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Double Time Scale Analysis of the Consolidation
of a Two-Strata Poroelastic Layer with High
Permeability Contrast

E. BOURGEOIS, A. CORFDIR and L. DORMIEUX
Laboratoire de Mécanique des Solides (URA 317 CNRS), ENPC-CERCSO, 6–8 avenue Blaise
Pascal, Cité Descartes, F-77455 Marne La Vallée Cedex 2, France

Abstract. The consolidation of a saturated porous medium submitted to a vertical load is a classical
problem, and has been given a complete analytical solution within the framework of linear poroelas-
ticity. For a layer constituted by several homogeneous strata, the problem can be dealt with by means
of analytical as well as numerical methods, provided that the contrast between the properties of the
strata remain moderate. In this paper, we consider a layer constituted by two strata and discuss the
situation in which the contrast between the properties of the strata becomes very large and fluid
conduction exhibits very different characteristic times in each stratum. The method used consists in
introducing a double time scale, and gives an analytical solution, which makes it possible to discuss
the influence of the ratio between strata thicknesses on the overall consolidation time of the layer.

Key words: double time scale, asymptotic method, permeability contrast, layered soil, consolidation,
poroelasticity.

1. Introduction

The consolidation of a saturated porous layer submitted to a vertical load is a
classical problem, first studied by Terzaghi (1925, 1943) and Biot (1941) among
others, and has been given a complete analytical solution for a homogeneous
layer within the framework of linear poroelasticity. This solution is recalled in the
first section: all quantities (notably the strain in the layer and the global vertical
settlement) can be deduced from the excess pore pressure within the layer, which
takes the form of a series of functions decreasing with time. The consolidation
of a layer constituted by several homogeneous compressible poroelastic strata can
be dealt with by means of analytical as well as numerical methods, provided that
the contrast between the characteristic times of consolidation of the strata remain
moderate. We consider a layer constituted by two strata and discuss the situation
in which the contrast between the properties of the strata becomes very large and
fluid conduction exhibits very different characteristic times in each stratum. We
propose an analytical approach, based on the introduction of a double time scale:
the excess pore pressure within each stratum is expanded into a power series of the
ratio of the characteristic times of both strata.
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Figure 1. Layer subjected to a uniform overload.

2. Consolidation of a Homogeneous Compressible Porous Layer

Consider a horizontal layer of a compressible poroelastic medium, of infinite extent
in the Oxy plane and of thickness H (Figure 1). On its lower boundary (located in
the plane z = 0), the layer lies on a horizontal rigid and impervious substratum.
The upper boundary of the layer is perfectly drained, so that the fluid pressure in
the plane z = H remains equal to zero. Initially (t < 0) the layer is at rest, and the
pore pressure field P o(z) is hydrostatic.

At time t = 0, the layer is instantaneously subjected to a uniform density of
vertical overload:

8t > 0 �:ez = �q ez at any point of the plane z = H; (1)

where � denotes the Cauchy stress tensor and ez the unit vector of the upward
vertical direction. Given the symmetry of both the geometry and the loading, all
quantities are assumed to be independent of the horizontal coordinates x and y.

When the overload is applied, the fluid pressure is instantaneously uniformly
increased in the layer, then decreases progressively as the fluid leaves the layer.
The problem consists in finding out the time evolution of the pore pressureP (z; t).
We denote by p(z; t) = P (z; t) � P o(z) the difference between the current and
initial pore pressure fields, and the initial fluid mass density is denoted by �fo .

