig. 9). The observed oscillations are due to the insufficient 
accuracy of measured velocities, obtained by the numerical differentiation of the 
displacement signal given by an optical device. 

14



(a) 

Velocity (11/s) 
G . . 

calculated output rorce8 

 dau1d lms Force 
CkH> 

without and with respectiuely 0.5%, lx, 3% perturbation) 

4 

2 

0 

-2 
0 

calculated output uelocity 
without perturbation 

50 

uelocity 
with 0.5% 

100 

Velocity (111/sl 
6 

4 

2 

0 

. . 
calculated output forces 
(without and with 3'1. perturbation) . 

10 

5 

0 

• uelocity 
with lx 

150 time C111sl 

aauia 1111s Force 
Ckl'll 

10 

s 

0 

(b) -2 
0 50 100 150 ti111e (111Sl 

Fig. 8. (a) Two-strain measurement arrangement; sensitivity to experimental perturbations. (b) Strain and 
velocity measurement arrangement; sensitivity to experimental perturbations. 

5. CONCLUSIONS

A new generalized two-gauge measurement method is presented in this paper in 
order to separate virtually the two elementary waves propagating in opposite direc
tions in a bar. The proposed systematic iterative formula allows for the wave dis
persion correction. It provides accurate results for a Jong observation time. 

Using this method, the observing time duration of the measuring technique using 
bars, like SHPB set-ups, is almost unlimited. The application to common SHPB 
systems permits a significant increase (up to 100 times) in the measurement duration 
compared to a classical SHPB, so that it is possible to test mini-structures with 
significant displacements. For material testing applications, it is possible to measure 
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strains up to 80%, as required in testing polymeric or metallic foams. Using an 
appropriate loading device, a new possibility is also offered to perform tests at medium 
strain rates (5-50 s--1). The most interesting perspective is found in this field. This 
technique allows precise measurements at medium strain rates, in a test range between 
the capabilities of a mechanical testing machine and classical Hopkinson bars. 
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