It is recalled that the relative motion of the fluid with respect to the skeleton of
the porous medium is represented by the Eulerian vector w of relative fluid mass
flow, which is related to the pressure field through the fluid mass conduction law
(or Darcy’s law):

w=�fo = �[k=�] grad p; (2)
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where k is the (intrinsic) permeability tensor and � the viscosity of the fluid. In the
case of a homogeneous and isotropic layer, the permeability tensor takes the form
k = k1. Projecting (2) upon the vertical direction, one gets

wz=�
f
o = �k=�

@p

@z
: (3)

The behavior is characterized by the undrained Lamé coefficients � and G

and by the Biot modulus M and Biot coefficient b (see, for instance, Coussy
(1995)). Denoting by cm the diffusion coefficient (cm = (k=�)M(��Mb2+2G)=

(� + 2G)), a classical reasoning shows that the problem consists in solving the
well-known equation of consolidation

@p

@t
= cm

@2p

@z2 (4)

with the conditions of impermeability of the substratum on the lower boundary and
of nullity of the pore pressure on the upper boundary

wz(z = 0; t) = 0 )
@p

@z
(z = 0; t) = 0 (5)

p(z = H; t) = 0 (6)

together with the initial condition

p(z; t = 0+) = Rq with R = Mb=(�+ 2G): (7)

The solution is looked for under the form of a linear combination of the elementary
solutions of (4) given by

un(z) exp

 
�
�2

4
(2n+ 1)2t=tc

!
(8)

where the functions un(z) are the eigenvectors of the differential operator d2=dz2

on the interval [0;H] that satisfy (5) and (6):

un(z) = cos
�
(2n+ 1)

�

2
z=H

�
(9)

and tc is the characteristic time of consolidation of the layer

tc =
H2

cm
: (10)
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Figure 2. Layer constituted by two strata of different permeabilities.

The unknown function p(z; t) is then obtained as a series whose coefficients are the
Fourier coefficients of the initial condition (7) with respect to the functions un(z),
which yields the classical result (see, for instance, Taylor (1948)):

P (z; t)� P o(z)

= Rq
1X
n=0

4(�1)n

�(2n+ 1)
cos((2n+ 1)z=H) exp

 
�
�2

4
(2n+ 1)2t=tc

!
: (11)

This series is convergent for any z if t > 0; for t = 0, it is convergent at any point
of the interval [0;H[, and the limit is the value prescribed by (7).

3. Layer Constituted by Two Strata

Consider now the case of a layer constituted by two strata (Figure 2), both homo-
geneous and isotropic but in which the phenomenon of conduction of the fluid
has very different characteristic times. This situation occurs, for instance, if both
layers have very different permeabilities but mechanical properties roughly of the
same order; permeability in clays may be lower by up to 9 orders of magnitude
than typical permeabilities of sands, whereas their bulk and shear moduli are of
similar order. We denote with a subscript a (resp. b) quantities relative to the lower
(resp. upper) stratum. Thus, the permeability and the elastic constants of the lower
stratum (0 6 z 6 Ha) are denoted by ka; �a;Ma; ba, and that of the upper stratum
(Ha 6 z 6 Ha +Hb) by kb; �b;Mb; bb. The characteristic times are given by

ta = H2
a

�a + 2Ga

kaMa(�a �Mab2
a + 2Ga)

; tb = H2
b

�b + 2Gb

kbMb(�b �Mbb
2
b + 2Gb)

: (12)

In what follows, we discuss the case of very contrasted characteristic times (i.e.
ta � tb or tb � ta).
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� If tb � ta, the upper stratum reacts much faster than the lower one. In
a first phase, whose duration is of the order of a few times tb, the excess pore
pressure in the upper stratum vanishes, whereas the lower stratum behaves as
an impervious substratum. Then, at a larger time scale, the excess pore pressure
progressively disappears in the lower stratum as if it were perfectly drained on its
upper boundary. In spite of its simplicity, this reasoning enlightens the existence
of two different time scales related to the conduction of fluid mass in each stratum,
and provides sufficient information to understand the overall evolution of the pore
pressure in the layer and to predict the evolution of the layer thickness.

� If ta � tb, such a simple analysis is no longer effective. The fact that fluid
mass conduction is faster in the lower stratum ensures that the difference between
the pore pressure and its initial hydrostatic value rapidly becomes uniform in the
stratum, but its value depends on the quantity of fluid leaving the lower stratum,
which is determined by the evolution of the upper stratum. Thus, the evolution of
the layer on a large time scale remains to be discussed.

3.1. ASYMPTOTIC METHOD. CHOICE OF A SMALL PARAMETER

We first define a reduced coordinate for each stratum

Za = z=Ha; Zb = (z �Ha)=Hb (13)

and we denote by pa(Za; t) and pb(Zb; t) the difference between the current value
of the pore pressure and the initial hydrostatic value. The PDEs governing the
conduction of the fluid in each stratum and the conditions on the boundaries
become:

@pa

@t
=

1
ta

@2pa

@Z2
a

;
@ph

@t
=

1
tb

@2pb

@Z2
b

; (14)

@pa

@Za

(Za = 0; t) = 0; (15)

pb(Zb = 1; t) = 0: (16)

Besides, the solution is bound to satisfy the following conditions at the interface
z = H:

pa(Za = 1; t) = pb(Zb = 0; t) (continuity of the pore pressure) (17)

ka

Ha

@pa

@Za

(Za = 1; t) =
kb

Hb

@pb

@Zb

(Zb = 0; t)

(continuity of the fluid mass flowwz): (18)
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The characteristic times of the strata being very different, we suggest to use here
an asymptotic method: such methods are used in a wide range of problems involv-
ing more than one scale, usually in space rather than in time (see for instance
(Bensoussan et al., 1978)). They consist in introducing a small parameter to take
into account the existence of two different scales and in assuming that physical
quantities can be expanded into power series of the small parameter.

In the problem under consideration, given the existence of two time scales, the
dependency with respect to time of any quantity A(t) is taken into account by
means of two independent variables

A(t) = A(�a; �b) with �a = t=ta; �b = t=tb (19)

Denoting by � the little parameter � = ta=tb � 1, Equations (14) take the form

@pa

@�a
+ �

@pa

@�b
=
@2pa

@Z2
a

;
1
�

@pb

@�a
+
@pb

@�b
=
@2pb

@Z2
b

: (20)

Physical quantities are expanded into power series of �:

A(t) = A(0)(�a; �b) + �A(1)(�a; �b) + � � � ; (21)

where the A(i) are of same order of magnitude. Note that a perturbation technique
has been used by Fallou et al. (1992) to deal with the subsidence of a layered soil
due to pumping, in which the different layers exhibit very different permeabilities
and mechanical properties.

3.2. RESOLUTION

Limiting the developments to terms of order lower than 1, Equations (20) yield

@p
(0)
a

@�a
=
@2p

(0)
a

@Z2
a

; (22)

@p
(1)
a

@�a
+
@p

(0)
a

@�b
=
@2p

(1)
a

@Z2
a

; (23)

@p
(0)
b

@�a
= 0; (24)

@p
(0)
b

@�b
+
@p

(1)
b

@�a
=
@2p

(0)
b

@Z2
b

: (25)
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The boundary conditions (15) and (16) and the interface conditions (17) and (18)
can be rewritten as

@p
(0)
a

@Za

(Za = 0; �a; �b) =
@p

(1)
a

@Za

(Za = 0; �a; �b) = 0; (26)

p
(0)
b (Zb = 1; �a; �b) = p

(1)
b (Zb = 1; �a; �b) = 0; (27)

p(0)a (Za = 1; �a; �b) = p
(0)
b (Zb = 0; �a; �b); (28)

p(1)a (Za = 1; �a; �b) = p
(1)
b (Zb = 0; �a; �b); (29)

@p
(0)
a

@Za

(Za = 1; �a; �b) = 0; (30)

�
@p

(1)
a

@Za

(Za = 1; �a; �b) =
@p

(0)
b

@Zb

(Zb = 0; �a; �b); (31)

where

� =
Ha(�a + 2Ga)

Ma(�a +Mab2
a � 2Ga)

=
Hb(�b + 2Gb)

Mb(�b +Mbb
2
b � 2Gb)

is a nondimensional parameter that depends on the ratio between the thicknesses
of the strata and on the contrast between their elastic constants. Notice that (24)
shows that p(0)b does not depend on the rapid time variable �a. In a general way, it
is clear that the evolution of the upper stratum only involves the slow time variable
�b, and it can be shown that all functions p(i)b are independent of �a. It then follows

from (25) that the function p(0)b (Zb; �b) satisfies the familiar PDE

@p
(0)
b

@�b
=
@2p

(0)
b

@Z2
b

(32)

with the conditions (27) and (31). The latter has an unusual form, and involves
the function p(1)a through the value taken by its derivative with respect to Za at the
interface.

Given (22), and the boundary conditions (30) and (28), it is readily seen that the
function p(0)a does not depend on �a:

p(0)a (Za; �a; �b) = p
(0)
b (Zb = 0; �b) (33)

In the particular case of the loading discussed here, the overall evolution of the
layer is only controlled by that of the upper stratum: no rapid evolution of the lower
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stratum is expected after the load is applied, since the initial excess pore pressure is
uniform according to (7). Thus, given the form of the initial condition, it is assumed
that the functions p(i)a do not depend on �a. It then follows from (23) and (33) that:

@2p
(1)
a

@Z2
a

=
@

@�b
[p
(0)
b (Zb = 0; �b)] (34)

Taking into account (26), the integration of (34) with respect to Za leads to

@p
(1)
a

@Za

= Za

@

@�b
[p
(0)
b (Zb = 0; �b)]: (35)

The function p(0)b (Zb; �b) is solution to (32), with the boundary conditions (27) and
(31), or, using (35):

@p
(0)
b

@�b
=
@2p

(0)
b

@Z2
b

; p
(0)
b (Zb = 1; �b) = 0;

@p
(0)
b

@Zb

(Zb = 0; �b) = �
@

@�b
[p
(0)
b (Zb = 0; �b)]:

(36)

The originality of the system lies in the form of the condition written in Zb = 0,
which accounts for the coupling between strata. Denoting by Y the Heaviside
function, the initial condition takes the form

p
(0)
b (Zb; �b = 0+) = Rq Y (1� Zb): (37)

Solutions to (36) are looked for under the form f(Zb)h(�b). We denote by f 0 (resp.
f 00) the derivative (resp. the second derivative) of f , and by _h the derivative of h.
One first classically obtains

_h(�b)=h(�b) = �!2
) h(�b) = h(0) exp(�!2�b); (38)

while f is solution to the differential equation

f 00 = �!2f; (39)

with the conditions

f(Zb = 1) = 0; (40)

f 0(Zb = 0) = � _h(�b)=h(�b)f(Zb = 0)

= ��!2f(Zb = 0) = �f 00(Zb = 0): (41)
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Solutions are given by

fn(Zb) = sin(!n(1� Zb)) (n > 0); (42)

where!n is the only solution in the interval ](n�1=2)�; (n+1=2)�[ to the equation

! tan ! = 1=�: (43)

We now look for a linear combination of the elementary solutions fn(Zb) �

exp(�!2
n�b) that comply with the initial condition (37). Let us introduce the bilinear

form h; i defined by:

hf; gi =

Z 1

0
(�f 0 � f)(�g0 � g) dZb: (44)

It is readily seen that this bilinear form is symmetric and takes a strictly positive
value for any differentiable function that comply with (40). Besides, for anyn 6= m,
the functions fn and fm are orthogonal. To prove this, we evaluate the quantity
Bnm defined as

Bnm =

Z 1

0
d=dZb[(�f

00

n � f 0n)(�f
0

m � fm)� (�f 00m � f 0m)(�f 0n � fn)] dZb: (45)

Developing the integrand, and remembering the functions fn(Zb) are eigenvectors
of d2=dZ2, one gets

Bnm = (!2
m � !2

n)hfn; fmi (46)

Besides, it is readily seen that Bnm = Fnm(1)� Fnm(0), with

Fnm(x) = (�f 00n � f 0n)(�f
0

m � fm)� (�f 00m � f 0m)(�f 0n � fn)

= �!2
nfn(�f

0

m � fm) + !2
mfm(�f 0n � fn) +

+(f 0nfm � f 0mfn) (47)

Fnm (1) is zero because all functions fn(Zb) take the value zero in Zb = 1, and
condition (41) yields

f 0n(Zb = 0) = f 00n(Zb = 0) = ��!2
nfn(Zb = 0) (48)

which implies that Fnm (0) is also equal to zero. It follows that Bnm = 0, and with
(46), that fn and fm are orthogonal.

Eventually the solution of the problem is given by

p
(0)
b (Zb; �b) = Rq

1X
n=0

An exp(�!2
n�b) sin(!n(1� Zb)) (49)
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where the An are the Fourier coefficients of the initial condition with respect to the
functions fn(Zb):

An = RqhY (1� Zb); fni=hfn; fni: (50)

Note that the bilinear form used here is more complicated than that used in the
usual problem of consolidation; its definition (44) involves the derivatives of f and
g: it is therefore necessary to write the initial condition under the form (37) (instead
of p(0)b (Zb; �b = 0+) = Rq) to get the proper values of the An. For any Zb, this
series is convergent at �b = 0 and absolutely convergent for �b > 0.

One thus gets an approximation of the evolution of the pore pressure in both
strata at the lowest order, i.e. in the case of an infinite contrast of permeability. Terms
of higher orders could be obtained by solving successively problems of the same
kind. However, (35) gives the gradient of the function p

(1)
a , which is responsible

for the motion of fluid in the lower stratum. Note that when the contrast becomes
very large (� ! 0), the lower stratum is progressively drained in spite of the fact
that the excess pore pressure remains uniform at any time.

Figure 3. p(0)
b
(Zb) for different times �b: (a)

�b = 5 � 10�4; (b) �b = 10�2; (c) �b = 10�1;
(d) �b = 1.

Figure 4. Excess pore pressure at the interface
between strata p(0)

b
(Zb = 0) as a function of �b.

4. Application

Figures 3 and 4 sum up the results obtained in the particular case where � = 1:
they give the time evolution of the excess pore pressure profile across the upper
stratum and the evolution of the value of the excess pore pressure at the interface
between both strata.

Assuming the materials constituting both strata have the same elastic constants,
and given the thickness Hb of the upper stratum, it is interesting to discuss the
influence of the thickness Ha of the lower stratum on the time necessary to the
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Figure 5. Influence of the thickness of the lower stratum on the overall consolidation time of
the layer.

consolidation of the whole layer. This is achieved on Figure 5 by plotting the non-
dimensional time appearing in the first term of the series (which rapidly becomes
preponderant as time increases), namely 1=!2

o , against�. For small values of�, one
gets the value 4=�2, which means that the upper stratum reacts as though it were
lying on an impervious substratum (see the usual result (11)). Besides, asymptotic
developments of the value of !o provide the slope of the curve:

� for small values of �, it follows from (43) that !o tends to �=2. Let:

!o = �=2� " (51)

It is readily seen from (43) that " �= ��=2. One then derives from (51) the approx-
imation 1=!2

o
�= 4=�2(1 + 2�) for small values of �, and the slope tends to 8=�2;

� for great values of �, it is readily seen (cf. (43)) that !o tends to 0. It then results
from (43) that

!2
o
�= !o tan !o = 1=� (52)

and the slope tends to 1.

5. Conclusion

The introduction of a double time scale has proved to be a successful method
to get analytically the exact solution of the problem under discussion. The main
difficulty of the resolution is due to the nonusual form of the boundary condition
at the interface between the strata, and results in the introduction of an unusual
bilinear form to obtain the coefficients An of the series (49). The small parameter
we choose is the ratio between the characteristic times of the strata, which has a
clear physical meaning and makes the interpretation of the results simple.
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The results obtained make it possible to discuss the influence of the ratio of strata
thicknesses on the overall consolidation time of the layer. When the thickness of
the lower stratum tends to zero, the consolidation time is the same as if the upper
stratum would lie on an impervious substratum. We provide an estimation of the
increase of the consolidation time with the thickness of the lower stratum.

Eventually, the analytical solution obtained herein may be useful to test the
validity of existing numerical softwares simulating vertical compaction when high
contrasts between characteristic times occur.
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